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A B S T R A C T   

Forest managers require climate adaptation strategies that are regionally relevant and translatable into planning 
processes. Adaptation frameworks, such as the resistance, resilience, transition framework, can guide the 
development of these strategies. However, there are limited examples of how these concepts can be operation
alized with concomitant estimates of changes in forest structural complexity and diversity, which may support 
adaptive capacity. To address this knowledge gap, two operational-scale, replicated experiments were studied to 
understand how application of the resistance, resilience, transition framework influences stand structure in two 
contrasting northern forests: mixed pine and mesic hardwoods. We found that treatments corresponding to each 
adaptation approach (resistance, resilience, transition) manifested differently in each forest type. In mixed-pine, 
there were greater differences in structural diversity metrics among treatments; there were fewer differences 
among treatments in the mesic hardwood forest, which had comparatively greater pre-treatment structural 
variation. In both forests, our analyses demonstrate that management strategies associated with greater emphasis 
on change and adaptation (i.e., resilience and transition) created a quantifiably more heterogeneous arrangement 
of structural elements across treatment units, supporting shifts in stand-scale understory resource patterning. 
These results underscore the importance of accounting for the influence of pre-treatment stand conditions on 
outcomes of adaptation treatments and that stand-wide averaging of plot measurements may serve to obscure 
stand-scale diversity metrics. The variation in structural conditions across stands that we found is expected to 
contribute to forest response to novel disturbances by providing multiple recovery pathways. Based on these 
findings, application of adaptive silvicultural treatments can generate varying levels of structural heterogeneity 
at the stand-scale which in turn can confer adaptation potential; however, ecological memory strongly influences 
post-management stand conditions.   

1. Introduction 

Changing disturbance and climate patterns influenced by global 
change threaten to limit the productivity and function of forests 
worldwide through mechanisms such as drought, increased storm in
tensity, and changing temperature patterns and seasonality (Seidl et al., 
2017). The impacts of these changes may be exacerbated by legacies of 
past management, including outcomes of timber-focused forestry, which 
have increased forest vulnerability by simplifying forest structure and 

reducing compositional diversity, a factor that contributes to greater 
vulnerability to current and emerging stressors, as well as eliminating 
habitat for key plant and animal species (D’Amato and Palik, 2021). This 
vulnerability may ultimately limit the ability of forests to function as 
they have historically and continue to provide desired ecosystem ser
vices (Messier et al., 2014). Growing concerns about impacts of 
emerging novel climatic conditions combined with legacies of past land 
use have prompted some managers to seek ways to alter management to 
increase forest adaptive capacity to global change (Bradford et al., 
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2018). 
The adaptive capacity of a forest is contingent upon structural 

complexity and heterogeneity at multiple scales (D’Amato and Palik, 
2021; Thurman et al., 2020). Diversity in age classes and tree size may 
buffer forests from effects of wind and ice storm events (Allen et al., 
2012) while retained biological legacies are key elements of ecological 
memory (cf. Johnstone et al., 2016) and can perpetuate ecosystem 
processes, protect young trees, and benefit wildlife species (Franklin 
et al., 1997). Spatial variation of structure in the form of canopy gaps 
and intact patches allows for a diversity of structural conditions; these 
may include microsites that may encourage regeneration of less com
mon species and support existing conditions or features of interest 
(Brodie and Harrington, 2020). Given these mechanisms, forest adap
tation treatments emphasize increasing diversity and heterogeneity in 
forest structure and composition at multiple spatial scales (Churchill 
et al., 2013; D’Amato and Palik, 2021). 

In concert with this greater emphasis on forest structural complexity 
has been a growing body of literature on methods for measuring 
complexity. A number of metrics exist to quantify structural complexity, 
each linking to unique features and adaptations, and typically some 
combination of these metrics is required for a complete picture of 
complexity (McElhinny et al., 2005). Diameter class diversity is one such 
metric that can be quantified in multiple ways with higher values linked 
to greater presence of microhabitats within stands and microclimate 
temperature modulation in forests (Ehbrecht et al., 2019; McElhinny 
et al., 2005), features that support adaptive capacity. Another important 
structural metric relates to tree spacing, which influences factors such as 
competition, resource availability, and fire spread (Churchill et al., 
2013). In recent years spatial counterparts to structural indices have 
emerged; these tend to be correlated to non-spatial metrics but offer 
greater granularity into forest structure patterns (Kuehne et al., 2015). 
In general, these metrics link to greater disturbance recovery capacity 
with each microhabitat or distinct condition supporting a unique 
disturbance recovery pathway (Puettmann and Messier, 2020). More 
specifically, these structural metrics may describe particular features of 
adaptive capacity that vary based on ecosystem, creating a need for 
thoughtful interpretation. For example, when considering size class di
versity, high diversity paired with high stand density may indicate a 
stratified temperate hardwood forest resistant to novel disturbance, but 
in a fire-prone ecosystem describe a fire-vulnerable stand with dense 
ladder fuels (Ziegler et al., 2017). In the case of aggregation, a forest 
stand that includes both tree groups and open space may support a 
greater number of microhabitat conditions, but each of those clumps or 
openings may individually be vulnerable to wildfire, insect outbreak, or 
invasion by exotic plant species (Churchill et al., 2017). For these rea
sons, context is critical when drawing connections between complexity 
and adaptive capacity. 

Frameworks have been proposed for management to confer greater 
adaptive capacity to forests (Millar et al. 2007; Messier et al. 2019). The 
most cited of these is the resistance, resilience, transition (response sensu 
Millar et al. 2007) framework, hereafter, RRT (Nagel et al. 2017). 
Broadly, resistance focuses on tactics to minimize the impacts of climate 
change and other stressors, with intent to maintain current species 
composition, forest structure, and function. Resilience allows for gradual 
or small changes but remains within the range of natural variation. 
Finally, transition actively facilitates responses to changing conditions, 
including shifting dominant species and structures. These strategies 
represent a gradient of change, with resistance maintaining current 
conditions, resilience introducing variation, and transition fostering 
change. 

There is conceptual support for the RRT framework, (Conroy et al., 
2011; Millar et al., 2007); however, little empirical evidence exists for 
how RRT approaches can be operationalized in a given ecosystem, or the 
specific tactics necessary to achieve desired outcomes. To address these 
needs, the Adaptive Silviculture for Climate Change network (ASCC; 
Nagel et al., 2017) was established as a multi-ecosystem, large-scale 

experimental test of adaptation strategies in a variety of North American 
forest ecosystems. The ASCC network employs the RRT framework, as 
well as a no action, or passive, treatment. The RRT prescriptions are 
co-produced locally (Hallett et al., 2017) by managers and scientists 
familiar with historical management approaches, ecological conditions, 
and site constraints. There is a need for evaluating the efficacy of 
localized RRT strategies at achieving adaptation goals, and how this 
varies depending on the ecosystem. 

To address this need, we assessed post-harvest outcomes of RRT 
adaptation strategies in two ecologically and economically important 
forest types in the United States: a New England northern hardwood 
forest and a lower density mixed-pine woodland in the western Great 
Lakes region, using measures of structural complexity as a proxy for 
adaptive capacity. We asked the following questions: 1) How do adap
tation (approaches arranged along an RRT gradient of increasing facilitation 
of change) meet objectives of enhancing structural features that may support 
adaptive capacity; and 2) How do these adaptation approaches differ in 
outcome in two different forest types? We hypothesize that: 1) greater 
stand-level variation in structural, and disturbance severity indices will 
occur in resilience and transition treatments than in control and resis
tance treatments, as a result of treatments applied either uniformly 
(resistance, control) or variably (resilience, transition) across the treat
ment area, and 2) north temperate red pine (Pinus resinosa Ait.) forests, 
with lower initial species and structural diversity, will show greater 
response to adaptation treatments than northern hardwoods, which has 
greater initial diversity. Answering these questions will provide guid
ance for managers applying adaptation strategies in similar forest eco
systems and represents, to our knowledge, the first multi-ecosystem 
evaluation of structural outcomes of RRT strategies. 

2. Methods 

2.1. Study ecosystems and treatments 

Second College Grant (SCG) is a 10,800-ha forest in northern New 
Hampshire, USA owned and managed by Dartmouth College. The forest 
is in the temperate-boreal transition zone, and within the 160-ha study 
area, primarily northern hardwood forest (Table 1). The SCG experi
mental design was a randomized block, consisting of 4 40-ha blocks with 
each of four treatments covering 10 ha (Fig. 1). In addition to the RRT 
treatments (described below), a no action treatment was included in 
each block. Harvesting took place in late summer and fall of 2017 using 
hand felling and cable skidding. 

The SCG resistance prescription consists of single-tree selection with 
removal across all diameter classes based on Arbogast guidelines for 
single-tree selection to achieve a reverse-j diameter distribution 
(Table 2; Arbogast, 1957), while maintaining current species relative 
composition and 16–18 m2 ha− 1 of basal area. The resilience treatment 
is a hybrid single-tree and group selection system with 20 % of the area 
in 0.04 and 0.1-ha gaps, 20 % in permanent reserves (skips) of equal size 
to the gaps, and the remaining matrix thinned to 16–18 m2 ha− 1, with 
trees of all sizes removed and emphasis on retention of disease-resistant 
beech and trees exhibiting healthy crown and vigorous growth across all 
species. Transition is a variable density thinning/continuous cover 
irregular shelterwood, with 20 % of the area in 0.1 – 0.4-ha gaps (large 
enough to promote regeneration of less tolerant species such as yellow 
birch), 10–20 % in uncut patches similar in size to gaps, and the 
remaining matrix reduced to a basal area of 16–18 m2 ha− 1 through 
single-tree selection. Gaps are located near mature yellow birch and red 
spruce to encourage regeneration of these species, and some gaps are 
planted with species projected to be better adapted to future climate 
change and/or disturbance regimes. These include the following present 
but locally uncommon species (population enrichment): red spruce 
(Picea rubens Sarg.), white pine (Pinus strobus L.), bigtooth aspen (Pop
ulus grandidentata Michx.), black cherry (Prunus serotina Ehrh.), northern 
red oak (Quercus rubra L), eastern hemlock (Tsuga canadensis (L.) 
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Carrière), and three with a nearby range that are not onsite (assisted 
range expansion): black birch (Betula lenta L.), bitternut hickory (Carya 
cordiformis (Wangenh.)), and American chestnut B3F3 (Castanea dentata 
(Marshall) Borkh.). These plantings are detailed in Clark et al., (2021). 

The Cutfoot Experimental Forest (CEF) ASCC site is on the Chippewa 
National Forest in northcentral Minnesota, USA. It is a red pine- 
dominant woodland, with other species present (Table 1.) and prior to 
harvest, the stands were even-aged and fully stocked based on Benzie 
(1977). The experimental design, encompassing 200 ha, was a ran
domized block, consisting of 5 40-ha blocks with each of four treatments 
covering 10 ha (Fig. 1). As with SCG, a no action treatment was included 
in each block, along with RRT treatments, as described below. Har
vesting occurred during the winter of 2014 and 2015 using a tracked 
feller buncher and grapple skidder. 

The CEF resistance prescription is a uniform thinning, with residual 
basal area of 23–28 m2 ha− 1 (Table 2). Both before and after harvesting, 
red pine accounted for a minimum of 90 % of the basal area, and each 
minor species comprised less than one percent of total basal area. The 
resilience treatment consists of a variable density thinning with 15 % of 
the stand area in 0.2-ha gaps, 15 % in 0.2-ha uncut skips, and the matrix 
reduced to a basal area of 23–28 m2 ha− 1 through single-tree marking, 
primarily from below. An overall resilience treatment objective was to 
retain red pine dominance but at a lower relative basal area than the 
resistance treatment, with minor species increasing in relative basal 
area. The transition treatment consisted of the first entry of an 
expanding-gap irregular shelterwood with 15 % of the stand area in 0.2- 
ha gaps, and the remaining matrix single-tree marked to 14–18 m2 ha− 1, 
with selection based on species targets and removal from below. The 
resilience gaps and transition stands had site preparation with a disk 
harrow to sever root systems of Corylus cornuta Marsh., expose mineral 
soil, and improve regeneration conditions, and were planted with a suite 
of native and novel species predicted to be future-adapted: eastern white 
pine, red maple (Acer rubrum L.), northern red oak, bur oak (Quercus 
macrocarpa Michx), white oak (Quercus alba L.), bitternut hickory, black 
cherry, and ponderosa pine (Pinus ponderosa C. Lawson); described in 
Muller et al., (2019). 

2.2. Field sampling 

Plots were installed pre-harvest at both sites, with a variable number 
of plots based on treatment (Table 3). For the no action and resistance 
treatments, each stand contained 10 (SCG) or 7 (CEF) nested plots 
randomly located throughout the unit. For the resilience and transition 
treatments a random stratified procedure was used, with plots located in 
gaps, skips, and thinned matrix, to capture within-treatment variability. 
At SCG, there were 14 and 15 plots for resilience and transition, 
respectively, while at CEF, both treatments had 11 plots. 

At SCG, plots were measured in 2019, two years after harvest. 
Overstory trees (living and dead) ≥ 10 cm diameter at breast height 
(DBH=1.3 m) were tallied in a circular 0.04-ha plot, with each tree 
identified to species and measured for diameter. For snags, height and 
decay class was noted. Saplings (2.5–9.9 cm DBH) were recorded in 
three nested 0.004-ha subplots located along azimuths of 0◦, 120◦ and 
240◦ at a distance of 5.5 m from the main plot center. Regeneration 
taller than 30.5 cm tall and smaller than 2.5 cm DBH was tallied in 
1.26 m radius subplots nested within each sapling plot. 

At CEF, plots were measured in 2016, two years after harvest. Living 
and dead overstory trees > 12.7 cm DBH were tallied in a circular 0.08- 
ha main plot. Each tree was identified to species and measured for 
diameter (as above). For snags, decay class was recorded, and height 
determined if the snag was snapped. Saplings (8.8–12.7 cm DBH) were 
measured in a nested 0.04-ha plot located at main plot center. Regen
eration (taller than 30.5 cm and < 8.9 cm DBH) was recorded in three 
nested 0.004-ha subplots located at center of the main plot and at azi
muths of 90◦ and 270◦, 8 m from plot center. Ta
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2.3. Data analysis 

2.3.1. Forest structure 
All analyses were carried out in R version 4.1.3 (R Core Team, 2019). 

We quantified structure using spatial and non-spatial metrics, chosen 
based on links to adaptive capacity, support of use in literature, and 
compatibility with our data collection (Table S1). We assessed diameter 
distributions with the following non-spatial metrics: i) Gini coefficient of 
tree diameters (Gd; Weiner and Solbrig, 1984), with the reldist package 
(Handcock, Mark S., 2016); ii) Shannon diversity of diameter classes 
(Hd; Staudhammer and LeMay, 2001), with the vegan package (Oksanen 
et al., 2019); and iii) coefficient of variation of DBH values (CVd). The 
Clark-Evans aggregation index, which measures clustering of trees, was 
used to assess spatial patterns (Clark and Evans, 1954). We used the 
following spatially explicit measures based on four nearest neighbors to 
examine overstory structure; i) DBH differentiation index (DDI), which 
is a measure of tree size interspersion; ii) mean directional index (MDI), 
which examines spatial arrangement of trees; and iii) species mingling 
index (MI), which is a spatial approach to species composition (Kuehne 
et al., 2015), all assessed using the spatstat package (Baddeley and 
Turner, 2005). We calculated a structural complexity index (SCI; Zenner 
and Hibbs, 2000), which is determined using all trees in a plot. SCI 
represents a spatially explicit counterpart to the Gini index and was 
calculated by performing two Delaunay triangulations on each plot 
using spatstat – one with tree diameter as marks, and one without – and 
calculating the ratio of 3D:2D triangulation. 

2.3.2. Disturbance severity index 
We calculated total aboveground biomass at each site (trees, sap

lings, and snags) both pre- and post-harvest within each sample plot 
following Chojnacky et al., (2014). We used these values to calculate a 
disturbance severity index for all treatments including no action (DSI; 
Kurth et al., 2019), defined as the change in total aboveground biomass 
at the plot level in the time span from before harvest to two years after 
harvest, standardized by dividing the total change by pre-harvest 
biomass. We interpreted the distribution of DSI within a given treat
ment as a reflection of understory resources available based on variation 
and pattern in harvest severity (or stand development in the case of no 

action), with lower values corresponding to low understory resource 
availability (i.e., areas containing an undisturbed canopy) and higher 
values corresponding to high resource availability to the understory (i. 
e., harvest openings). 

2.3.3. Statistical methods 
We used non-metric multidimensional scaling (NMDS) as a visuali

zation tool to examine gradients in structural variation across treat
ments. We included the mean as well as the coefficient of variation (CV) 
of each index as column values, and treatment blocks as rows. We used 
scree plots of stress in response to dimensionality to select an appro
priate number of dimensions for each model, selecting dimensions based 
on the point beyond which there was minimal stress reduction. Stress is 
calculated as the relationship between original data distances and 
ordination distances and represent NMDS model fit, with values less 
than 0.2 indicating good fit (McCune et al., 2002). Scree plots indicated 
use of three dimensions for SCG and two for CEF. Distance matrices were 
created using Bray-Curtis dissimilarities. We calculated the percentage 
of variability encompassed by each axis by performing a linear regres
sion between the distance in ordination space for each axis and the 
distance in original space and described the axis variability using the 
incremental r2 value. The NMDS models were performed using the 
metaMDS function in the vegan package. 

We fit linear mixed effects models to compare differences in struc
tural indices across the four treatments. We also compared differences 
among the micro-treatments encompassed by the four treatments: these 
include gap, thin16 (thinning to 16–18 m2 ha− 1), single tree selection, 
and uncut at SCG; and gap, thin11 (thinning to 11–18 m2 ha− 1), thin23 
(thinning to 23–28 m2 ha− 1), and uncut at CEF (Table 3). For all models, 
treatment or microtreatment was the fixed effect, block was the random 
effect, we evaluated alternative error distributions (negative binomial, 
gamma) and selected the error structure that provided the best model fit, 
and used“weights” option to allow for unequal variance structure be
tween treatment levels. All models were fit using the nlme package 
(Pinheiro et al., 2020) and tested for normality using the plot function. 
We used Tukey’s pairwise tests to analyze differences between treat
ments using the multcomp package (Hothorn et al., 2008). Results were 
considered significant at p < 0.05. We used Levene’s test in the car 

Fig. 1. Location and treatment layout of Adaptive Silviculture for Climate Change project at Second College Grant (A) and Cutfoot Experimental Forest (B). Maps 
created in QGIS 3.16. Source: NH 2108 NAIP CIR (SCG; NH Granit, 2018); MN 2017 NAIP CIR (CEF; Minnesota Geospatial Commons, 2017). 
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package (Fox and Weisberg, 2019) to compare standard deviation across 
treatment levels as an assessment of stand-level variation in each 
treatment. To assess treatment-level differences in the distribution of 
DSI with each plot represented as a separate observation, we used the 
Kolmogorov-Smirnov test in the base R stats package and conducted 
pairwise comparisons. 

3. Results 

3.1. Second College Grant 

3.1.1. Treatment level structure 
The NMDS (stress = 0.02) illustrated differing amounts of variation 

within treatments (Fig. 2a). The first axis, which explained 94.1 % of the 
variation, reflected separation among treatments driven by CV values, or 
treatment scale variation. Correspondingly, no action and resistance 
were found in the negative portion of this axis, which was characterized 
by higher structural index values and lower CV values, whereas resil
ience and transition were found in the positive portion, which was 
associated with high CV values. The second axis described only a small 
portion of model variability and was associated most strongly with MI, 
with a high CV value found in the positive portion of the axis and high 
index value in the negative portion. No action and resistance overlapped 
on the NMDS, as did resilience and transition. 

All RRT treatments reduced overstory basal area, density, and 
biomass in comparison to no action, with transition having the greatest 
reduction, although the basal area reduction in resistance was not sta
tistically significant (Table 4, Fig. 3a). QMD remained highest in no 
action and decreased along the RRT gradient. All treatments reduced the 
number and basal area of snags and number of large trees (> 40 cm 
DBH). Structural indices varied minimally among treatments, with only 
DDI, MI, and SCI decreasing along the gradient of change (Table S3). 
However, these same indices exhibited variation within treatments with 
Levene’s test of variance indicating significant differences for DDI, with 
transition significantly different than the other three treatments. Indices 
of variation in tree size (Hd, Gd and CVd) were all highest in resistance, 
but otherwise decreased along the change gradient (Table S3). In gen
eral, index values were smaller along the change gradient, with transi
tion consistently exhibiting lower values. 

3.1.2. Disturbance severity index 
The plot-level DSI ranged from − 0.1 – 0.46 in no action, − 0.06 – 0.5 

in resistance, − 0.1–0.94 in resilience, and − 0.07 – 0.96 in transition 
(Fig. 4a). These values represent change created by harvest activities, 
with the exception of no action, which reflects changes occurring 
through natural processes. The distributions for DSI, which reflect 
removed aboveground biomass and therefore variation in understory 
resource environments (e.g., light availability) at a stand scale, for no 
action, resistance, and resilience were statistically different from one 
another, while transition only differed significantly from no action. 

3.1.3. Within treatment structure 
When analyzed by micro-treatment, all structural indices in gaps 

were significantly lower than other components, but otherwise no dif
ferences were significant, with the exception of Gd, which was highest in 
single tree selection and lowest in uncut (Table S2). The differences 
detected for gap conditions may be an artifact of the analysis re
quirements as a number of analyses for gap plots (17/32) reported null 
structural values due to a need for more than three trees to calculate the 
index. Levene’s test of variance showed significant differences (p <
0.05) among treatments for Gd, CVd, CE, DDI, and MDI, with gaps 
consistently having the largest standard deviations (Table S2). 
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3.2. Cutfoot Experimental Forest 

3.2.1. Treatment level structure 
Similar to SCG, the NMDS for structural indices (stress = 0.04) re

flected CV values describing separation among treatments, with no ac
tion and resistance similar to each other and resilience and transition 
also grouped by similarity (Fig. 2b). The first axis (93.5 % variability) 
illustrated divergence based on CV for the indices, with no action and 
resistance treatments found in the negative portion of the axis with 
corresponding higher structural index values, and resilience and tran
sition associated with high coefficient of variation values. The second 
axis highlighted differences described by MI, Gd and CVd. 

Treatments resulted in a reduction in aboveground biomass, basal 
area, and trees per hectare, with the greatest reduction in the transition 
treatment (Table 4, Fig. 3b). The density of snags and large trees 
diminished along the change gradient, while QMD increased along the 
same gradient. Both Gd and CVd were highest in no action and lowest in 
resilience (Table S4). Hd as well as spatially explicit DDI, SCI and MDI 
exhibited a decrease along the change gradient. CE was highest in 
resistance, indicating high uniformity in these plots. Levene’s test 

indicated significant differences in standard deviation in snag basal area 
only, with no action having the highest variation. 

3.2.2. Disturbance severity index 
The distribution of DSI differed across treatments. The range of 

values in no action ranged from − 0.06–0.101, in resistance from 0.177 – 
0.503, in resilience from − 0.03 – 0.889, and in transition from 0.348 – 
0.967. Each treatment exhibited a distribution of DSI values, and po
tential understory resource patterns, that was statistically different from 
each of the other treatments (Fig. 4b). 

3.2.3. Within treatment 
When analyzed by micro-treatment, gaps differed significantly from 

all other treatments, but differences were minimal. Retention of trees 
was more common in gaps, with only 1/30 gaps having fewer than 3 
trees, so fewer null values (compared to SCG) were generated through 
spatial index calculation. Notably, the areas thinned to a lower density 
had higher DDI, Gd, and CVd than higher density thinning, despite uncut 
areas exhibiting the highest values. Levene’s test indicated differing 
standard deviation in MDI only. 

Table 3 
Summary of micro-treatments, or within-stand structural conditions making up ASCC treatments, percentage of treatment area covered by each, and number of plots 
used to assess each treatment and its components at SCG and CEF ASCC sites.  

Treatment SCG CEF  

Micro-treatment Plots Percent of treatment area Micro-treatment Plots Percent of treatment area 

No Action           
uncut   40  100 uncut  35  100 

Resistance           
sts 40  100  thin23 35  100 

Resilience           
thin16   24  60 thin23  15  70  
gap   16  20 gap  15  15  
uncut   17  20 uncut  25  15 

Transition           
thin16   28  60 thin11  30  85  
gap   16  20 gap  15  15  
uncut   16  20      

Total Plots    197     170   

Notes: uncut = no trees were harvested, sts = single tree selection, thin16 = thinning to 16–18 m2ha− 1, gap = canopy gap 0.04 – 0.2 ha in size, thin23 = thin to 
23–28 m2ha− 1, thin11 = thin to 11–18 m2ha− 1 

Fig. 2. NMDS biplots of forest structural indices among the different ASCC treatments at Second College Grant (A) and Cutfoot Experimental Forest (B). Presented are 
the first two axes of a three-dimensional ordination (A) and two-dimensional ordination (B). Elli pses represent the standard deviation of treatments. Text represents 
structural indices arranged in space by weighted average scores: blue indicates mean and red indicates coefficient of variation for each index.Abbreviations are as 
follows: Hd = Shannon diversity of diameter classes, Gd = Gini coefficient of diameter classes, CVd = Coefficient of variation for tree diameters, DDI = diameter 
differentiation index, MDI = mean directional index, CE = Clark-Evans index of aggregation, SCI = structural complexity index, MI = species mingling index. 
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Table 4 
Mean ± standard deviation (min-max) of stand metrics at the treatment level two years following treatment at the Second College Grant and Cutfoot Experimental 
Forest.   

No Action Resistance Resilience Transition 

Second College Grant     
Quadratic mean diameter (cm) 25.1 ± 0.87 (16.6–32.1)a 25.2 ± 0.91 (19.4–33.0)a 23.9 ± 2.06 (12.4–34.7)ab 22.9 ± 0.97 (10.8–43)b 

Basal area (m2 ha− 1) 23.8 ± 2.94 (6.9–44.4)a 19.9 ± 2.19 (11.0–34.3)ab 19.4 ± 1.22 (1.2–35.3)b 17.6 ± 1.03 (1.0–34.3)b 

Live aboveground biomass (Mg ha− 1) 175.1 (47–335.9)a 148.7 (78.3–311.5)ab 143.1 (1–273.1)ab 129.9 (1–250.6)b 

Dead aboveground biomass (Mg ha− 1) 5.9 (0.01–28.3) 7.5 (0.79–20.8) 5.6 (0.40–29.8) 7.1 (0.31–26.4) 
Trees per hectare 492 ± 19 (199− 922)a 413 ±42 (174− 723)b 396 ± 39 (25− 798)b 394 ± 45 (25− 748)b 

Snag basal area(m2ha− 1) 2.4± 1.1 (0–12.4)a 2.7 ± 1.1 (0–11.5)a 1.4 ± 1.2 (0–11.5)b 1.7 ± 1.0 (0–15.2)ab 

Snags per hectare 51 ± 22 (0− 249)ab 51 ± 9 (0− 199)a 28 ± 18 (0− 150)b 34 ± 14 (0− 125)b 

Trees per hectare >40 cm dbh 31 ± 14 (0− 75)ab 31 ± 3 (0− 75)a 26 ±12 (0− 100)ab 24 ± 3 (0− 75)b 

Cutfoot Experimental Forest     
Quadratic mean diameter (cm) 33.9 ± 2.6 (23.4–40.5)a 36.5 ± 2.8 (29.2–49.4)b 39.3 ± 2.7 (29.0–60.4)c 39.9 ± 2.3 (25.4–53.4)bc 

Basal area (m2 ha− 1) 38.9 ± 5.7 (26.4–56.4)a 24.7 ± 0.3 (20.8–29.8)b 24.5±0.6 (4.3–53.1)b 14.9 ± 0.7 (0.6–25.5)c 

Live aboveground biomass (Mg ha− 1) 203.7 (121.9–301.0)a 128.7 (106.5–164.8)b 131.9 (23.3–277.2)b 82.4 (4.0–133.6)c 

Dead aboveground biomass (Mg ha− 1)‡ 12.0 (0.5–39) 6.6 (0–26.1) 4.6 (0–30.3) 4.8 (0–22.2) 
Trees per hectare 441 ± 37 (282− 798)a 245 ± 36 (123− 381)b 220 ± 29 (25− 688)b 122 ± 18 (12− 270)c 

Snag basal area(m2ha− 1) 4.8 ± 2.5 (0.4–12.5)a a 2.5 ± 1.3 (0–8.8)ab ab 1.6 ± 0.7 (0–9.0)b b 1.7 ± 0.7 (0–9.9)b b 

Snags per hectare 109 ± 34 (12− 307)a 47 ± 23 (0− 160)b 30 ± 20 (0− 147)b 27 ± 10 (0− 135)b 

Trees per hectare >40 cm dbh 106 ± 33 (0− 184)a 75 ± 24 (25− 123)bc 82 ± 22 (0− 221)b 59 ± 9 (90− 111)c 

Notes: Values with different letters are statistically different at alpha < 0.05. Values with different italic letters indicate statistically different standard deviations at 
alpha < 0.05. 

Fig. 3. Diameter distribution and species composition following adaptive silviculture treatments at Second College Grant (A) and Cutfoot Experimental Forest (B).  
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4. Discussion 

Developing quantifiable links between the outcomes of management 
and adaptive capacity of forest ecosystems is critical for applying stra
tegies to manage forests in an era of global change (Thurman et al., 

2020). A key step in this development is evaluating the structural out
comes of silvicultural treatments based on resilience theory and adap
tation principles within operational-scale and real-world contexts. To 
this end, we assessed metrics of forest structure to understand how 
adaptation strategies tailored to local conditions may influence adaptive 

Fig. 4. Histograms of plot-level disturbance severity (DSI) across adaptive treatments and no action at Second College Grant (A) and Cutfoot Experimental Forest (B). 
DSI is calculated as the scaled change in aboveground biomass in the two-year time span encompassing pre- to post-harvest, with values including living and dead 
mature trees and saplings. Higher values describe greater reduction in aboveground biomass as a result of treatment or other disturbances. Letters indicate significant 
differences (p < 0.05) among distributions at a site based on Kolmogorov-Smirnov test. 
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capacity by increasing structural complexity in two different forest 
ecosystems. Our findings highlight that in a short time frame after an 
initial harvest, adaptive silviculture treatments led to a broad range of 
stand-wide conditions, and possible disturbance recovery pathways, 
that are influenced by forest type characteristics and ecological memory 
associated with past management and pre-treatment stand conditions. 
The outcomes we present provide insight into application of adaptation 
treatments, thus characterizing actionable options for managing in the 
face of climate change. 

4.1. Adaptation treatments and structural complexity 

4.1.1. Structural indices 
The pattern of diversity indices exhibiting lower values in resilience 

and transition point toward lower stand-scale adaptive capacity under 
these treatments. However, mean values only tell part of the story as 
many of the harvest gaps in the resilience and transition treatments 
included legacy tree retention, the importance of which is not 
adequately represented through our calculated indices. Gaps with bio
logical legacies represent a combination of high resource regeneration 
conditions (e.g., higher light or nutrient availability) and lifeboating 
ecological processes that can contribute to increased adaptive capacity 
(Franklin et al., 1997). This outcome highlights a limitation of some 
canopy structural indices, in that they can downplay the value of gaps, 
producing low calculated diversity metrics (Saunders and Wagner, 
2008), or failing to differentiate between treatments, a limitation not 
unique to our study (Kuehne et al., 2019). The ecological value of the 
gaps is further supported by the high standard deviation of structural 
indices, most notably at SCG, indicating that there is high variability 
among the gaps, each with its own distinctive structural characteristics 
that may offer unique responses to novel disturbance,. This within-stand 
variation drove the divergence of these more variable treatments 
(resilience and transition), from no action and resistance in our NMDS 
analysis. High variability between plots in a treatment unit reflects a 
different type of diversity than uniformly high values of plot-level di
versity indices across that same unit: large differences between plots in 
the same stand signify that spatial variability exists across that stand, 
whereas uniformly high values with minimal variation reflect more 
similar stand-wide conditions. This spatial variation in structure may 
contribute to adaptive capacity by increasing system stability, slowing 
disease spread, adding response pathways to disturbances, and sup
porting ecosystem function (Franklin and Van Pelt, 2004). 

While treatment-level averaging of structural indices diminished 
some of the nuance of plot-level variation, when analyses include 
standard deviation or coefficient of variation, our results suggest that 
adaptive silviculture treatments designed with the objectives of creating 
greater stand-level structural complexity do achieve these objectives, 
with gaps and skips creating spatial variability. Inclusion of gaps, 
especially those of varying size and with different levels of tree reten
tion, along with skips, creates a broad diversity of stand conditions and 
notable distinctions among treatments (Kern et al., 2017). This un
derscores that harvest prescriptions such as variable density thinning 
and irregular shelterwood, systems often associated with ecological 
forestry, create stand-level complexity that can contribute to adaptive 
capacity (D’Amato and Palik, 2021; Franklin et al., 1997). 

4.1.2. Disturbance severity index 
We found that treatments with more emphasis on facilitating change 

led to a greater diversity of DSI values, signifying loss of aboveground 
biomass and thus potential light, nutrient, or moisture availability at the 
stand scale. Further, the within-stand variability that had been obscured 
by stand-level averaging of structural metrics was captured by an ex
amination of plot-scale DSI. This range of conditions created by man
agement for variability leaves a stand with a variety of disturbance 
recovery pathways. The fence and corridor concept (Moritz et al., 2011) 
describes creation of canopy gaps (with and without retention), skips, 

and a thinned matrix as generating patches of high resistance that may 
perpetuate through intense disturbance, intentional patches of greater 
vulnerability that will carry the stand forward into regeneration, and 
corridors of connectivity, which may leave the forest less susceptible to a 
stand-replacing event (Churchill et al., 2013). The concept is trans
ferrable between forest types, although function may change. For 
example, a skip in a conifer forest may be a more vulnerable patch with 
density that is conducive to bark beetle damage or fire, while the same 
skip in northern hardwoods may limit invasive plant species, exclude 
recalcitrant understory plants, and perpetuate a historical stand type 
into the future. Conversely, a gap is a barrier to fire movement in a 
fire-dependent system, while in a northern hardwood forest it may 
produce a young regenerating patch that is less vulnerable to an ice 
storm or shoulder-season wet snowstorm. Given the uncertainties pre
sented by climate change, managing for a range of conditions such as 
gaps, skips, and matrix forest creates a variety of adaptation or recovery 
pathways which increases the likelihood of some forest structures and 
functions persisting under novel disturbance. 

4.2. Forest type influences response to adaptation treatments 

We found that treatment-level differences (i.e., among no action, 
resistance, resilience, transition) in structural indices were minimal in 
the northern hardwood forest (SCG), whereas significant differences 
existed among treatments for most indices in the red pine woodland 
(CEF). In general, SCG also had higher structural diversity values in all 
treatments compared to CEF. Ecological memory, realized through pre- 
harvest age and size structure, can explain much of this variation. The 
red pine forests had lower pre-treatment compositional and structural 
diversity than northern hardwood forests, due to differences in past 
management and shade tolerance among species. The red pine wood
lands we examined are generally even-aged (Stambaugh et al., 2021), 
establishing after severe post-logging wildfire, so changes caused by 
adaptation treatments are likely to be greater in relative value then in 
the northern hardwood forest, which are comparatively more complex 
to start, in part due to shade-tolerant species occupying space in the 
understory (D’Amato et al., 2011). 

Even with the generally higher diversity values in the northern 
hardwood forest, some structural indices may be hard to interpret 
accurately, for example those describing diameter distribution. North
ern hardwood forests often have high size-class diversity due to a 
prevalence of shade-tolerant species, but may still be lacking in age-class 
diversity and presence of very large old trees, characteristics that can 
confer adaptive capacity (Schwartz et al., 2005). As such, the different 
responses between the forest types examined make sense, with the 
even-aged red pine forest showing low size-class diversity, but higher 
response to harvesting, while northern hardwoods had high initial 
size-class diversity, with treatments having a limited ability to increase 
this diversity. This underscores the value of understanding and ac
counting for ecological memory represented by pre-harvest conditions 
when planning adaptive management and assessing outcomes, as well as 
finding ways to meet adaptation-related targets that are not easily 
accounted for by structural metrics (e.g., age, value of large trees). 

Given that both study sites are part of the ASCC network, certain 
broad similarities exist in the adaptation treatments (Nagel et al., 2017), 
but localized prescriptions and evaluations of their outcomes serve to 
amplify ecosystem differences, while providing valuable detail to inform 
future adaptation practices. We found structural metrics reflected spe
cific localized treatments; removal of smaller diameter classes based on 
silvicultural prescriptions led to increased QMD at CEF, while selection 
for healthy individuals of varying sizes can explain the decreasing QMD 
along the change gradient at SCG. Many of the structural metrics that we 
examined here have been explored primarily in conifer-dominant forests 
(e.g., Kuehne et al., 2015; Young et al., 2017) and interpretation of 
structural metrics in more stratified, multi-aged forests, like northern 
hardwoods, could be more complicated. 
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Finding simple metrics to describe adaptive capacity may be limited 
by several factors. One of these is measurement plot size – larger plots 
may better encompass changes that are not easily apparent in smaller 
plots, and stand-wide averaging of smaller plots may make it difficult to 
discern potential stand-scale variation, indicating a need for different 
assessment techniques (Saunders and Wagner, 2008). An additional 
limitation is that indices largely based on canopy measurements only 
represent part of the picture when it comes to adaptive capacity – 
quantifying the growing space made available by harvesting and sub
sequent regeneration is also critical. Adaptive management approaches 
such as those outlined in our study can, through natural or planted 
regeneration, either support the current species mix or begin to move a 
forest toward future adaptation by increasing species, genetic, and age 
class diversity (Aitken et al., 2008; Wikle et al., in review). In the 
post-harvest timespan represented here, we were able to provide an 
assessment of the range of canopy structure and conditions, which will 
influence the adaptive capacity of the forest (Getzin et al., 2008), with 
resilience and transition approaches creating a greater diversity of 
canopy structural conditions. A longer timescale and ultimate assess
ment of regeneration will provide a more complete understanding of 
adaptive capacity conferred by these adaptive treatments. 

5. Conclusion 

Assessment of structural outcomes of adaptation strategies is bene
ficial for understanding how theoretical concepts of complexity and 
adaptive capacity can be put into action. We found that treatments 
designed to increase stand-scale structural heterogeneity achieved 
stated goals, with those goals and outcomes influenced by characteris
tics of the two forest types examined, but that description and quanti
fication of this outcome is not simple. Further, adaptation treatments led 
to a range of structural environments and shifts in biomass pools, which 
may support a variety of understory resource availability conditions, 
setting the stage for continued diversity of structure and composition as 
the forest matures. This suggests that multiple treatments designed for 
specific forest types and local contexts best create alternative distur
bance recovery pathways and hedge against uncertainty of future 
climate. Operational scale examples of adaptation theory in practice, 
such as those we present here for two important eastern North American 
forest ecosystems, provide managers wanting to apply these strategies 
with expectations for structural outcomes. Our findings highlight the 
complexity of interpreting outcomes of adaptation treatments, but also 
provide quantifiable metrics that can be used to guide applications of 
these adaptation strategies. 
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