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A B S T R A C T

Eastern North American forests are degraded due to land use history and are threatened by numerous factors that 
further reduce their structural complexity, which contributes to population declines of many taxa. As such, many 
agencies and their conservation partners are employing habitat centric conservation efforts. Increased avail
ability of airborne Light Detection and Ranging (LiDAR) data provides an opportunity to quantify fine-scale 
structural habitat characteristics for forest wildlife. One such species of conservation concern, the eastern 
whip-poor-will (Antrostomus vociferus), requires diverse forest structural conditions to meet its breeding season 
habitat requirements. We used airborne LiDAR data and autonomous recording units (ARUs) to identify elements 
of forest structure that influence whip-poor-will breeding season abundance in Pennsylvania, USA. Specifically, 
we applied a machine-learning classifier for whip-poor-will song to audio recordings obtained from 851 ARUs 
that were deployed in forested landscapes and then created daily detection histories to estimate whip-poor-will 
relative abundance. Whip-poor-wills were detected at 334 survey locations (41 %). Abundance exhibited positive 
linear relationships with percent forest cover and percent oak forest and a negative linear relationship with 
percent impervious cover. Whip-poor-will abundance was also influenced by forest structure, with abundance 
exhibiting a quadratic relationship with two LiDAR-derived covariates; canopy heterogeneity and height within 
300 m. Using these results, we predicted whip-poor-will abundance and habitat management potential. Whip- 
poor-will conservation in our study region will depend on public and private land efforts that maintain heavi
ly forested, oak dominated landscapes that are managed using practices that increase canopy height diversity 
among and within stands.

1. Introduction

Forests of eastern North America (hereafter, eastern forests) host 
among the highest levels of biodiversity in the Nearctic realm (Marshall, 
2006; Petrides, 1972; Sibley, 2014). This diversity is, in part, the result 
of millennia of forest dynamics that generated structural complexity 

across the landscape (Ellsworth and McComb, 2003; MacCleery, 2011; 
Oliver et al., 1996). Indeed, the biodiversity of eastern forests coevolved 
under conditions that resulted from a continuous interplay between 
ecological succession and disturbances that varied in frequency and 
severity, such as fires (Abrams, 1992; Nowacki and Abrams, 2008), 
weather events (MacCleery, 2011), and stand-disturbing wildlife 
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(Greenberg and Collins, 2015; Ellsworth and McComb, 2003). Struc
turally complex forests are important to many taxa (Divoll et al., 2022; 
McNitt et al., 2020; Mathis et al., 2021) and are known to promote 
biodiversity (Phillips, 2011).

Unfortunately, eastern forests are experiencing unprecedented 
challenges that degrade their conditions and threaten associated biodi
versity (Shifley et al., 2014). Most contemporary eastern forests origi
nated following widespread, intensive land uses associated with 
European colonization (e.g., agricultural clearing, clearcut harvesting) 
and often have lower compositional and structural complexity than 
those pre-settlement (Nowacki and Abrams, 2008, MacCleery, 2011). 
Factors such as the suppression of select disturbances (Hanberry et al., 
2020; Nowacki and Abrams, 2008; Sabadosa, 2021), excessive deer 
browse (Parker et al., 2020), invasive species (Morin and Liebhold, 
2016; Ward et al., 2018), and unsustainable logging practices (Curtze 
et al., 2022) are contributing to the continued degradation of eastern 
forests. Forest degradation threatens the persistence of certain plant 
community types (e.g., oaks [Quercus spp.]; Dey, 2014; USDA Forest 
Service, 2024), and may lead to reduced structural complexity within 
stands and across forest landscapes (Schulte et al., 2007). Thus, species 
groups such as eastern forest birds, that are known to benefit from 
heterogenous structural conditions, are experiencing precipitous popu
lation declines (Rosenberg et al., 2019; Zilkowski et al., 2024). In turn, 
most state and federal agencies have made efforts to enhance or create 
habitat for declining species through active forest management 
(Bakermans et al., 2011; Wood et al., 2013; Lambert et al., 2017).

Developing effective habitat management guidelines for forest birds 
is challenging because they select resources at a variety of spatial scales, 
from landscape-level territory placement decisions to micro-site de
terminations such as where to forage, roost, and nest (Chandler et al., 
2012; Fiss et al., 2020; Fuoco et al., 2024). Advances in wildlife moni
toring techniques (e.g., autonomous recording units [ARUs]) have 
allowed conservation scientists to better assess factors that influence 
species’ occurrence and demography across large spatial extents 
(Chronister et al., 2024; Larkin et al., 2024b). Yet, identifying associa
tions with fine-scale vegetation structure remains challenging due to 
limitations in collecting such data, especially across a large quantity of 
survey locations.

Light Detection and Ranging (LiDAR) derived datasets have the po
tential to help researchers better understand associations between 
wildlife and fine-scale forest structure at multiple spatial extents ranging 
from within-stand to regional landscapes (Goetz et al., 2010; Bulluck 
et al., 2022; McNeil et al., 2023). Recent research using LiDAR derived 
metrics has found important avian associations with structural condi
tions at spatial extents beyond what traditional field-based vegetation 
surveys capture (McNeil et al., 2023; Larkin et al., 2024a). Furthermore, 
studies have demonstrated that LiDAR derived metrics are more effec
tive at identifying structural associations than field collected measures 
(McNeil et al., 2023) and other publicly available datasets (e.g., 
Multi-Resolution Land Characteristics National Land Cover Database 
Products [Dewitz, 2023]; Bulluck et al., 2022). Given these findings, 
LiDAR can greatly advance the conservation of many declining wildlife 
species (e.g., McNeil et al., 2023; Fuoco et al., 2024), especially those 
influenced by habitat factors beyond the stand scale (e.g., eastern 
whip-poor-will, Antrostomus vociferus; Vala et al., 2020; Larkin et al., 
2024b).

The eastern whip-poor-will (hereafter, whip-poor-will) is a migra
tory nightjar that breeds in eastern North America (Cink et al., 2020). 
Whip-poor-will populations have been experiencing significant popu
lation declines (Ziolkowski et al., 2024; NABCI, 2025) and are listed as 
species of greatest conservation need on many state wildlife action plans 
(e.g., Pennsylvania, PGC-PFBC, 2015; Massachusetts, MA-DFW, 2015; 
Virginia, Virginia Department of Game and Inland Fisheries VA-DGIF, 
2015; etc.). Whip-poor-will population declines are thought to be 
driven, in part, by loss of early successional conditions on the breeding 
grounds (NABCI, 2025). A considerable body of research has indicated 

that whip-poor-will occupancy and abundance are influenced by site 
and landscape factors during the breeding season (e.g., basal area and 
percent impervious cover, respectively; Spiller and King, 2021; Souza-
Cole et al., 2022; Larkin et al., 2024b). Indeed, past research has been 
important for informing whip-poor-will breeding season conservation 
and management efforts. However, an understanding of how forest 
structure effects whip-poor-will abundance at large spatial scales is 
currently lacking from the literature.

Here, we conducted an analysis of whip-poor-will associations with 
forest structure informed by recently collected airborne LiDAR data 
across the state of Pennsylvania. To our knowledge, this is the first study 
that leverages LiDAR to better understand habitat associations for this 
species. More broadly, this research demonstrates the value of incor
porating LiDAR data in analyses to identify wildlife-habitat relationships 
that would otherwise not be feasible to examine. Our study objectives 
were to: 1) identify forest structural characteristics associated with high 
whip-poor-will abundance; and 2) create a fine-resolution, predictive 
map of whip-poor-will abundance in Pennsylvania to identify critical 
areas for conservation and future habitat management efforts. We hy
pothesized that whip-poor-will abundance would be greatest at loca
tions with high levels of horizontal complexity, specifically forested 
landscapes with diverse successional conditions, due to the species’ use 
of forest edges (Cink et al., 2020; Wilson and Watts, 2008; Grahame 
et al., 1929). Further, we postulated that locations with an interspersion 
of mature and intermediate amounts of early successional forests would 
have the highest abundances given the species need for both young and 
mature forests (Akresh, King, 2016; Larkin et al., 2024b). Given that 
forest structure is only one of many factors that could influence 
whip-poor-will abundance, we also considered several landscape vari
ables in our analysis. We hypothesized abundance would have a positive 
relationship with forest cover (Souza-Cole et al., 2022; Thompson et al., 
2022) and oak dominated forest types (Larkin et al., 2024b), and a 
negative relationship with impervious cover (Souza-Cole et al., 2022; 
Larkin et al., 2024b).

2. Methods

2.1. Study area

We studied whip-poor-will abundance in public and private forests 
across Pennsylvania, USA (Fig. 1). Forest stands included in our study 
represented a diversity of structural conditions ranging from recent 
clearcuts and partial timber harvests to mature, closed-canopy forests. 
Most stands were classified as either oak-hickory (e.g., Carya spp., 
Quercus spp., Pinus spp.) or northern hardwoods (e.g., Acer spp., Betula 
spp., Fagus grandifolia, Tsuga canadensis). Depending on disturbance 
history, understories ranged from sparsely vegetated, to young regen
erating forests characterized by a mix of herbaceous (e.g., Solidago spp., 
graminoids, and ferns) and woody vegetation (e.g., shrubs, saplings, and 
brambles) with varying heights and densities. Elevation ranged between 
197 and 884 m above sea level. For additional information on study area 
and forest management treatments, see Larkin et al. (2024b).

2.2. Whip-poor-will survey locations

To establish whip-poor-will survey locations within pre-selected 
stands for monitoring, we used the “Create Random Points” tool in 
ArcGIS Pro Version 2.9.1 (ESRI, 2021). This placed random survey lo
cations, stratified by our pre-selected monitoring stands representing a 
gradient of management intensity. We ensured that all survey locations 
were > 50 m from the treatment edges (to limit edge effects) and spaced 
a minimum of 500 m apart to maintain spatial independence (Bibby 
et al., 2000; Larkin et al., 2024b). Applying the above criteria, we 
generated 851 unique survey locations across 152 properties (23 public 
land units and 129 private properties; Fig. 1). This included 211 loca
tions on private forests enrolled in Natural Resource Conservation 
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Service’s (NRCS) conservation programs [NRCS’s Regional Conserva
tion Partnership Program (RCPP) for cerulean warbler (Setophaga cer
ulea, CERW; n = 69) and Working Lands for Wildlife (WLFW) program 
for golden-winged warbler (Vermivora chrysoptera, GWWA; n = 142)], 
and 640 locations on public forests managed by the Pennsylvania Game 
Commission (PGC), Department of Conservation and Natural Resources 
State Parks (DCNR-State Parks) and State Forests (DCNR-State Forests).

2.3. Autonomous recording units and acoustic data processing

We used ARUs (AudioMoths, Open Acoustic Devices) to collect audio 
recordings at each survey location from late April-July in 2020 or 2021 
(Hill et al., 2019; Larkin et al., 2024b). ARUs were attached to a woody 
stem 1.5–2 m from the ground and programmed to record for 2 h after 
sunset (2100–2300 EST). Collected audio recordings were processed 
using OpenSoundscape version 0.6.1 in Python (Van Rossum and Drake, 
1995; Lapp et al., 2023). Recordings were broken into clips and then 
processed through a binary, single target automated classifier. The 
classifier assessed each clip for the presence of the whip-poor-will song 
and assigned a score, which was indicative of the classifier’s confidence 
that a given clip contained whip-poor-will song. Using a threshold 
approach (precision = 1.00; recall = 0.35 at a threshold of 4.30), we 
created a daily detection history for each survey location whereby "1" 
denoted a whip-poor-will detection and "0" denoted a non-detection. For 

additional information on ARUs and acoustic data processing, see Larkin 
et al. (2024b).

2.4. LiDAR

To quantify aspects of forest structure, we used LiDAR metrics (10 m 
resolution) developed by Fisher et al. (2024), which were derived from 
Pennsylvania’s publicly available LiDAR point clouds (https://apps.na 
tionalmap.gov/lidar-explorer/). These LiDAR data were collected via 
aircraft over multiple campaigns spanning spring 2017 through spring 
2020 prior to forest leaf-out. The LiDAR-derived metrics included in our 
analysis were those that we expected to be predictive of whip-poor-will 
territory placement, and related to forest structural characteristics that 
can be influenced by management activities. Specifically, we used the 
following LiDAR metrics: 1) height below which 95 % of returns 
occurred (“p95”; a measure of canopy height); and 2) standard deviation 
of p95 (hereafter, “SD p95”; a measure of canopy height variability). We 
summarized LiDAR values within 300 m radii (30 ha; mean size of a 
whip-poor-will home range in Pennsylvania; Notarianni, unpublished 
data) of each survey location using the Focal Statistics tool in ArcGIS Pro 
(ESRI, 2021). Specifically, we used the argument “circle” for the 
neighborhood with a radius of 30 and unit type of “cell” (10 m cell x 30 
cells = 300 m radius focal raster). We used statistics type “Mean” and 
“Standard Deviation” to create the p95 and SD p95 focal rasters, 

Fig. 1. Map displaying the 851 survey locations (purple points) where autonomous recording units (ARUs) were deployed across Pennsylvania, USA in 2020 and 
2021. ARUs were deployed to monitor actively and passively managed sites for territorial eastern whip-poor-will (Antrostomus vociferus). Data from these units were 
used in subsequent abundance analysis which aimed to identify remotely sensed landscape and forest structural variables that influenced eastern whip-poor-will 
abundance. Note: Each private land survey location was shifted in a random direction 0–25 km to preserve landowner privacy.
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respectively. LiDAR acquisition for a portion of northwest Pennsylvania 
was flawed and resulted in low quality data (see Fisher et al., 2024). 
Additionally, LiDAR was not acquired for two counties (York and 
Chester) in southeast Pennsylvania. Thus, we removed these portions of 
Pennsylvania from our analysis. Further, we dropped any survey loca
tions that were within, or less than 300 m from the edge of, an area 
without LiDAR (n = 5). Using the extract() function from the package 
“terra” in program R (R Core Team, 2021; Hijmans, 2023), we extracted 
the value at each survey location (Table 1).

2.5. Landscape analysis

Given that LiDAR-derived forest structural metrics are not the only 
factors needed for predicting and mapping whip-poor-will abundance, 
we included several other remotely-sensed variables that describe 
landscape characteristics at scales known to influence whip-poor-wills. 
Specifically, we included the percent total forest cover within 1500 m 
(Vala et al., 2020; Thompson et al., 2022); percent oak forest 
(oak-hickory and oak-pine) within 1500 m (Larkin et al., 2024b); and 
mean percent impervious within 500 m (Larkin et al., 2024b).

Using program R (R Core Team, 2021) and the 2019 US Forest Ser
vice forest type groups dataset (30 m resolution; USDA Forest Service, 
2023), we created a binary raster whereby oak-hickory and oak- pine 
forest types were designated as “1” and all other forest types were “0”. 
Using this binary oak/non-oak raster and the Focal Statistics tool in 
ArcGIS Pro (ESRI, 2021), we created a new raster (30 m resolution) that 
used a moving window to calculate the percent oak forest within 
1500 m. We used this same process to create the percent forest raster 
with the Dynamic World dataset from Google Earth Engine (Brown 
et al., 2022). We classified “Trees” (class 1) and “Shrub & Scrub” (class 
5) as forest, “1”, and all other classes as non-forest, “0”, to create a bi
nary forest raster (10 m resolution), which was used to calculate focal 
statistics at 1500 m. The process for calculating mean percent imper
vious was similar, however the creation of a binary raster was not 
necessary since the impervious dataset (Dewitz, 2023) is continuous 
rather than categorical. Using these rasters (percent oak and forest 
within 1500 m and mean percent impervious within 500 m) and the 
extract() function in the package “terra” (R Core Team, 2021; Hijmans, 
2023), we extracted the value at each survey location (Table 1).

2.6. Data analysis

We applied a Royle-Nichols (R-N) model (Royle and Nichols, 2003) 
to assess the factors affecting whip-poor-will abundance fit using the 
“unmarked” package in R (Fiske and Chandler, 2011; Kellner et al., 
2023). R-N models have previously been shown to provide reliable es
timates of avian abundance using machine-learning generated detection 
histories when validated to ensure no false positives (Fiss et al., 2024). In 
the context of ARU collected data, where the true listening radius of the 
recorder is unknown, it is best to consider estimates from R-N models as 
a relative index of abundance. Nevertheless, these models allowed us to 
achieve our primary interest in comparing abundance among survey 
locations and assessing impact of forest structure on abundance.

Daily presence/absence of whip-poor-will for a 10-day window, 

which fell in the Nightjar Survey Network’s 2020 and 2021 survey dates 
(nightjars.org), was used to generate a detection history at each sam
pling location. This detection history served as the response variable in 
the R-N model. As such, any survey locations with < 10 days of 
recording were excluded from analyses (n = 35). To account for 
imperfect detection we considered two detection covariates in our 
analysis: 1) Moon above the horizon (“MR”); and 2) Day of the survey 
window (“Day”; Table 1). MR, a binary variable, was calculated using 
the website Time and Date (timeanddate.com), which provides infor
mation about the lunar cycle. Day was calculated using the Nightjar 
Survey Network’s survey dates (nightjars.org), whereby day one corre
sponded with the first survey date of a given window and continued 
until the end of the window. These are two variables known to influence 
whip-poor-will detection (Wilson and Watts, 2006). We did not explic
itly model lunar phase or length of time the moon was above the horizon 
for each recording because both have a relationship with day of the 
survey window. Rather, we modeled both linear and quadratic effects of 
Day because lunar phase peaked in the middle of the survey window and 
length of time the moon was above the horizon decreased linearly.

Before building models, we tested for correlation among detection 
and state covariates by calculating pairwise Pearson’s Correlation co
efficients. Neither of the detection covariates, nor the five state cova
riates were correlated (correlation coefficient <±0.5 for all covariates 
considered; Sokal and Rohlf, 1969). To identify the detection covariates 
that would be carried into our model sets, we tested four detection-only 
models applying a forward selection approach (Table 2). We included 
quadratic terms for both LiDAR metrics, because published literature 
suggests that these structural metrics best explain whip-poor-will dis
tributions at intermediate values (Wilson and Watts, 2008; Spiller and 
King, 2021). Once detection covariates were identified, we tested six 
candidate models applying a forward selection approach (Burnham and 
Anderson, 1998). Covariates were added in order of importance to 
whip-poor-will ecology based on past literature and our knowledge of 
the species. A covariate was retained in subsequent models only if its 
inclusion resulted in a lower AICc. We considered covariates for which 
coefficient 95 % confidence intervals did not overlap with zero to be 
informative predictors (Chandler et al., 2009). To assess model fit, we 
ran a MacKenzie and Bailey goodness-of-fit test (mb.gof.test()) with 1000 
simulations (Kéry and Royle, 2015) applied to our top model.

We applied the final model to predict whip-poor-will abundance 
across Pennsylvania based on conditions at the time of data collection. 
Additionally, in R, we calculated the difference between predicted 
abundance under observed conditions and predicted abundance after 
setting forest structural variables at the values that maximized abun
dance. The difference between predicted whip-poor-will abundance 
under observed and ideal forest structural conditions was used as a 
measure of the potential for forest management, assuming the goal of 
management is to create or enhance whip-poor-will habitat. Lastly, we 
used ArcGIS Pro (ESRI, 2021) and conservation land boundary layers 
(PA GeoData, 2025) to quantify the area classified as low, medium, and 
high predicted abundance and management potential by forest owner
ship type (e.g., federal, state, and private). To do this, we reclassified 
both rasters into three categories. The predicted abundance raster cat
egories were: low (0.10 – 1.00 individuals), medium (>1.00 – 3.00 

Table 1 
Summary statistics for all variables considered for inclusion in Royle-Nichols models to estimate eastern whip-poor-will (Antrostomus vociferus) abundance in Penn
sylvania, USA between 2020 and 2021.

Covariate Type Description Units Min Max Mean Median

MR Detection Moon above the horizon (1/0) NA 0 1 NA NA
Day Day of survey window days 1 15 NA NA
p95 State Canopy height meters 3.93 31.86 19.34 19.34
SD p95 Variation in canopy height meters 1.24 13.00 5.40 5.11
Oak Precent oak dominated forest percent 0.00 100.00 78.72 93.97
Forest Precent forest cover percent 45.74 100.00 95.84 98.91
Impervious Precent impervious cover percent 0.00 11.00 0.25 0.03
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individuals), and high (>3.00 individuals). The management potential 
raster categories were: low (change in abundance <2.00), medium 
(change in abundance 2.00 – 3.99), and high (change in abundance 
>4.00).

3. Results

Whip-poor-will were detected at 334 out of 811 survey locations 
(mean number of detections over ten-day period = 2.9, SD = 3.8). Our 
top ranked model contained both detection covariates (MR and Day), 
linear and quadratic terms for both LiDAR covariates (p95 and SD p95), 
and three landscape covariates (percent oak, percent forest, and mean 
percent impervious; Table 2). The overdispersion parameter (ĉ) was 
1.03, indicating no substantial overdispersion. As such, AICc was used 
for model comparison. Detection probability (p) was highest when the 
moon was above the horizon (mean p = 0.45), compared to when it was 
below (mean p = 0.05; Table 3). Similarly, detection had a negative 
relationship with Day (Table 3). Detection was highest on day one (mean 
p = 0.52) and lowest on day 15 (mean p = 0.32) when the moon was 
above the horizon. When the moon was below the horizon, detection 
decreased greatly across all days but held the same negative linear 
relationship (detection probability 0.07 on day one, and 0.03 on day 
15).

There was a concave relationship between mean whip-poor-will 
abundance and p95 (canopy height) and SD p95 (canopy height vari
ability). Specifically, mean abundance increased as a function of p95 

and was maximized at 10.1 m (Fig. 2A; Table 3). Similarly, mean 
abundance increased as a function of SD p95 and was maximized at 
7.4 m (Fig. 2B; Table 3). Further, there was a significant positive rela
tionship between mean whip-poor-will abundance and both percent oak 
forest (Fig. 2C; Table 3) and overall forest cover (Fig. 2D; Table 3) within 
1500 m and a negative relationship with percent impervious within 
500 m (Fig. 2E; Table 3). LiDAR point clouds of survey locations indicate 
that high abundance sites contained canopy height diversity within 
300 m, while those with few whip-poor-will were homogenous closed 
canopy forests (Fig. 4).

Predicted whip-poor-will abundance varied considerably throughout 
our study area with the highest estimates concentrated in the central 
portion of the state and consistently low estimates across the northern 
portion (Fig. 3). Our assessment of whip-poor-will predicted abundance 
relative to ownership type reveals that private forests host approxi
mately 73, 79, and 64 percent of low, medium, and high predicted 
abundances, respectively (Table 4). Collectively, forests managed by 
state agencies account for approximately 25, 20, and 36 percent of low, 
medium, and high predicted abundances, respectively (Table 4). Similar 
to predicted abundance, the forests of central Pennsylvania have the 
greatest management potential, while those in northern portions have 
limited potential (Fig. 5). Private forests account for 84, 67, and 43 
percent of areas identified as having low, medium, and high manage
ment potential, respectively (Table 4). Collectively, forests managed by 
state agencies account for approximately 13, 32, and 56 percent of low, 
medium, and high management potential, respectively (Table 4).

4. Discussion

Our study provides valuable insight into landscape and forest 
structural conditions that influence whip-poor-will abundance. Further, 
we used model predictions to identify areas with high whip-poor-will 
abundance under current conditions and those where forest manage
ment that diversifies canopy structure has high potential to increase 
local abundance. Ultimately, these outcomes provide another example 
of how studies that incorporate data that quantify fine-scale forest 
structure (LiDAR) in addition to landscape composition (i.e., Dynamic 
World and USFS forest type) can better inform on-the-ground conser
vation for imperiled species (Farrell et al., 2013; Fricker et al., 2021). 
Such an approach can help land managers fine-tune stand-level man
agement practices to best achieve desired structural conditions while 
also ensuring they are implemented within landscape contexts that are 
most attractive to the target species (Garabedian et al., 2017; Bombi 
et al., 2019; McNeil et al., 2023).

Table 2 
Four detection-only and five full models tested by applying a forward selection 
approach in an analysis that used remotely sensed data (autonomous recording 
units, LiDAR, and landcover data) to estimate eastern whip-poor-will (Antros
tomus vociferus) abundance across Pennsylvania, USA between 2020 and 2021. 
Variables considered in the detection-only model were: MR (1/0; moon above 
the horizon) and Day (day of the survey window). State variables considered in 
the full models were: average p95 (canopy height) and SD p95 (variation in 
canopy height) within 300 m, percent oak forest and percent forest cover within 
1500 m, and percent impervious cover within 500 m of survey locations.

Model Name k AICc ΔAICc CumWt. LL

Detection- 
only

ᴪ(~MR + Day 
~1)

4 4585.30 0.00 1.00 − 2288.6

ᴪ(~MR ~1) 3 4601.45 16.15 1.00 − 2297.7
ᴪ(~Day +
Day2 ~1)

4 4762.37 177.07 1.00 − 2377.2

ᴪ(~Day ~1) 3 4854.83 269.54 1.00 − 2424.4
ᴪ(~1 ~1) 2 5093.55 508.25 1.00 − 2544.8

Full 
Models

ᴪ(~MR + Day 
~ p95 + p952 

+ SD 
p95 + SD 
p952 + Oak +
Impervious +
Forest)

11 3989.53 0.00 0.91 − 1983.6

ᴪ(~MR + Day 
~ p95 + p952 

+ SD 
p95 + SD 
p952 + Oak +
Impervious)

10 3994.11 4.57 1.00 − 1986.9

ᴪ(~MR + Day 
~ p95 + p952 

+ SD 
p95 + SD 
p952 + Oak)

9 4056.97 67.44 1.00 − 2019.4

ᴪ(~MR + Day 
~ p95 + p952 

+ p95STD +
SD p952)

8 4105.08 115.55 1.00 − 2044.5

ᴪ(~MR + Day 
~ 
p95 + p952)

6 4169.52 179.99 1.00 − 2078.7

ᴪ(~1 ~1) 2 5093.55 1104 1.00 − 2544.8

Table 3 
Summary of the top model in an analysis that used remotely sensed data 
(autonomous recording units, LiDAR, and landcover data) to estimate eastern 
whip-poor-will (Antrostomus vociferus) abundance across Pennsylvania, USA 
between 2020 and 2021. Detection variables in the model were: MR (1/0; moon 
above the horizon) and Day (day of the survey window). State variables were: 
average p95 (canopy height) and SD p95 (variation in canopy height) within 
300 m, percent oak forest and percent forest cover within 1500 m, and percent 
impervious cover within 500 m of survey locations. All variables were consid
ered biologically significant (95 % confidence intervals do not include 0).

Estimate SE Lower 95 % CI Upper 95 % CI

Detection Intercept − 2.91 0.20 − 3.30 − 2.52
MR 2.72 0.20 2.32 3.11
Day − 0.18 0.04 − 0.25 − 0.10

Abundance Intercept − 0.16 0.07 − 0.29 − 0.02
p95 − 1.25 0.09 − 1.43 − 1.07
p952 − 0.34 0.05 − 0.43 − 0.25
SD p95 0.53 0.06 0.41 0.65
SD p952 − 0.28 0.04 − 0.37 − 0.20
Oak 0.47 0.06 0.34 0.59
Impervious − 0.46 0.09 − 0.63 − 0.28
Forest 0.11 0.05 0.02 0.20
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As hypothesized, whip-poor-will abundance was greatest at locations 
with high levels of horizontal complexity, which in part, stemmed from 
modest amounts of early successional forest. Both LiDAR-derived mea
sures of forest structure included in our analyses, canopy height (p95) 
and the variation in canopy height (SD p95), influenced whip-poor-will 
abundance, which corroborates general conclusions from previous 
studies. For instance, whip-poor-will require early successional condi
tions, but are also known to use shelterwood establishment harvests and 
adjacent mature forests edges (Wilson and Watts, 2008; Thompson et al., 
2022; Spiller et al., 2022). Estimated whip-poor-will abundance in our 
study peaked when forests within 300 m of a survey location had an 
average canopy height of 10.1 m and variation in canopy height of 
7.4 m. To achieve these values simultaneously requires the presence of 
both early successional and mature forest within the local landscape. 
These conditions can be facilitated by ensuring regeneration harvests 
are proximate to mature forests, while also leaving scattered residual 
trees or retention islands within regeneration timber harvests. Previous 
studies have found whip-poor-will to be associated with such legacy 
features (Akresh, King, 2016; Wilson and Watts, 2008). Comparing 
LiDAR point clouds for survey locations with high and low 
whip-poor-will abundances provides managers with a visual perspective 
of the structural conditions they can emulate when implementing future 
habitat projects (Fig. 4).

While we identified structural elements that forest managers should 
consider when designing whip-poor-will habitat projects, our study also 
revealed compositional elements of the local landscape that were 
important drivers of whip-poor-will abundance. In support of our pre
dictions, our analyses found whip-poor-will abundance was highest in 
heavily forested landscapes dominated by oak community types, with 
minimal impervious cover. The positive linear relationship we found 
between forest cover and whip-poor-will abundance is consistent with 
past research (Thompson et al., 2022; Souza-Cole et al., 2022). However, 
some of the most heavily forested portions of our study area (northern 
Pennsylvania) had the lowest predicted abundances, indicating that 

forest cover alone is not the sole landscape requisite for achieving high 
whip-poor-will abundance (Fig. 3). Indeed, in our study, forest type 
strongly influenced whip-poor-will abundance, whereby heavily 
forested landscapes dominated by oak community types host the highest 
predicted values. We postulate that this finding may be driven by dif
ferences in prey availability among forest types. It is well documented 
that Lepidoptera (i.e., moths) comprise the majority of whip-poor-will 
diets (Souza-Cole et al., 2022) and that oaks support more abundant 
and diverse Lepidopteran communities compared to other forest com
munity types (Summerville and Crist, 2008; Narango et al., 2020). Thus, 
sites dominated by oak forest may host higher prey densities, which in 
turn could support higher whip-poor-will abundances. Collectively, our 
landscape context and forest structure findings stress the important 
interplay among forest area, community type, and canopy diversifying 
disturbances that create the conditions that support high whip-poor-will 
abundances. Such conditions may promote high abundances given in
dividuals can meet their habitat needs (e.g., nesting, foraging, and 
roosting cover) within smaller home ranges compared to individuals 
inhabiting areas with less optimal conditions, a phenomenon observed 
in other bird species (i.e., Smith and Shugart, 1987; Bock and Jones, 
2004; Diemer and Nocera, 2014).

We created rasters for predicted abundance and habitat management 
potential which can serve as valuable tools for informing whip-poor-will 
conservation (Figs. 3 and 5). For example, the likelihood of focal species 
occupying recently created habitat often depends on proximity to 
existing populations (Tittler et al., 2009; McNeil et al., 2020; Shaffer 
et al., 2025). As such, managers can reference the management potential 
raster to identify areas for future whip-poor-will habitat projects in 
landscapes with suitable conditions for the species, and then use the 
predicted abundance raster to prioritize projects based on their distance 
to areas that likely support existing populations. By using both rasters in 
combination, forest managers can more precisely implement manage
ment in locations that have the greatest potential benefit to 
whip-poor-wills. Comparatively, our predicted abundance raster aligns 

Fig. 2. Predicted abundance of eastern whip-poor-will (Antrostomus vociferus) in relation to two LiDAR-derived (p95 [canopy height] and SD p95 [variation in 
canopy height]), and three landscape (percent forest, oak, and impervious), covariates included in a study conducted in Pennsylvania, USA between 2020 and 2021. 
The solid black line is the model-predicted trendline, the dotted black lines are the upper and lower 95 % confidence intervals, and the red dotted line is mean 
predicted eastern whip-poor-will abundance. X-axis label contains the spatial extent at which the variable best predicted eastern whip-poor-will abundance and the 
unit in parenthesis, respectively.
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well with similar datasets for this species (e.g., Fink et al., 2023, Larkin 
et al., 2024b), but is more spatially explicit. For example, eBird (Fink 
et al., 2023) generates a whip-poor-will abundance map with estimates 
provided at a broad extent (2.5 km x 2.5 km resolution), whereas our 
map provides estimates at the sub-stand level (10 m x 10 m resolution). 
Ultimately, our rasters demonstrate that incorporating LiDAR and 
robust species occurrence data provides precision and resolution at 
scales that are ecologically meaningful to the target species and 

operationally meaningfully to land managers.
When reviewing these rasters in relation to forest ownership, con

servationists can also identify stakeholders with forests that support 
existing whip-poor-will populations or forests that have strong potential 
to benefit the species via habitat management. Indeed, regional con
servation efforts to recover declining species often depend on the col
lective efforts of multiple resource management agencies to meet 
desired outcomes (i.e., number of ha treated; Lott et al., 2021; White 

Fig. 3. Map displaying a predicted eastern whip-poor-will (Antrostomus vociferus) abundance raster across Pennsylvania, USA in 2020 and 2021. Remotely sensed 
data (autonomous recording units, LiDAR, and landcover data) and a Royle-Nichols model was used to inform the raster. Abundance ranged from 5.82 (yellow) to 
0.00 (black) individuals. White areas represent unsuitable land covers (e.g., agriculture or impervious). Green areas indicate where there was a suitable land cover 
(forest), but no LiDAR data to inform a prediction.

Table 4 
Summary of forest area by ownership type based on two classified rasters: predicted abundance of eastern whip-poor-will (Antrostomus vociferus) and forest man
agement potential. Each raster was classified into three categories: low, medium, and high. Columns 1–2 show forest ownership types and their total forested area. 
Column 3 presents the percentage of total forest area represented by each ownership type. Columns 4–6 report the area and percentage of forest within each ownership 
type classified as low, medium, and high. Columns 7–9 show the percentage of forest area within each ownership type falling into the three abundance classes.

Ownership 
Type

Forest 
cover (ha)

Forest 
ownership 
(%)

Low 
Abundance 
(ha; %)

Medium 
Abundance 
(ha; %)

High 
Abundance 
(ha; %)

Low Management 
Potential (%)

Medium 
Management 
Potential (%)

High Management 
Potential (%)

Private Land 5,087,939 75.06 3,512,749; 
73.14

1,258,500; 
79.36

94,726; 64.43 84.02 67.05 43.33

State Forest 897,856 13.25 700,070; 
14.58

163,577; 
10.32

26,709; 18.17 7.23 19.69 32.17

State Game 
Land

567,199 8.37 398,124; 
8.29

142,612; 
8.99

23,254; 15.82 5.49 10.06 20.50

Federal Land 131,045 1.93 113,672; 
2.37

8,448; 0.53 1,376; 0.94 2.44 1.18 0.82

State Park 94,779 1.40 78,270; 1.63 12,665; 0.80 950; 0.65 0.82 2.02 3.19
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et al., 2023). Our analysis revealed that 64 % of forests with high pre
dicted abundances occurred on private land, which was to be expected 
given that private forests accounted for a significant percentage (75 %) 
of forest cover included in our study. Nonetheless, this observation 
combined with the fact that private lands account for 43 % of forests 
classified as having high management potential suggests that conser
vation programs that target private lands, like those offered by NRCS 
(Litvaitis et al., 2021), can play a major part in whip-poor-will recovery 
efforts.

While private forests clearly play an important role in present and 
future whip-poor-will conservation, the importance of public lands 
cannot be overstated. Public lands were estimated to support only 15 % 
of eastern birds classified as forest obligates, but hosted > 90 % of two 
highly threatened species populations, the red-cockaded woodpecker 
(Leuconotopicus borealis) and Kirtland’s warbler (Setophaga kirtlandii; 
NABCI, 2011). Comparable to whip-poor-will, these two conservation 
dependent species require large forested areas with structural conditions 
maintained by periodic disturbances (Walters et al., 2002; Donner et al., 
2008). Pennsylvania is fortunate to have more than 4 million acres of 
state-managed lands (PA DCNR, 2020), which are often interconnected 
and form expansive forested landscapes. Moreover, these lands have 
staff and financial resources to plan and implement forest management 
practices (e.g., timber harvest, forest stand improvements, and pre
scribed fire) that create and maintain a mosaic of stand age classes and 
structural conditions over time, which our analyses found to be impor
tant drivers of whip-poor-will abundance. As such, while forests 
managed by state agencies only accounted for 23 % of the forest cover 
included in our analyses, they host a disproportionate amount of area 
classified as having high predicted abundance (35 %) and high man
agement potential (56 %; Table 4). Moreover, these public lands contain 
the greatest concentration of areas with the highest predicted abun
dances, which represent strong population anchors for regional 
habitat-based conservation efforts. Ultimately, examining our predicted 
abundance and management potential rasters through the lens of forest 
ownership suggests that multi-agency management actions on both 
public and private land have the potential to contribute meaningfully 
toward achieving statewide conservation goals for this imperiled spe
cies. Given that our models clearly illustrate the importance of transient 
forest conditions (i.e., low canopy height), conservation planning across 
these broad ownerships will require spatial and temporal considerations 

to ensure these conditions are being created across the landscape to 
support the species long-term.

5. Conclusions

When considered together, our results indicate that whip-poor-will 
abundance is highest in heavily forested, oak-dominated landscapes 
with complex age class and structural conditions created through nat
ural processes (e.g., forest succession) and periodic disturbances (both 
natural or anthropogenic; e.g., tornados, timber harvest, and prescribed 
fire). Current eastern forests are experiencing unprecedented challenges 
that are leading to simplification, degradation, and mesophication (e.g., 
invasive species, intense ungulate browsing, high-grading, and sup
pression of disturbances; Knoot et al., 2010; Dey, 2014). Without 
intervention, the compositional and structural conditions that 
whip-poor-will require will remain scarce in eastern forests. Managers 
who seek to create habitat for whip-poor-will through a natural com
munities lens should consider restoration and maintenance of woodland 
systems (e.g., open oak woodlands; Dey et al., 2017), a forest community 
dominated by oak species that once covered more than 100 million ha of 
eastern North America (Hanberry et al., 2020). Woodland systems, like 
any forest, experienced forest dynamics (e.g., heterogeneous fire return 
intervals and forest succession) which resulted in variable structure (Dey 
et al., 2017; Hanberry et al., 2018). Our results suggest that managers 
who seek to balance timber production, while also benefiting wildlife, 
may consider implementing a shelterwood system that targets oak with 
various stages of the shelterwood sequence (preparatory, establishment, 
and removal harvests) interspersed across a landscape at any given time 
(Loftis, 1990; Ashton and Kelty, 2018). Indeed, the restor
ation/maintenance of woodlands or the implementation of shelterwood 
systems would be most impactful in landscapes we identified as having 
high management potential (Fig. 5).

The information presented here, in addition to past research, pro
vides managers with a well-grounded understanding of the conditions 
needed to support breeding whip-poor-will. We recommend future 
conservation efforts for whip-poor-will involve leveraging publicly 
available LiDAR datasets to identify actionable management targets and 
create tools that facilitate habitat management, such as those produced 
by our study (Figs. 3 and 5). There remains much insight to be gained 
from studies that incorporate fine-scale forest structure data to examine 

Fig. 4. LiDAR cookies, 300 m radius, for the top five highest and lowest predicted eastern whip-poor-will (Antrostomus vociferus) abundance survey locations from a 
study in Pennsylvania, USA between 2020 and 2021. Predicted abundances ranged from 0 – 5.64. Blue and red areas represent short (e.g., saplings and brambles) and 
tall (e.g., canopy trees) vegetation, respectively.
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other aspects of whip-poor-will ecology and demography. For example, 
studies that use LiDAR-derived covariates to explore how nesting and 
post-fledging survival is influenced by fine-scale forest structure would 
be valuable. Such studies may provide important information regarding 
the structural conditions associated with high quality nesting and post- 
fledging habitat, in addition to their optimal spatial arrangement, which 
can be incorporated into future conservation efforts for this species. 
Lastly, we encourage the conservation community to continue to 
incorporate LiDAR-derived environmental variables into studies that 
aim to elucidate habitat relationships or to inform spatially explicit 
conservation plans for other species or groups of species. As demon
strated here, LiDAR data can substantially contribute to understanding 
and mapping species distributions and other demographic parameters at 
high resolutions. If recent LiDAR datasets are unavailable, collabora
tions to fund data acquisition would be worthwhile.
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White, R.M., Schmook, B., Calmé, S., Giordano, A.J., Hausser, Y., Kimmel, L., Lecuyer, L., 
Lucherini, M., Méndez-Medina, C., Peña-Mondragón, J.L., 2023. Facilitating 
biodiversity conservation through partnerships to achieve transformative outcomes. 
Conserv. Biol. 37 (3), e14057.

Wilson, M.D., Watts, B.D., 2006. Effect of moonlight on detection of Whip-poor-wills: 
implications for long-term monitoring strategies. J. Field Ornithol. 77 (2), 207–211.

Wilson, M.D., Watts, B.D., 2008. Landscape configuration effects on distribution and 
abundance of Whip-poor-wills. Wilson J. Ornithol. 120 (4), 778–783.

Wood, P.B., Sheehan, J., Keyser, P., Buehler, D., Larkin, J., Rodewald, A., Stoleson, S., 
Wigley, T.B., Mizel, J., Boves, T., George, G., Bakermans, M., Beachy, T., Evans, A., 
McDermott, M., Newell, F., Perkins, K., White, M., 2013. Management guidelines for 
enhancing Cerulean Warbler breeding habitat in Appalachian hardwood forests. 
American Bird Conservancy, The Plains, VA, p. 28.

Ziolkowski Jr, D.J., Lutmerding, M., English, W.B., Hudson, M.-A.R., 2024. North 
American Breeding Bird Survey Dataset 1966 - 2023. U.S. Geological Survey data 
release. https://doi.org/10.5066/P136CRBV.

J.T. Larkin et al.                                                                                                                                                                                                                                Forest Ecology and Management 595 (2025) 122988 

11 

http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref46
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref46
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref47
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref47
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref48
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref48
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref49
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref49
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref49
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref49
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref50
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref50
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref50
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref50
https://doi.org/10.1016/j.foreco.2023.121002
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref52
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref52
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref52
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref53
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref53
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref53
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref54
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref54
https://doi.org/10.1038/s41467-020-19565-4
https://doi.org/10.1038/s41467-020-19565-4
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref56
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref56
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref57
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref57
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref58
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref58
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref59
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref59
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref59
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref59
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref60
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref60
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref60
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref61
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref61
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref62
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref62
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref63
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref63
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref63
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref64
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref64
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref65
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref65
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref66
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref66
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref66
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref67
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref67
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref67
https://doi.org/10.5849/forsci.13-153
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref69
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref70
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref70
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref71
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref71
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref72
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref72
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref72
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref73
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref73
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref74
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref74
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref75
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref75
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref75
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref76
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref76
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref76
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref77
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref77
https://di-usfsdata.img.arcgis.com/arcgis/rest/services/CONUS_forest_type_group_2018_masked_202105122120120/ImageServer
https://di-usfsdata.img.arcgis.com/arcgis/rest/services/CONUS_forest_type_group_2018_masked_202105122120120/ImageServer
https://research.fs.usda.gov/products/dataandtools/tools/fia-datamart
https://research.fs.usda.gov/products/dataandtools/tools/fia-datamart
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref78
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref78
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref78
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref78
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref79
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref79
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref80
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref80
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref81
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref81
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref81
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref82
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref82
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref82
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref83
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref83
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref83
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref83
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref84
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref84
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref85
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref85
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref86
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref86
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref86
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref86
http://refhub.elsevier.com/S0378-1127(25)00496-7/sbref86
https://doi.org/10.5066/P136CRBV

	Leveraging Light Detection and Ranging (LiDAR) to elucidate forest structural conditions that influence eastern whip-poor-w ...
	1 Introduction
	2 Methods
	2.1 Study area
	2.2 Whip-poor-will survey locations
	2.3 Autonomous recording units and acoustic data processing
	2.4 LiDAR
	2.5 Landscape analysis
	2.6 Data analysis

	3 Results
	4 Discussion
	5 Conclusions
	CRediT authorship contribution statement
	Funding
	Declaration of Competing Interest
	Acknowledgements
	Data availability
	References


