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A B S T R A C T   

Conservationists spend considerable resources to create and enhance wildlife habitat. Monitoring how species 
respond to these efforts helps managers allocate limited resources. However, monitoring efforts often encounter 
logistical challenges that are exacerbated as geographic extent increases. We used autonomous recording units 
(ARUs) and automated acoustic classification to mitigate the challenges of assessing Eastern Whip-poor-will 
(Antrostomus vociferus) response to forest management across the eastern USA. We deployed 1263 ARUs in 
forests with varying degrees of management intensity. Recordings were processed using an automated classifier 
and the resulting detection data were used to assess occupancy. Whip-poor-wills were detected at 401 survey 
locations. Across our study region, whip-poor-will occupancy decreased with latitude and elevation. At the 
landscape scale, occupancy decreased with the amount of impervious cover, increased with herbaceous cover 
and oak and evergreen forests, and exhibited a quadratic relationship with the amount of shrub-scrub cover. At 
the site-level, occupancy was negatively associated with basal area and brambles (Rubus spp.) and exhibited a 
quadratic relationship with woody stem density. Implementation of practices that create and sustain a mosaic of 
forest age classes and a diverse range of canopy closure within oak (Quercus spp.) dominated landscapes will 
have the highest probability of hosting whip-poor-wills. The use of ARUs and a machine learning classifier helped 
overcome challenges associated with monitoring a nocturnal species with a short survey window across a large 
spatial extent. Future monitoring efforts that combine ARU-based protocols and mappable fine-resolution 
structural vegetation data would likely further advance our understanding of whip-poor-will response to for-
est management.   

1. Introduction 

Forests of the eastern United States are largely dominated by uni-
formly aged, closed canopy forests (80–110 years old; Shifley et al., 

2014). As such, many wildlife species that require forests with diverse 
structural conditions are in decline (Anders et al., 1998; Litvaitis, 2001; 
Boves et al., 2013; Fiss et al., 2020). Numerous conservation efforts are 
underway on public and private lands to increase the availability of 
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diverse forest conditions to recover declining wildlife (Bauer, 2018; 
Shaffer, 2022). Monitoring programs associated with these efforts are 
essential for identifying factors that affect species responses to man-
agement and, thus, for facilitating adaptive management (Westgate 
et al., 2013). Indeed, ongoing efforts to enhance structural diversity in 
eastern forests have been accompanied by monitoring that assessed focal 
(Bauer, 2018; McNeil et al., 2020; Nareff et al., 2019) and non-focal 
species (Mathis et al., 2021; McNeil et al., 2023a) responses. Addi-
tional monitoring is needed to elucidate the degree to which other 
declining species benefit from various forest management practices, 
which form the basis for more holistic multi-species conservation stra-
tegies (Di Stefano et al., 2013). 

The Eastern Whip-poor-will (Antrostomus vociferus; hereafter whip- 
poor-will) is a forest-dwelling species that benefits from structural di-
versity (Wilson and Watts, 2008; Akresh and King, 2016), but moni-
toring is needed to measure the effects of specific forest management 
actions. This nocturnal aerial insectivore inhabits forests of eastern 
North America (Cink et al., 2020; COSEWIC, 2022) and experienced an 
estimated 64% population decline (− 1.9%, annually) from 1966 to 2019 
(Pardieck et al., 2020). Factors thought to be contributing to 
whip-poor-will population declines include habitat loss and degradation 
due to human development, as well as the disruption of natural distur-
bance regimes (Spiller and Dettmers, 2019; COSEWIC, 2022). 

Whip-poor-wills require early successional forest for foraging, and 
also use this successional stage and mature stands for nesting and 
roosting (Akresh and King, 2016; Spiller et al., 2022). Correspondingly, 
forest management has been recognized as an important tool for 
creating and maintaining stand- and landscape-scale conditions that 
encompass the range of habitat features attractive to whip-poor-wills 
(Wilson and Watts, 2008; Tozer et al., 2014; Farrell et al., 2017; 
Spiller and King, 2021). The whip-poor-will’s breeding distribution falls 
within geographies heavily dominated by eastern deciduous forests 
(Cink et al., 2020). However, no studies have investigated factors that 
influence broad scale patterns of whip-poor-will occupancy among this 
forest type and associated management practices and landscape con-
texts. Given that forest management is a key influence on forest structure 
and composition in eastern forests (Shifley et al., 2014), it is imperative 
to understand the extent to which stand-level forest management prac-
tices satisfy the habitat needs of whip-poor-wills and to identify land-
scape contexts associated with high occupancy. Otherwise, conservation 
efforts that target breeding whip-poor-wills (e.g., forest management) 
could be ineffective if conducted in inappropriate landscape contexts. 

Although monitoring protocols have been created to standardize 
whip-poor-will population surveys over broad spatial extents, extensive 
monitoring regimes remain challenging for several reasons. For 
example, most whip-poor-will surveys are conducted from roads (i.e., 
Nightjar Survey Network and Canadian Nightjar Survey) to avoid the 
challenges of navigating through off-road areas at night. However, road- 
based surveys greatly limit insights about the species’ response to stand- 
level forest management, which often occurs away from public roads 
(Betts et al., 2007). Monitoring efforts are also limited by the brief 
temporal window for surveying whip-poor-wills, which sing predomi-
nantly on nights with the moon at least 50% illuminated (Wilson and 
Watts, 2006), a period less than a month in duration under ideal weather 
conditions. To overcome these challenges, low-cost ‘autonomous 
recording units’ (ARUs) can be deployed prior to the onset of a survey 
window and left in situ for the duration of a breeding season (Knight 
et al., 2022; Larkin, 2023; Markova-Nenova et al., 2023). Thus, the 
widespread deployment of ARUs across managed landscapes has sig-
nificant potential to increase our understanding of habitat associations, 
population trends, behavior, response to forest management, and 
detectability of nocturnal birds, in ways traditional monitoring methods 
cannot. 

In this study, we developed and implemented an ARU-based moni-
toring protocol to assess whip-poor-will occupancy across various 
silvicultural treatments, landscape contexts, and forest types in the 

eastern US. The objective of this study was twofold; 1) to assess terri-
torial whip-poor-will occupancy across a gradient of canopy disturbance 
intensity resulting from forest management, and 2) to identify site- and 
landscape-level factors at various spatial scales that influence territorial 
whip-poor-will occupancy, in an understudied portion of the species 
breeding range. Based on past research, we hypothesized that whip- 
poor-wills would be positively associated with forest cover (English 
et al., 2017; Vala et al., 2020), shrub-scrub cover and understory woody 
stem density but negatively associated with urban development (i.e., 
impervious cover) and basal area (Spiller and King, 2021; Souza- Cole 
et al., 2022). We discuss our findings in the context of assessing 
whip-poor-will ecology and its response to conservation efforts that 
target other wildlife species, in addition to implications for imple-
menting ARU-based surveys across large spatial extents. 

2. Methods 

2.1. Study area 

We studied whip-poor-will occupancy in forests ranging from west-
ern North Carolina to southern Maine (Fig. 1). This geography encom-
passes a diversity of forest types dominated by oak-hickory and northern 
hardwoods. Stands monitored were between 0 and 110 years post- 
disturbance. Tree species composition varied across survey locations; 
however, most sites were dominated by deciduous species (e.g., Acer 
spp., Betula spp., Carya spp., and Quercus spp.), with few (<8%, n = 103) 
locations having a significant evergreen component (>10% within 250 
m; Pinus spp., Picea spp., and Tsuga canadensis). Understory vegetation 
composition and heights ranged from low (<2 m) herbaceous vegeta-
tion, shrubs, saplings, and brambles to tall (>2 m), dense, regenerating 
closed-canopy sapling stands. Elevations ranged between 6 and 1199 m 
above sea level. 

2.2. Forest management treatments 

Survey locations occurred on public and private lands and repre-
sented a continuum of forest management intensities ranging from 
recent clearcuts and partial timber harvest to closed-canopy forest. 
Closed-canopy forest (Fig. 2) included stands that were 21–110 years 
old. Basal area, tree size/spacing, and under-/mid-story structure varied 
among closed canopy stands depending on human and natural distur-
bance history and site conditions. Stands that had been recently treated 
(i.e., <20 years) were either shelterwood or overstory removal harvests. 
Shelterwoods in our study were <10 year-old commercial harvests and 
non-commercial treatments that resulted in stand basal areas between 9 
and 21 m2/ha (40–90 ft2/ac). Overstory removals (Fig. 2) in our study 
were <20 years old and included commercial harvests and non- 
commercial treatments that resulted in stands with basal areas be-
tween 0 and 7 m2/ha (0–30 ft2/ac). Stands within this treatment cate-
gory were either in 1) the stand initiation stage (i.e., <10 years post- 
treatment) with a mix of herbaceous, shrub, saplings, and scattered re-
sidual trees, or 2) the early stem exclusion phase (i.e., 10–20 years post- 
treatment) with a mostly intact canopy of saplings and shrubs (<5 m 
tall) and a minimal herbaceous component. 

2.3. Whip-poor-will survey locations 

Study sites were associated with three forest bird monitoring pro-
grams: NRCS’s Conservation Effects Assessment Project and National 
Fish and Wildlife Foundation’s Delaware River Watershed and Central 
Appalachians Programs. These included 504 locations on private forests 
enrolled in Natural Resource Conservation Service’s (NRCS) conserva-
tion programs that target other at-risk forest species (Working Lands for 
Wildlife [WLFW] Golden-winged Warbler [Vermivora chrysoptera; 
GWWA] and New England Cottontail [Sylvilagus transitionalis; NEC] and 
Regional Conservation Partnership Program [RCPP] Cerulean Warbler 
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[Setophaga cerulea; CERW]) and 759 locations on public forests managed 
by various state/federal agencies and private forests managed by non- 
government organizations (Pennsylvania = 640; Virginia = 70; New 
Jersey = 8; Massachusetts = 17; NH = 18; and Maine = 6). Further 
details regarding the selection of survey locations are provided as sup-
plemental material. At each site, random survey locations were gener-
ated using ArcMap 10.8.1 (Environmental System Research Institute, 
Redlands, CA) with the “Create Random Points” tool. We ensured that 
all survey locations used in our study were spaced a minimum of 500 m 
apart to maintain spatial independence of points (Bibby et al., 2000); 
past studies have reported whip-poor-will home range size to average 5 
ha (~128 m radius circle; Cink et al., 2020; Hunt, 2013). Adhering to the 
above criteria, we generated 1263 unique survey locations that we 
included in our study (Fig. 1). 

2.4. Autonomous recording units and Acoustical processing 

We used ARUs (AudioMoths, Open Acoustic Devices) to collect audio 
recordings at each survey location during allowable nightjar survey 
windows which occurred between late April–July 2020 or 2021 (one 
season per location; nightjars.org, Hill et al., 2019; Larkin, 2023). ARUs 

were configured with AudioMoth firmware version 1.5.0, to have a 32 
kHz sample rate, medium gain, and produce 16-bit WAV files. Units 
were programmed to record for 2 h after sunset (2100–2300 EST) onto a 
64 gigabyte micro- Secure Digital (SD) card. We attached an ARU to a 
woody stem at each survey location at a height of 1.5–2m (see Larkin, 
2023 for additional deployment details). After recovering ARUs from the 
field, we downloaded recordings and split recordings into 5-s clips using 
the Python package, OpenSoundscape version 0.6.1 (Van Rossum and 
Drake, 1995; Lapp et al., 2023). Clips were then processed through a 
binary, single target automated classifier (see supplemental materials 
for information on classifier development; Fig. A1) developed using 
whip-poor-will song recordings we collected and from Xeno-Canto 
(xeno-canto.org). The classifier assessed each clip for the presence of 
whip-poor-will songs and then assigned a score to the clip, with higher 
scores indicating increased likelihood that the clip contained a 
whip-poor-will song. 

To assess the accuracy of our classifier, we listened to top scoring 5- 
sec clips from each survey location (3465 clips; Fig. A2). This process 
enabled us to determine a threshold score above which we detected no 
false positives. After determining the threshold score of 4.3 (Fig. A2), we 
randomly selected and listened to an additional 1500 clips with scores 

Fig. 1. Locations of autonomous recording units (n = 1263) deployed to monitor Eastern Whip-poor-wills within managed and unmanaged forest communities 
ranging from western North Carolina to southern Maine from April–July 2020 and 2021. Note: Each private land survey location was shifted in a random direction 
0–25 km to preserve landowner privacy. 
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≥4.3 to further ensure no false positives. We assessed site occupancy by 
referring to the daily top scoring clip for each survey location. If the clip 
score was ≥4.3 threshold, we considered the site to be occupied and if 
the clip score was <4.3, unoccupied. Using these data, we were able to 
create a daily occurrence history for each survey location whereby “1″ 
denoted a whip-poor-will detection and “0″ denoted a non-detection. 

2.5. Vegetation sampling 

We conducted bi-radial vegetation surveys centered on each ARU, 
after leaf out in late June and early July, to quantify several vegetation 
metrics. The vegetation survey had three components: 1) basal area 
prism sweeps, 2) 1 m2 ground cover plots, and 3) 10 m2 woody regen-
eration belt transects. Specifically, 35-m transects were oriented in 2 of 3 
randomly selected bearings (0◦, 120◦, and 240◦) radiating from plot 
center. At the end of each transect and at plot center we used a 2.3 m2/ha 
factor wedge prism to estimate tree basal area and averaged the three 
estimates for a site-wide basal area value. We sampled ground cover 
within three 1 m2 plots located at the end of each transect and at plot 
center. Within each 1 m2 plot, we recorded the presence of the 
following: woody seedlings (<0.5m tall), herbaceous vegetation, leaf 
litter, bare ground/rock, brambles (Rubus spp.), and ferns. Lastly, along 
both 35 m transects we counted all woody stems >0.5 m in height and 
<10 cm diameter breast height (DBH) within a 1 × 10 m belt transect 
that ran from 15 to 25 m from plot center. Of the 1263 survey locations 
considered in our analyses, 127 did not have associated vegetation data. 

2.6. Landscape assessment 

We used the extract function in the “raster” package in program R 
(Hijmans et al., 2015, R Core Team, 2020), to characterize the local 
landscapes surrounding each survey location at the following spatial 
extents: 250, 500, 750, 1000, 1250, 1500, and 1750 m. These spatial 
extents were found by previous research to characterize whip-poor-will 
habitat associations (Hunt, 2013; Tozer et al., 2014; Vala et al., 2020). 
We used the 2019 National Land Cover Dataset (Dewitz, 2021) raster to 
quantify the percent composition of barren land, cultivated crops, 
hay/pasture, shrub-scrub, herbaceous, evergreen forest, mixed forest, 
wetland (emergent and woody combined). We used the 2019 NLCD 
“Urban Imperviousness” layer to quantify human development sur-
rounding each survey location (Dewitz, 2021). We used the US Forest 

Service’s Forest Inventory and Analysis dataset (USDA Forest Service, 
2008) to quantify forest community types (Oak [Oak-Hickory and 
Oak-Pine combined], Maple-Beech-Birch, White-Red-Jack pine, 
Spruce-Fir, Loblolly-Shortleaf pine, and Elm-Ash-Cottonwood), and the 
2010 United States Geological Survey’s Global Multi-resolution Terrain 
Elevation Data (Danielson and Gesch, 2011) to quantify elevation at 
each survey location. 

2.7. Data analysis 

We considered a site ‘occupied’ by a territorial whip-poor-will if two 
detections (scores ≥4.3) were ≥10 days apart (Bibby et al., 2000) and 
excluded all survey locations with <10 days of data from our analyses. 
This criterion was determined by Bibby et al. (2000), who suggested a 
site be considered occupied by a territorial nocturnal/crepuscular spe-
cies only if it is detected on at least two counts spaced at least ten days 
apart. This is a standard approach used by other studies to classify 
territoriality (e.g., Akresh et al., 2015; Broughton et al., 2018). To 
reduce the potential for false negatives in our dataset, we manually 
reviewed the daily detection scores between 3.0 and 4.3 for all the sites 
that we considered unoccupied based on our above criteria (≥2 de-
tections at least 10 days apart). This step resulted in changes to the 
occupancy designation of only two sites. We modeled whip-poor-will 
occupancy using Generalized Linear Models (GLM) fit to a binomial 
distribution in R (R Core Team, 2020). We chose to use GLMs instead of 
occupancy models because preliminary single-season occupancy ana-
lyses revealed that cumulative detection probability approached 1.0 
after only four nights of recording (daily detection probability = 0.54; 
cumulative detection probability (p̂): 1-(1-0.54)4 = 0.96), thus elimi-
nating the need to account for imperfect detection in our analyses 
(MacKenzie et al., 2002). Further, we assessed whether occupancy was 
positively correlated with days of recording using a Wilcoxon test and 
found that this was not the case (the opposite was true; W = 137,714, p 
= 0.004248), an unexpected coincidence driven by the order in which 
we recovered ARUs from the field with units at higher quality, managed 
sites being recovered first. 

We created a separate model set for three decreasing spatial scales: 
regional, landscape, and site-level; and compared models within each of 
these sets using an information-theoretic framework (Burnham and 
Anderson, 2002). Regional and landscape variables were modeled 
separately because we expected them to influence one another, and we 

Fig. 2. Graphic displaying the gradient of canopy disturbance conditions that were monitored for Eastern Whip-poor-wills (top) and a barplot that displays the 
number of sites within each basal area range (bottom). Sites with these conditions ranged from western North Carolina to southern Maine and were monitored from 
April–July 2020 and 2021. 
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were interested in the broad patterns described by variables in each set. 
This approach was useful for examining ecological variables associated 
with potentially different ecological processes (McGarigal et al., 2016; 
Hingee et al., 2022). We considered three predictor variables for in-
clusion in our “regional” model set (Tables A1 and A2). Prior to con-
structing our “landscape” model set we first removed from further 
consideration any cover type that occurred at <10% of our survey lo-
cations. Then, we ran univariate models for each of the remaining 
landscape variables to determine the spatial extent that best predicted 
whip-poor-will occupancy. Univariate models were ranked using 
Akaike’s Information Criterion adjusted for small sample size (AICc, 
Burnham and Anderson, 2002), and the spatial extent contained in the 
top model for each landscape variable was used in our “landscape” 
model set (Table A3; Willey et al., 2022). 

We considered 18 and 10 predictor variables for inclusion in our 
“landscape” and “site-level” model sets, respectively (Tables A1 and A2). 
We included quadratic terms for four variables in our landscape model 
set (shrub-scrub [Akresh and King, 2016], wetland [Vala et al., 2020], 
forest [Vala et al., 2020], and barren land [Grahame et al., 2021]) and 
two in the site-level model set (basal area and woody stem density), 
because published literature suggests that these variables may be opti-
mized for whip-poor-wills at intermediate values or have non-linear 
relationships (Spiller et al., 2022). As such, we examined all subsets of 
variables in our global model in such a way that linear and quadratic 
versions were both tested and that a quadratic term never appeared 
without a linear term (but linear could appear without quadratic). 
Before creating the final regional, landscape, and site-level model sets, 
we tested for correlation among all variables within each model set by 
calculating pairwise Pearson’s Correlation Coefficients. Variables that 
had correlation coefficients ≥±0.6 were considered correlated (Sokal 
and Rohlf, 1969). If two variables were correlated, we excluded from 
further analyses the variable with the least potential influence on 
whip-poor-will ecology based on published literature. The following 
terms were included in our final model sets: Regional (n = 2; latitude, 
and elevation); Landscape (n = 13; % barren land [1500 m], % barren 
land2 [1500 m], % cultivated crops [1750 m], % hay/pasture [1250 m], 
% shrub-scrub [1500 m], % shrub-scrub2 [1500 m], % herbaceous [750 
m], % evergreen forest [1750 m], % mixed forest [250 m], % forest [250 
m], % forest2 [250 m], % imperviousness [500 m], and % Oak [1500 
m]); and Site-level (n = 10; leaf litter, woody seedlings, herbaceous, 
fern, brambles, bare ground, basal area [m2/ha], basal area2 [m2/ha], 
woody stem density [stems/10 m2], and woody stem density2 

[stems/10 m2]). We did not include a variable for treatment type 
(overstory removal, shelterwood, closed-canopy) in our analyses 
because there is considerable variation in vegetation structure across 
sites within a given treatment type. This variation can be driven by 
differences in many site-level factors (i.e., soil quality, time since treat-
ment, site history, browse pressure, and amount of residual canopy 
cover). Moreover, the vegetation metrics we collected and included in 
our site-level model set are those that forest managers desire from 
studies that examine wildlife species-vegetation relationships (Lott 
et al., 2021). 

We created all possible combinations of five or fewer variables in 
each model set using the function dredge in the package “MuMIn” 
(Bartoń, 2022). We restricted the number of variables to a maximum of 
five to identify the best models that predicted whip-poor-will occupancy 
while keeping models relatively simple (Burnham and Anderson, 2002). 
In doing so, we only considered models with the most influential vari-
ables rather than constructing more parameterized models with many 
variables. We did not employ model averaging to ensure that model 
estimates and predictions were easily interpretable (Cade, 2015). We 
considered variables that were included in models within two ΔAICc of 
the top model of each set, and those with β 95% confidence intervals not 
including zero to have meaningful biological effects (Chandler et al., 
2009; Arnold, 2010). Our model-building procedure resulted in 4 
regional, 1727 landscape, 466 site-level models (Tables A4, A5, and A6). 

We predicted whip-poor-will occupancy using coefficients from vari-
ables that had meaningful biological effects in our highest ranked 
landscape model across portions of Bird Conservation Regions 13, 14, 
28, 29, and 30 (nabci-us.org) clipped to HUC 8 watershed boundaries 
within our study area. Lastly, to assess model fit we calculated Area 
Under the Curve (receiver operating characteristic; AUC) and Brier score 
using 10-fold cross validation for top model of each model set (Hijmans 
et al., 2017; Kuhn, 2015; McNeil et al., 2023b). A model was initially fit 
with the full dataset, and then fit using 75% of the data (with random 
sampling), testing the remaining 25% with AUC and Brier Scores. Lastly, 
scores were averaged over 10 runs (McNeil et al., 2023b). 

3. Results 

Of the 1263 locations surveyed, 100 had fewer than 10 days of 
recording due to ARU failure caused by bear (Ursus americanus) or water 
damage. Thus, data from 1163 survey locations were included in our 
regional and landscape analyses (days of recording x = 22.61, SD =
6.75, range = 10.00–30.00). Our site-level analysis incorporated data 
from 1094 (94%) survey locations for which associated vegetation data 
were collected. Based on the criteria of a) detection threshold score of 
>4.3 and b) at least two detections >10 days apart, 399 survey locations 
were considered occupied by territorial whip-poor-wills. Only two 
additional sites were considered occupied after we manually verified 
scores between 3.0 and 4.3 that were >10 days apart. Thus, our final 
dataset included 401 sites classified as occupied (naïve occupancy of 
territorial males = 34%). The 762 unoccupied points included 64 sites 
(8%) that had at least two whip-poor-will detections (score >3.0), but 
not >10 days apart. Of the survey locations on private lands enrolled in 
NRCS conservation programs that had ≥10 days of ARU recordings and 
were surveyed post-treatment, we detected whip-poor-wills at 33 of 129 
(26%) WLFW – NEC sites, 139 of 244 (57%) WLFW –GWWA sites, and 
37 of 66 (56%) RCPP – CERW sites. 

Our top regional model included elevation and latitude (mean AUC 
= 0.59, mean Brier score = 0.22; Table 1). Whip-poor-will occupancy 
probability decreased with elevation (β = − 0.31 [95% CI: − 0.46 to 
− 0.16]; Fig. 3A) and latitude (β = − 0.32 [95% CI: − 0.44 to − 0.22]; 
Fig. 3B). Given that this pattern was relatively weak (based on Brier 
score and AUC), we did not use it to extrapolate broadscale patterns of 
occupancy across our study area. Our top landscape model contained 
impervious cover, oak forest, evergreen forest, herbaceous, and shrub- 
scrub (mean AUC = 0.74, mean Brier score = 0.18; Table 1). Occu-
pancy decreased with the amount of imperviousness cover within 500 m 
of the survey location (β = − 0.43 [95% CI: − 0.76 to − 0.18]; Fig. 3C), 
increased with the amount of oak forest within 1500 m (β = 0.65 [95% 
CI: 0.49–0.81]; Fig. 3D), evergreen forest cover within 1750 m (β = 0.28 
[95% CI: 0.13–0.44]; Fig. 3E), and herbaceous cover within 750 m (β =
0.27 [95% CI: 0.11–0.45]; Fig. 3F), and exhibited a quadratic relation-
ship with the amount of shrub-scrub cover within 1500 m, which was 
maximized at 9.3% (β1 = 1.04 [95% CI: 0.81–1.27], β2 [quadratic 
parameter estimate] = − 0.11 [95% CI: − 0.15 to − 0.07]; Fig. 3G). When 
predicted across the study region, this model indicated that whip-poor- 
will occupancy was highest in the southern Appalachians (Fig. 4). 

Our top site-level model contained basal area, a quadratic effect of 
woody stem density, and bramble presence (mean AUC = 0.70, mean 
Brier score = 0.20; Table 1). Occupancy decreased with increasing basal 
area (β = − 0.71 [95% CI: − 0.88 to − 0.55]; Fig. 3H), exhibited a 
quadratic relationship with woody stem density that was maximized at 
8.1 stems/m2 (81,000 stems/ha; β1 = 0.36 [95% CI: 0.17–0.56]), β2 =

− 0.06 [95% CI: − 0.11 to − 0.02]; Fig. 3I), and had a negative association 
with bramble presence (β = − 0.17 [95% CI: − 0.31 to − 0.03]). There 
were 15 competing models within two AICc of the best site-level model, 
however none contained supported variables not already reported in the 
top model (Table 1). 
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4. Discussion 

Monitoring is key to conserving declining species since it provides 
information on habitat associations, which in turn guides habitat man-
agement. However, conducting standardized field surveys for species 
with large geographic ranges is expensive and logistically challenging. 
As a result, our understanding of habitat associations for species with 
large geographic ranges, such as the Eastern Whip-poor-will, is often 
based on the findings of comparatively small-scale studies (e.g., Akresh 
and King, 2016; Spiller and King, 2021; Souza-Cole et al., 2022) with 
very few studies assessing factors at broad spatial scales (e.g., English 
et al., 2017). Herein, we employed new field and analytical approaches 
to monitor over one thousand sites, an effort that simply would have 
been impossible to carry out using human observers conducting stan-
dard aural surveys. To our knowledge, this work constitutes one of the 
largest concerted efforts to monitor a single species using ARUs (Yip 
et al., 2021; Johnson and Bayne, 2022; Caouette et al., 2023). Our 
findings provide important insights regarding expected response of 
territorial whip-poor-will to conservation programs that target other 
at-risk forest species, provide actionable targets for land managers 
wishing to create whip-poor-will breeding season habitat, and offer 
guidance for future applications of automated acoustic monitoring for 
informing conservation. 

We examined the influence of several landscape variables at multiple 
spatial scales on whip-poor-will occupancy, which is important for scale- 
and landscape-dependent conservation (Willey et al., 2022). Consistent 

with prior research, we found an association between whip-poor-will 
occupancy and evergreen forest (Wilson and Watts, 2008; Hunt, 2013; 
Tozer et al., 2014; Akresh and King, 2016). However, our findings also 
revealed a strong association with oak forests. Moreover, a post-hoc 
exploratory analysis where oak forest was replaced with a northern 
hardwood variable (maple-beech-birch forest), revealed a negative 
relationship between whip-poor-will occupancy and northern hard-
woods. Thus, future management efforts for whip-poor-wills in the 
eastern portion of the species’ range should also include landscapes 
dominated by at least 62% oak forest within 1.5 km of a site (with 
minimal northern hardwood cover) to maximize conservation outcomes 
(Hunt, 2013). The positive association with whip-poor-will occupancy 
and oak forest could be the result of more abundant and diverse prey in 
oak forests compared to other forest types. Moths (Lepidoptera) 
comprise the majority of whip-poor-will diets (Souza-Cole et al., 2022), 
and oaks are known to support among the highest densities of this taxa 
(Summerville and Crist, 2008; Narango et al., 2020). Moreover, other 
plant species that commonly co-occur within oak-dominated forests 
(such as Prunus spp. and Vaccinium spp.) also support a high diversity of 
moth species (Wagner et al., 1995; Summerville and Crist, 2008). Un-
fortunately, oak forests of the eastern US are experiencing unprece-
dented challenges that are leading to degradation and mesophication (e. 
g., insect pests, intense ungulate browsing, high-grading, and fire sup-
pression leading to compositional shifts; Knoot et al., 2010; Dey, 2014). 
Conservation of whip-poor-will populations across our study regions 
will be undoubtedly linked to management and policy decisions that 
promote the resilience and recovery of oak-dominated communities. 

Our finding that whip-poor-will occupancy was greatest in land-
scapes with an intermediate amount of shrub-scrub cover reflects the 
ecology of this species, which requires early successional habitat but is 
also known to use shelterwood establishment harvests, adjacent mature 
forests, and ecotones (Tozer et al., 2014; Spiller et al., 2022). Given that 
whip-poor-wills are known to use older forest ecotones, in addition to 
early successional conditions (Akresh and King, 2016; Grahame et al., 
2021), landscapes with a mosaic of diverse structural and forest age class 
conditions likely best meet the foraging and nesting habitat needs of this 
species (Wilson and Watts, 2008). Indeed, whip-poor-will dependence 
on young forest and associated ecotones is attributed to its foraging 
technique whereby birds sally upward from a stationary position to 
capture backlit aerial insects (Mills, 1986, Cink et al., 2020). Our ana-
lyses identified a value of young forest habitat (9.3%) in a landscape that 
would best promote whip-poor-will occupancy, which is generally 
consistent with targets for early successional birds presented by others 
(e.g., Dettmers, 2003). However, it is important to note that our esti-
mated value is likely lower than the true value at which whip-poor-will 
occupancy is maximized because the NLCD data layer we used is known 
to underestimate shrub-scrub cover (Bulluck et al., 2022). Therefore, 
landscapes with greater than 9.3% early successional forest may be 
optimal for whip-poor-wills (Tozer et al., 2014). 

The negative relationship between whip-poor-will occupancy and 
impervious cover is generally consistent with previous studies (Vala 
et al., 2020; Souza-Cole et al., 2022). However, whip-poor-will pop-
ulations across the eastern portion of their range appear to be less sen-
sitive to impervious cover (declining to nearly zero at 10% 
imperviousness in our study) than in the American Midwest, where 
whip-poor-will occupancy approached zero when only 1% of the land-
scape consisted of medium/high intensity development (Souza-Cole 
et al., 2022). A study of the European Nightjar (Caprimulgus europaeus; 
Sierro and Erhardt, 2019) demonstrated that light pollution, which is 
most prominent near impervious surfaces (Sutton, 2003; Bennie et al., 
2014), may be driving the species’ decline. Whip-poor-wills could be 
affected in a similar way by light pollution and impervious cover. 

At the site-level, whip-poor-will occupancy in our study were asso-
ciated with reduced basal area (<15.6 m2/ha) and intermediate den-
sities of shrubs/saplings (~8.1 stems/m2). Such conditions are 
characteristics typical of forest management practices that leave varying 

Table 1 
AIC tables displaying top and competing models (within 2 ΔAICc) from gener-
alized linear models within three separate model-sets. This analysis investigated 
Eastern Whip-poor-will occupancy in relation to regional-, site-, and landscape- 
level variables at locations which ranged from western North Carolina to 
southern Maine in 2020 and 2021.  

Model set Model K AICc ΔAICc wi 

Regional Latitude + Elevation 3 1469.4 0.00 1.00 
Landscape Evergreen Forest + Imperviousness 

+ Herbaceous + Oak Forest 
+ Shrub Scrub2 

7 1309.2 0.00 0.76 

Site-level BA + Brambles + Woody Stem 
Density2 

5 1294.8 0.00 0.06 

BA + Herbaceous + Brambles +
Woody Stem Density2 

6 1294.8 0.00 0.06 

BA + Herbaceous + Leaf Litter +
Brambles + Woody Stem Density2 

7 1295.1 0.28 0.05 

BA + Leaf Litter + Brambles +
Woody Stem Density2 

6 1295.2 0.39 0.05 

BA + Fern + Brambles + Woody 
Stem Density2 

6 1295.7 0.93 0.05 

BA + Fern + Herbaceous +
Brambles + Woody Stem Density2 

5 1295.8 0.97 0.04 

BA2 + Brambles + Woody Stem 
Density2 

6 1295.9 1.08 0.04 

BA2 + Herbaceous + Brambles +
Woody Stem Density2 

6 1295.9 1.08 0.04 

BA + Fern + Leaf Litter + Brambles 
+ Woody Stem Density2 

7 1296.0 1.17 0.03 

BA + Bare Ground + Brambles +
Woody Stem Density2 

6 1296.0 1.18 0.03 

BA2 + Leaf Litter + Brambles +
Woody Stem Density2 

7 1296.0 1.20 0.03 

BA + Bare Ground + Herbaceous +
Brambles + Woody Stem Density2 

7 1296.0 1.25 0.03 

BA + Bare Ground + Leaf Litter +
Brambles + Woody Stem Density2 

6 1296.4 1.58 0.03 

BA + Brambles + Woody Seedlings 
+ Woody Stem Density2 

6 1296.7 1.90 0.02 

BA + Brambles + Herbaceous +
Woody Seedlings + Woody Stem 
Density2 

7 1296.7 1.92 0.02 

BA2 + Fern + Brambles + Woody 
Stem Density2 

7 1296.8 1.98 0.02  

J.T. Larkin et al.                                                                                                                                                                                                                                



Journal of Environmental Management 366 (2024) 121786

7

amounts of residual canopy trees to promote the establishment and 
growth of woody regeneration, especially shelterwood, seed-tree, and 
clearcutting methods. While our analysis indicates a negative linear 
relationship between occupancy and basal area, a study in New York 
reported a quadratic relationship for which whip-poor-will occupancy 
peaked at 13.8 m2/ha (Spiller and King, 2021). Regardless, the basal 
area values associated with high whip-poor-will occupancy in both 
studies are much lower than those of typical mature eastern deciduous 
forests (i.e., 27 ± 1 [SE] m2/ha; Boves et al., 2013). These findings 
demonstrate that, within oak-dominated landscapes, whip-poor-wills 
are more likely to occupy forests with complex, young forest condi-
tions historically generated by natural disturbances and indigenous 

burning practices (Lorimer and White, 2003; Abrams et al., 2021). 
Key to the success of our study was the implementation of ARUs and 

a machine learning classifier (Knight et al., 2022; Stowell, 2022). Spe-
cifically, we demonstrate how ARUs can be used to survey hundreds of 
sampling locations nightly across a large spatial extent in a single 
breeding season with limited personnel. This same effort using con-
ventional human observer surveys would require supporting a consid-
erably larger field crew. Furthermore, the performance of our machine 
learning classifier coupled with the high detectability of whip-poor-wills 
(p = 0.999 after 10 nights) enabled us to use an analytical approach that 
did not explicitly model detection probability, thus saving statistical 
power for inferences regarding the state variable of interest. When using 

Fig. 3. Plots of functional relationships between Eastern Whip-poor-will occupancy and biologically meaningful variables from the regional (A & B), landscape 
(C–G), and site-level (H–I) model sets. Occupancy probability is on the y-axis and the predictor variable is on the x-axis in all plots. Occupancy was defined as two 
whip-poor-will detections at least 10 days apart. Solid black lines represent fitted regression curves and dotted black lines represent 95% confidence intervals (CI). 
Additionally, in all plots the red dashed line represents the mean occupancy probability (A–G: 0.34; H–I: 0.33) and rugs along each x-axis shows the distribution of 
data points. Areas where confidence intervals are particularly wide are typically data-sparse regions. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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ARUs, researchers should carefully assess whether any survey detection 
biases can be completely accounted for by study design alone, or if ac-
counting for detection probability via analyses is also required (MacK-
enzie et al., 2002). Nevertheless, while there are certainly many benefits 
associated with ARU-based monitoring, as demonstrated here, there are 
also many challenges for which prospective users need to be prepared (e. 
g., data processing and analysis, development of rigorously tested 
species-specific classifiers, etc.; Shonfield and Bayne, 2017; Kitzes and 
Schricker, 2019). Lastly, while a threshold approach to identify 
whip-poor-will presence appeared to work extremely well, authors 
examining bird species that sing less loudly and/or often need to care-
fully consider if a threshold method is appropriate. 

When considered together, our results suggest whip-poor-wills in the 
eastern portion of their breeding range thrive in disturbance-driven, 
oak-dominated ecosystems. Here, we monitored whip-poor-will occu-
pancy of individual stands managed for multiple objectives (e.g., WLFW- 
GWWA, WLFW- NEC, and RCPP-CERW). Future work examining how 
whip-poor-wills respond to landscapes managed in a more ‘dynamic’ 
fashion whereby forest age classes are more equally distributed through 
a series of shelterwood establishment and overstory removal harvests, 
along with mature forest reserves would be valuable (Loftis, 1990; 
Ashton and Kelty, 2018). Early successional forests like those we found 
to most likely host whip-poor-wills, are ephemeral, only remaining 
suitable for the species for 10–20 years without further disturbance. 
Restoration and maintenance of woodland systems (e.g., open oak 
woodlands), an open-forest community commonly dominated by oak 
and pine species that once covered more than 100 million ha of eastern 
North America (Hanberry et al., 2020), may be the most viable and 

impactful conservation strategy for creating whip-poor-will breeding 
habitat. Regardless of the specific conservation practices implemented, 
site and landscape conditions important to whip-poor-will occupancy 
that we identified are attainable through conservation actions grounded 
in robust, science-informed forest management. 

Recognizing that our models performed only moderately well, it is 
likely that our analyses were missing important predictors that could be 
used to better model site- and landscape-level characteristics. Still, even 
without the use of such datasets, the analyses presented here provide a 
critical overview of the factors driving site occupancy by this declining 
nightjar across a portion of the eastern United States. In fact, the pre-
dictive map we present shares many similarities with those predicted by 
the citizen science platform eBird (Fink et al., 2023) whereby both maps 
predict “hot spots” in southwestern Virginia, southern West Virginia, 
central Massachusetts, western Rhode Island, and eastern New Hamp-
shire, to name a few. Further, both maps predict urban centers as 
low-quality habitat (Fink et al., 2023). Thus, despite only modest model 
performance, our approach yields a predictive map with many similar-
ities to maps produced with much larger sample sizes. Future work that 
leverages emerging technologies such as mappable structural vegetation 
data (e.g., Light Detection and Ranging; McNeil et al., 2023b) may also 
prove helpful in further advancing our understanding of whip-poor-will 
habitat associations and future conservation efforts. 
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