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Abstract

Global hydrological cycles are shifting due to climate change, and projected

increases in the frequency and intensity of extreme precipitation events will

likely affect essential ecosystem processes driven by climate, such as forest

decomposition. Our objective was to determine the effects of drought and

intense rainfall on leaf litter and wood decomposition rates. We used a precipi-

tation manipulation experiment to demonstrate that extreme precipitation pro-

jections for the Northeastern United States will significantly impact wood but

not leaf litter decomposition and that variations in substrate quality will con-

tinue to drive differences in decomposition rates. We found that drought and

high rainfall reduced wood decomposition compared to historic rainfall pat-

terns. The median mass remaining of wood stakes after three years within

drought, control, and inundation treatments was 84.2%, 57.0%, and 67.5%,

respectively. Furthermore, labile litter and wood substrates decomposed more

rapidly than recalcitrant substrate types. Thus, our findings suggest a greater

sensitivity of wood decomposition to changing precipitation regimes compared

to leaf litter. Since wood represents a substantial forest carbon pool, our results

underscore the possible significant impacts of projected extreme precipitation

scenarios for forest functions, including carbon cycling and sequestration.
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INTRODUCTION

Global hydrological cycles are projected to continue
shifting under climate change, including increasing the
frequency and intensity of extreme precipitation events,
which will likely have consequences for critical ecosys-
tem processes such as decomposition (Guilbert et al.,
2015). Indeed, average annual precipitation in the
Northeastern United States has increased each decade
since the late 1900s (Huang et al., 2021). Furthermore,

the region is projected to experience more frequent and
intense precipitation events with longer drying periods in
between (Allen et al., 2010; Sun et al., 2007). Extreme
precipitation events, including severe droughts and
intense flooding, have already had numerous economic,
social, and ecological consequences within the region
and may also impact critical forest processes, including
decomposition and forest carbon storage (Alexander
et al., 2006). Since northern forests have been a substan-
tial carbon sink over the past several decades, it is
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essential to understand and anticipate the effects of cli-
mate change on forest carbon (C) cycling and sequestra-
tion (Goodale et al., 2002; Myneni et al., 2001).

Climate is a key driver of forest decomposition rates
(Dai et al., 2021; Dyer et al., 1990). Large-scale syntheses
have found a dominant influence of climate on leaf, root,
and wood decomposition (Adair et al., 2008; Smith
et al., 2011; Zanne et al., 2022). In cases where tempera-
ture and oxygen are not limiting, decomposition and
respiration rates increase with the moisture content of
the decomposing material and the surrounding micro-
environment (Aerts, 1997; Boddy, 1983; Cisneros-Dozal
et al., 2007; Crockatt & Bebber, 2015; Herrmann &
Bauhus, 2013; Lee et al., 2014). For instance, increasing
moisture increases respirational C loss in both litter
and wood mostly due to the activities of saprophytic
fungi that release respirational C (Djukic et al., 2018;
Keuskamp et al., 2013). The activities of saprophytic
fungi are moisture-limited and include the production
of the hydrolytic and oxidative extracellular enzymes
that allow for the breakdown of recalcitrant litter and
wood components, such as lignin, cellulose, and hemi-
cellulose (A’Bear et al., 2014; Ataka et al., 2014;
Herrmann & Bauhus, 2013; Sinsabaugh et al., 2008).
Conversely, at extremely high moisture levels, oxygen
availability may limit decomposition, while microbial
metabolisms can become limited at deficient moisture
levels, thereby reducing decomposition rates (Chapin
et al., 2012; Panshin & de Zeeuw, 1980; Progar
et al., 2000; Stokland et al., 2012).

In addition to climate, substrate quality significantly
contributes to variations in forest decomposition rates
due to differences in the chemical composition and physi-
cal structure of leaf litter and wood (Jomura et al., 2022;
Strickland et al., 2009). Litter consists of various forms of
organic carbon, including cellulose and hemicellulose,
and tends to have relatively high nitrogen (N), making it
a labile source of organic material (Cornwell et al., 2008).
In contrast, wood has low N concentrations and is rich in
lignin, a complex polymer resistant to decomposition
(Aber et al., 1990; Kahl et al., 2017; Meentemeyer, 1978).
Such variations in the chemical composition of leaves
and wood, often described using C:N ratios or lignin con-
tent, also contribute to differences in decomposition rates
among species and litter types by influencing the compo-
sition of decomposer communities inhabiting the sub-
strate (Ge et al., 2013; Liu et al., 2013; Weedon et al.,
2009; Yang et al., 2024). Therefore, interactions between
climate and substrate quality will have varying impacts
on leaf litter and wood decomposition rates (Bradford
et al., 2017; Dai et al., 2021).

Given the importance of moisture in affecting leaf
litter and wood decomposition rates, ongoing and

future shifts in precipitation regimes will play a signifi-
cant role in forest decomposition (Dyer et al., 1990;
Salamanca et al., 2003; Su et al., 2023). For example,
Lensing and Wise (2007) found that high-rainfall events
accelerated litter decomposition rates by 50%. Direct
impacts of rainfall on litter and wood include the
leaching of soluble compounds (e.g., phenolics, carbohy-
drates, and amino acids) during the initial stages of
decomposition (Swift et al., 1979). Rainfall indirectly
affects litter and wood decomposition by regulating micr-
obial activities that contribute to the degradation of
organic material (Bradford et al., 2008). Thus, shifts in
extreme precipitation events will impact the rate at
which litter and wood decompose in forested
ecosystems.

Extreme precipitation events, including intense and
heavy rainfall or droughts, may have contrasting effects
on the rate at which leaf litter and wood decompose
due to altered micro-climatic moisture conditions and
the resulting influence on microbial activities; however,
these dynamics have been little studied. Our objective
for this study was to determine the effects of varying
future extreme precipitation scenarios, including drought
and extreme rainfall events, on leaf litter and wood
decomposition rates using a precipitation manipulation
experiment. The questions we sought to answer were
(1) how will leaf litter and wood decomposition rates
respond to extreme precipitation scenarios and
(2) how will extreme precipitation scenarios and sub-
strate quality interact to affect leaf litter and wood
decomposition rates? We hypothesized that (1) a
heavy and intense precipitation regime would acceler-
ate leaf litter and wood decomposition rates and that
this would be particularly true for high-quality, labile
substrates due to enhanced leaching of soluble com-
pounds and (2) that extreme drying periods (i.e.,
drought) would slow leaf litter and wood decomposi-
tion rates, regardless of substrate quality.

METHODS

Study site

This study was conducted at the University of Vermont
Jericho Research Forest (44.445� N, 73.003� W). The por-
tion of the 192-ha experimental forest used for this work
is primarily comprised of naturally regenerated second-
growth northern hardwood forests and is dominated by
maple (Acer spp.), birch (Betula spp.), American beech
(Fagus grandifolia), eastern white pine (Pinus strobus),
northern red oak (Quercus rubra), and eastern hemlock
(Tsuga canadensis), with minor components of various
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deciduous and coniferous species. Soils are sandy
glaciofluvial deposits. Mean annual temperatures
range from −7�C (January) to 21�C (July), and annual
precipitation is 107.5 cm (NOAA, 2020). The experi-
ment occurred within three 0.1-ha canopy gaps created
during winter 2017–2018 (for more details, see Clark &
D’Amato, 2023).

Experimental design

To determine the effects of future extreme precipitation
scenarios on leaf litter and wood decomposition, we
conducted a precipitation manipulation experiment that
was active for two years during the 2018 and 2019 grow-
ing seasons (described in detail in Clark & D’Amato,
2023). The experiment included a 27-m2 precipitation
manipulation shelter in the central portion of three
recently created 0.1 ha canopy gaps (i.e., three sites). The
following precipitation treatments were applied within
each shelter to emulate various extreme drought and
inundation rainfall scenarios projected for this region:

1. Historic (control): “typical” rainfall, calculated as
the median daily volume and frequency of nontrace
rainfall (>1-mm total daily rainfall). Values were
calculated for each growing season month and
derived from historical meteorological records
(1917–2017). This treatment represents our experi-
mental control.

2. Drought: “once-in-a-century” (1st percentile) growing
season drought, statistically defined using the 95th
percentile of consecutive rainless days (<1 mm total
daily rainfall) for each growing season month. To con-
trol for the amount of water distributed, the total allo-
cated during each irrigation event was also based on
the median daily volume, similar to the per-event vol-
ume used in the historic treatment.

3. Inundation: characterized as historic rainfall punctu-
ated by periodic, high volume (95th percentile)
extreme precipitation. Modeled after historical condi-
tions, this treatment is defined by “typical” daily pre-
cipitation volume and frequency (see “Historic
treatment”), interspersed by pulsed extreme precipita-
tion events. The frequency and interval for extreme
precipitation events were derived from regional pro-
jections less than RCP 8.5 (Ning et al., 2015), based on
the forecasted number of days with precipitation
larger than the 95th percentile of daily precipi-
tation amount (from 1917 to 2017). To control for fre-
quency, the time between irrigation events was
statistically determined based on the 95th percentile
of consecutive rainless days (<1 mm) per month.

Each experimental precipitation treatment unit was
applied beneath each shelter unit (N = 3; one replicate
per precipitation treatment per shelter/site) (Clark &
D’Amato, 2023).

To quantify the effects of extreme precipitation or
drought on leaf litter and wood decomposition rates, we
deployed tea bags (as described in Keuskamp et al., 2013)
and wood stakes beneath each shelter canopy and within
each treatment. To study leaf decomposition, we deplo-
yed green and rooibos tea in tetrahedron-shaped syn-
thetic tea bags in all treatments. All tea bags were
oven-dried at 75�C for 48 h before being weighed and
numbered with a unique ID. Within each treatment,
12 bags per tea type were buried pairwise at a depth of
8 cm in June 2018. Tea bags from each treatment were
collected, oven-dried, and weighed at five intervals (every
4–5 months) over approximately 24 months (~2 years) to
determine mass remaining and decomposition rates
over time.

We used commercially available tea bags following
the Tea Bag Index method as outlined by Keuskamp
et al. (2013) and further refined by Djukic et al. (2018).
This approach standardizes decomposition rates across
studies by using litter with known chemical compositions
and consistent quality parameters, ensuring comparabil-
ity across environments or treatments. We used green
tea, which has a relatively high nitrogen content (C:N
ratio = 12.229), and red tea, which has a lower nitrogen
content (C:N ratio = 42.870) (Keuskamp et al., 2013).
Several studies have observed increased decomposition
rates of “native” leaf litter compared with “nonnative”
leaf litter in what has been described as the home-field
advantage theory; however, the tea bag method has
been cited in a large number of global experiments as a
proven indicator of how experimental treatments
impact leaf litter decomposition (Djukic et al., 2018;
Duddigan et al., 2020).

To study wood decomposition, wood stakes were
manufactured in size 2.54 × 2.54 × 20 cm from locally
harvested, knot- and defect-free sugar maple (Acer
saccharum) and quaking aspen (Populus tremuloides)
wood and oven-dried at 75�C for eight days (Fraver
et al., 2018). Each stake was weighed and numbered with
a unique ID. Within each treatment, eight stakes per spe-
cies were positioned pairwise (10 cm apart) on the
ground surface in June 2018. Six stakes per species per
treatment were collected, oven-dried, and weighed at five
intervals over three years to determine mass loss over
time. During the post-treatment period (year 3), stakes
were in the field for one additional year and were
exposed to ambient climate conditions. Mean starting
mass of wood stakes was 73.01 g. Some samples could
not be recovered or processed for various reasons,
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including missing samples, missing identification tags, or
broken, torn, or fragmented samples, resulting in a
reduced sample size for some treatments and the third
year of the experiment.

Statistical analyses

To assess the rates of tea bag decomposition, we fit the
asymptotic decomposition model

X ¼A+ 1−Að Þe− kat, ð1Þ

to the proportion of leaf litter mass remaining, where X is
the proportion of initial mass remaining at time t, A is
the fraction of the initial mass with a decomposition rate
of zero, while the remaining fraction (1 − A) decomposes
with a rate of ka (Berg, 2000; Hobbie et al., 2012). While
the decomposition rate of A would never actually equal
zero, the asymptotic model assumes that this litter frac-
tion decomposes so slowly that its decomposition rate is
approximately zero. Thus, A can be considered the frac-
tion of recalcitrant litter that decomposes extremely
slowly (Hobbie et al., 2012). The model was fit to each
site, tea type, and treatment combination using nonlinear
regression and the nls function in the “stats” package in
R (R Core Team, 2021).

To determine the effects of extreme precipitation
events on leaf litter decomposition rates, we compared
decomposition model parameters—the decomposition
rate ka, and the fraction of litter that did not decom-
pose, A—using a mixed model with plot as a random
effect and a constant variance function for treatment
(lme in the package nlme; Pinheiro & Bates, 2023; R
Core Team, 2021). We fit a linear mixed model to mea-
sure interactions between treatment and tea type to
determine the effects of extreme precipitation events
and substrate quality on leaf litter decomposition rates
and the fraction of substrate whose decomposition rate
was, or approached, zero (ka, A). Our final models
included decomposition model parameters as response
variables and interactions between treatment and tea
type as predictor variables. In cases with a significant
main effect, a post hoc analysis was performed using
the Tukey–Kramer method to identify where differ-
ences in decomposition model parameters existed
among the treatments.

The estimates for wood stake decomposition rates
were calculated by dividing the final dry weight of the
stakes by the initial weight and multiplying by 100 to
determine the percentage of mass remaining over time
(note that there were not enough time points to fit

Equation 1 to these data). To determine the effects of
extreme precipitation events on wood decomposition,
we performed a mixed model ANOVA with percent
mass remaining as the response variable and treatment,
species, and years stakes were in the field as the predic-
tor variables. Our final mixed-effects model included
interactions among treatment, species, and the num-
ber of years stakes were in the field, with site as a
random variable. A constant variance structure was
applied to account for heterogeneity in variance
across the number of years stakes were in the field.
We could not test a three-way interaction between
treatment, number of years stakes were in the field,
and species of wood stakes due to missing data/
samples in the third year. For all models, we also cal-
culated marginal and conditional R 2 values using
piecewiseSEM (Lefcheck, 2016). Marginal R 2

describes the proportion of variance explained by
fixed factors (e.g., treatment, species). Conditional R 2

describes the proportion of variance explained by
fixed and random (e.g., site) factors (Nakagawa &
Schielzeth, 2013).

RESULTS

Leaf litter decomposition

The impact of extreme precipitation treatments varied
with substrate quality (Table 1). Green tea decomposition
rates (ka) ranged from 0.040 to 0.067, approximately
4 times higher than those of red tea, which ranged from
0.009 to 0.018. Surprisingly, decomposition rates did not
vary among treatments (Figure 1a, Table 1). The fraction
of substrate that did not decompose (A) after two years in
red tea ranged from 0.386 to 0.494 (or 38.6%–49.4% of
tea), which was approximately 1.6 times greater (or 57%
more) than the fraction that did not decompose (A) after
two years in green tea, which ranged from 0.230 to 0.331
(23%–33.1%) (Figure 1b, Table 1). A marginal interac-
tion between treatment and substrate quality was found
for the fraction that did not decompose (A), and post
hoc analysis revealed that the fraction of substrate that
did not decompose (A) for green tea was 22% greater
within the drought treatment compared to inundation
(Figure 2, Table 1).

Wood decomposition

Treatment effects on the remaining mass of wood
stakes depended on the number of years stakes were in
the field (Table 1). After the first year (2018), mass

4 of 11 MURRAY ET AL.



remaining was 1.4% lower within the inundation treat-
ment than in the control and was not significantly dif-
ferent from the drought treatment. No significant
difference was observed after the second year (2019).
However, mass remaining after the third year (2020)
was 32% lower in the control than the inundation treat-
ment and 53% lower than in the drought treatment
(Figure 3a, Table 1). Median mass remaining of wood
stakes after three years within the drought, control,
and inundation treatments was 84.2%, 57.0%, and
67.5%, respectively. Mass remaining differed signifi-
cantly between species in the second and third years as
aspen stakes decomposed faster than maple stakes
(Figure 3b, Table 1). Mean final mass of wood stakes
was 69.81 g.

DISCUSSION

Global climate change will substantially impact future
forest dynamics by altering regional hydrological cycles.
Forest functions, including C cycling and storage, may be
disrupted during prolonged droughts or intense precipita-
tion events due to shifts in forest decomposition. We used
a precipitation manipulation experiment to demonstrate
that future extreme precipitation scenarios will impact
wood more than leaf litter decomposition. Overall, we
found that drought and extreme precipitation slowed
wood decomposition.

Decomposition rates

Our results suggest that the future extreme precipitation
scenarios projected to impact Northeastern US forests
will have minor impacts on leaf litter decomposition, but
that impact may vary with litter quality. We found that,
on average, drought tended to increase decomposition
rates by 17%, and inundation tended to decrease decom-
position rates by 20% for high-quality litter (green tea),
but decomposition rates were not significantly different
among treatments (Figure 1a). These findings contradict
previous studies that found increasing precipitation sig-
nificantly accelerates leaf litter decomposition, regardless
of litter quality, due to greater leaching from high-rainfall
events (Lensing & Wise, 2007; Salamanca et al., 2003).
Furthermore, drought effects on labile leaf litter sub-
strates (i.e., green tea) also resulted in a larger “slowly
decomposing” fraction (Hobbie et al., 2012) than in the
inundation treatment, though neither treatment was sig-
nificantly different than the control (Figure 2). These
results are consistent with Berg and Ekbohm (1991),
who found nutrient-rich litter exhibited multiple stages
of decomposition where the labile fractions of litter
decomposed more rapidly during the initial stages
(12–18 months) than during the later stages (3–4 years).

In contrast to leaf litter, our results indicate that
extreme precipitation scenarios will have a larger and
more consistent impact on wood decomposition. Both
drought and inundation treatments reduced wood

TAB L E 1 ANOVA results showing differences in leaf litter and wood decomposition rates.

Response variable and effects Marginal R 2 (conditional R 2) numDF denDF F p

Leaf litter ka 0.938 (0.939)

Treatment 2 10 2.6 0.12

Substrate quality 1 10 591.6 <0.0001

Treatment:substrate quality 2 10 2.9 0.1

Leaf litter A 0.879 (0.923)

Treatment 2 10 1.3 0.32

Substrate quality 1 10 370.4 <0.0001

Treatment:substrate quality 2 10 3.5 0.07

Wood mass remaining (%) 0.793 (0.793)

Treatment 2 57 0.2 0.67

No. years 2 57 6.8 0.002

Species 1 57 30.9 <0.0001

Treatment:species 2 57 2.3 0.108

No. years:species 2 57 11.8 0.0001

Treatment:no. years 4 57 3.3 0.018

Note: Response variable ka is the decomposition rate of the tea bags while A is the fraction of the initial mass with a decomposition rate of zero or the fraction
of litter that did not decompose. Wood mass remaining (in percentage) is an estimate of wood stake decomposition rates.
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decomposition compared to historical conditions during
the experiment (Figure 2a). During the post-treatment
period, the stakes experienced ambient conditions. The
large observed difference among treatments in the
third year may reflect a lag effect from the previous
two years of treatment conditions as samples accli-
mated to ambient conditions in the final treatment
year. The overall observed trends in wood decomposi-
tion reflect what might be expected under future varia-
tions in precipitation extremes in which excessively dry
or wet growing seasons are followed by ones reflective
of more historic conditions. After three years, wood
decomposition was greater under historic than inu-
ndation conditions (Figure 3a), where increased rain-
fall likely disrupted microbial activity by creating
anaerobic conditions, whereas moderate, historical

precipitation provided consistent moisture conditions
that were more suitable for microbial organisms
within leaf litter and wood (A’Bear et al., 2014).
Decomposition in both substrates relies heavily on
microbial activities, particularly those of fungi and bac-
teria which respond differently to varying moisture
levels (Boddy, 1983). While moderate moisture gener-
ally supports microbial growth, excessively high mois-
ture conditions may limit oxygen availability and slow
decomposition, particularly for fungi which are obligate
aerobes (Panshin & de Zeeuw, 1980). Similarly, exces-
sively low moisture conditions may also limit microbial
decomposition (Jones et al., 2022; Schlesinger et al.,
2016). These moisture-driven dynamics underscore why
extreme precipitation events can have variable impacts
on decomposition processes.
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Substrate quality

As expected, labile leaf litter substrates decomposed more
rapidly than recalcitrant ones (Figure 1a). Climate and
substrate quality strongly predict decomposition rates
across ecosystems and act synergistically to control
decomposition (Adair et al., 2008). At global scales, tem-
perature and moisture are highly related to decomposi-
tion rates. Still, within individual ecosystems, the
chemical composition of the decomposing substrate
becomes a better predictor and is often expressed in
terms of lignin content or C and N concentrations or
ratios (Aerts, 1997; Gholz et al., 2000). Labile leaf litter
substrates tend to have higher N concentrations and
lower lignin contents, making them more decomposable
(Aber et al., 1990; Meentemeyer, 1978). Therefore, it is
not surprising that green tea had greater decomposition
rates than red tea.

Similarly, wood decomposition rates differed between
sugar maple and aspen stakes, a finding similar to that of
Forrester et al. (2023) (Figure 3b). However, this differ-
ence was not evident until after the second year of the
experiment. After Year 2, aspen stakes decomposed more
rapidly than sugar maple stakes, likely due to differences
in chemical composition and wood traits. These results
agree with the established idea that differences in wood

physical, chemical, and structural properties across tree
species and their interactions with microbial communi-
ties contribute to variations in their general decompos-
ability (Forrester et al., 2023; Weedon et al., 2009).
Furthermore, previous studies have observed an initial
lag time (~2 years) before decomposition rates increased
rapidly for aspen species compared with maple species
having longer initial lag times (~6–10 years) (Freschet
et al., 2012; Johnson et al., 2014). This lag time is poten-
tially due to the initial phases of decomposition when
microbial organisms colonize the substrate and can be
impacted by wood physical and structural traits
(Harmon et al., 1986; Swift et al., 1979; Yang et al.,
2024). Thus, the micro-environment provided by
low-density and nutrient-rich wood may be more habit-
able and accessible for microbial decomposers, specifi-
cally fungi, and accelerate the initial stages of wood
decomposition (Boddy, 1983; Stokland et al., 2012).

Study limitations

Marginal interactions between treatment and substrate
quality were detected for litter decomposition rates, spe-
cifically labile litter substrates. The effects of these inter-
actions could become stronger over longer periods,
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indicating that variations in extreme precipitation events
could have more significant impacts on high-quality
litter.

Furthermore, soils on this site are excessively
well-drained, potentially resulting in differing decom-
position patterns under other soils with greater
moisture-holding capacity. For example, drought treat-
ments may respond more similarly to historic treat-
ments, or inundation soils may become saturated
under loamy or clay soils. Thus, soil types likely play a
large role in determining decomposition patterns.

CONCLUSIONS

Our results provide insight into the ecological impacts of
climate change on ecosystem processes that contribute to

forest functions, including forest C cycling and sequestra-
tion. We found that extreme rainfall and drought had
minor impacts on leaf decomposition that varied with lit-
ter quality, but that wood decomposition was sensitive to
changing precipitation, with drought and inundation
treatments slowing wood decomposition. Since wood is a
major pool of forest C, these findings have significant
implications for forest C storage, suggesting that heavy
rainfall and drought may slow wood decomposition and
increase forest C storage in wood.
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