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Abstract
Diverting food waste from landfills to composting or anaerobic digestion can reduce

greenhouse gas emissions, enable the recovery of energy in usable forms, and create

nutrient-rich soil amendments. However, many food waste streams are mixed with

plastic packaging, raising concerns that food waste-derived composts and digestates

may inadvertently introduce microplastics into agricultural soils. Research on the

occurrence of microplastics in food waste-derived soil amendments is in an early

phase and the relative importance of this potential pathway of microplastics to agri-

cultural soils needs further clarification. In this paper, we review what is known and

what is not known about the abundance of microplastics in composts, digestates, and

food wastes and their effects on agricultural soils. Additionally, we highlight future

research needs and suggest ways to harmonize microplastic abundance and ecotoxi-

city studies with the design of related policies. This review is novel in that it focuses

on quantitative measures of microplastics in composts, digestates, and food wastes

and discusses limitations of existing methods and implications for policy.

1 INTRODUCTION

Food waste constitutes approximately a quarter of all mate-

rial landfilled in the United States (USEPA, 2020) and is

readily converted to methane—a potent greenhouse gas—

under the anaerobic conditions found in landfills (Buzby

et al., 2014). Diverting food waste from landfills to anaero-

bic digestion and composting could reduce methane emissions

and enable the recovery of nutrients and energy in usable

forms (USEPA, 2021a,2021b). Both processes produce soil

amendments—digestate and compost, respectively—that can

be applied to agricultural lands to support soil health and fer-

tility (Cheong et al., 2020; Kelley et al., 2020; Roy, 2017).

Anaerobic digestion provides the additional benefit of recov-
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ering usable energy from food waste in the form of biogas

(F. Xu et al., 2018). Growing recognition of these cobene-

fits has prompted recent legislation regarding the diversion

of food waste from landfills (Golwala et al., 2021). In the

United States, food waste disposal bans have been enacted

in four states (New York, Massachusetts, Rhode Island and

Vermont) and diversion requirements established in three

others (California, Connecticut and New Jersey) (Ryen &

Babbitt, 2022). The state of Vermont’s Universal Recycling
Law (2012) is the most stringent in the United States, mandat-

ing the diversion of all food residuals—including household

food waste—from landfills in 2020, whereas other policies

only apply to large volume commercial and industrial food

waste generators (Ryen & Babbitt, 2022). These types of
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2 PORTERFIELD ET AL.

policies could help to close resource loops and facilitate a

more circular economy of resource use; however, contami-

nation from plastic packaging has emerged as a significant

challenge in their implementation (O’Connor et al., 2022;

USEPA, 2021a).

Conventional petroleum-based plastics are used in a wide

variety of food packaging applications (Table 1) due to their

low cost and chemical barrier properties (Ncube et al., 2020).

As a result of their ubiquitous use in packaging, plastics are

often mixed in with many pre- and post-consumer food waste

streams (USEPA, 2021a). Substantial fractions of wasted food

from industrial and commercial settings can remain packaged

for a variety of reasons (e.g., expiration, off-specification,

contamination). In the U.S. state of Vermont, for example,

an estimated 38% of food waste is still in packaging (DSM

Environmental Services Inc, 2018). Recovering food waste

in these cases requires some form of depackaging, using

either mechanical depackagers or human labor, both of which

are likely to achieve variable and imperfect separation effi-

ciency (do Carmo Precci Lopes et al., 2019; Edwards et al.,

2018). Source-separated post-consumer food waste may also

contain mis-sorted plastic packaging, with varying levels of

contamination that may be influenced by factors such as pop-

ulation density (Friege & Eger, 2021) and degree of public

engagement (Dai et al., 2016).

Despite efforts to separate packaging from food waste

streams, early evidence suggests that macro- (>5 mm) and

micro- (<5 mm) plastics may be present in many food waste-

derived composts and digestates (Figure 1) and could be

transferred to agricultural soils when these amendments are

land applied (Figure 2; Kawecki et al., 2020; Weithmann et al.,

2018). Due to their highly stable chemical structure, most

conventional petroleum-based plastics are resistant to total

degradation and may persist in the environment for centuries

(Ali et al., 2021). Through time, plastics may accumulate in

soils (Y. Yu & Flury, 2021), with macroplastics fragmenting

into microplastics or even nanoplastics due to physicochemi-

cal and biological degradation (Ali et al., 2021). This partial

degradation can release additives and impurities that may be

harmful to human and ecosystem health (Rillig et al., 2021). In

addition to the potential risks posed to human and ecosystem

health, there is early evidence to suggest that some microplas-

tics have an inhibitory effect on the composting and anaerobic

digestion processes (J. Zhang et al., 2020a; Y. Zhou et al.,

2022), thereby possibly reducing the intended benefits of food

waste diversion initiatives. Furthermore, plastic contamina-

tion can impede circular economy efforts by making composts

and digestates less attractive to farmers and consumers (Friege

& Eger, 2021; Roy et al., 2021). “Biodegradable” and “com-

postable” plastics have been touted as a more environmentally

friendly alternative to conventional petroleum-based plastics

(European Commission, 2018; Folino et al., 2020; Shaikh

et al., 2021), but are problematic for multiple reasons and do

Core Idea
∙ Microplastic presence is documented in composts,

digestates, and food wastes.

∙ Lack of standardized methods for these materials

complicates comparison between studies.

∙ Existing regulations establish w/w limits on con-

tamination which is inconsistent with many stud-

ies.

∙ Focus on maximizing benefits of food waste diver-

sion and minimizing risk of microplastic pollution

is needed.

not yet represent a clear solution (Calabrò & Grosso, 2018;

Haider et al., 2019; Markowicz & Szymańska-Pulikowska,

2019; Serrano-Ruiz et al., 2021).

Microplastic contamination in organic materials is receiv-

ing increasing attention as food waste diversion policies

continue to proliferate, leading to a growing number of entities

imposing regulatory thresholds for microplastics in composts

and digestates (USEPA, 2021a). However, relatively little is

known about the abundance of microplastics in composts,

digestates, and food wastes and their downstream effects in

the environment. Since microplastics were first reported to be

accumulating in the oceans in 2004 (Thompson et al., 2004),

studies in the field have largely focused on marine and other

aquatic environments (e.g., Besseling et al., 2019; Bond et al.,

2018; Markic et al., 2020). It was not until 2012 that the

presence of microplastics in terrestrial environments began

to receive attention (Rillig, 2012), and studies focusing on

terrestrial environments still represent a small fraction of all

microplastic publications (i.e., 5% as of 2019) (R. Qi et al.,

2020). Recent reviews have focused on the abundance and

sources of microplastics in soils, the challenges of detecting

and characterizing microplastics in soils and complex organic

matrices, and the documented effects of microplastics on soil–

plant systems (e.g., Iqbal et al., 2020; J. Li et al., 2020; Ng

et al., 2018; J. Sun et al., 2019; R. Qi et al., 2020; Ruggero

et al., 2020; Q. Sun et al., 2022; J. Wang et al., 2019; W.

Wang et al., 2020; B. Xu et al., 2020; Y. Zhou et al., 2020;

F. Zhu et al., 2019). Few peer-reviewed studies have focused

further upstream on a likely source of microplastics in soils:

composts and digestates derived from food waste (Golwala

et al., 2021). One recent review article includes microplastics

among other emerging contaminants in food waste-derived

composts and digestates (O’Connor et al., 2022). However,

to the best of our knowledge, no peer-reviewed literature

reviews to date have focused on quantitative measures of

microplastics in composts, digestates, and food wastes along

with the implications for policy. Here, we fill that gap in the
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PORTERFIELD ET AL. 3

T A B L E 1 Recycling identification code, molecular structure (IUPAC ID), and food packaging applications of commonly used plastic polymers

Recycling
identification
codea Name (abbreviation) IUPAC ID Common food packaging applicationsb

1 Polyethylene terepthalate (PET) Poly(ethyl

benzene-1,4-dicarboxylate)

Bottles, jars, tubes, trays, blisters, bags, and

snack food wrappers

2 High density polyethylene (HDPE) Polyethene Containers, caps, covers, container labels

3 Polyvinyl chloride (PVC) Poly(1-chloroethylene) Rigid and flexible films, closures

4 Low density polyethylene (LDPE) Polyethene Films for frozen foods, bakery products, fresh

meat and poultry, caps, covers, container

labels

5 Polypropylene (PP) Poly(propene) Rigid food packaging

6 Polystyrene (PS) Poly(1-phenylethene-1,2-diyl) Disposable cups, trays for meat and produce,

clam shell packaging for eggs, tubs for

preserves, yogurt containers, breathable

films

7 Other resinsc Variable Shopping bags, cups, films, containers, bottles,

wrapping, stirrers, cutlery, straws, foams

a Marsh and Bugusu (2007).
b Dybka-Stępień et al. (2021).
c This includes biodegradable plastics such as polylactic acid (PLA).

(a)

(c) (d) (e) (f )

(b)

F I G U R E 1 Visible plastic contamination in (a) organic municipal solid waste compost windrows prior to screening (credit: E.D. Roy, S. Asia),

(b) screw-press separated solid digestate from co-digestion of dairy manure and food waste (credit: E.D. Roy, United States), and (c–f) Putative

microplastics found in food waste digestate (credit: K.K. Porterfield, United States).

literature and provide a starting point for scientists, practi-

tioners, and policy makers in the solid waste management

field who are engaging with the issue of microplastics

contamination in food waste streams.

First, we present a summary of existing peer-reviewed

reports of microplastic abundance in composts, digestates,

and food wastes. Next, we provide an overview of the

different methods that have been used to measure microplas-

tics in these materials and discuss limitations associated

with the lack of standardized methods. We then briefly

discuss the various inputs of microplastics to agricul-

tural soils and summarize the documented impacts of

microplastics on soil–plant systems. Finally, we provide

a roadmap to harmonize efforts to quantify microplas-
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4 PORTERFIELD ET AL.

F I G U R E 2 Conceptual diagram showing flows of food waste and microplastics to composting and anaerobic digestion and on to agricultural

soils

tics in food waste-derived materials, understand the effects

of microplastics in agricultural soils, and establish related

policy.

2 MICROPLASTIC ABUNDANCE IN
FOOD WASTES, COMPOSTS, AND
DIGESTATES

We used a systematic literature search to identify scientific

articles providing primary data on microplastic abundance

in food waste-derived composts and/or digestates (Table S1).

For a full description of the systematic review methods, see

the Supplementary Materials. We intentionally excluded stud-

ies focusing on biosolids-derived organic amendments unless

there was codigestion with food waste because microplas-

tic occurrence in wastewater has been reviewed elsewhere

(J. Sun et al., 2019). We include studies of green waste-

derived composts (e.g., yard and landscape trimmings) for

comparison with food waste-derived composts. The studies

that report microplastic abundance in terms of particles per

weight (standardized to particles kg−1 dry material where pos-

sible) are summarized in Table 2 and the studies that report

microplastic abundance in terms of w/w (standardized to w/w

dry material where possible) are summarized in Table 3.

For composts, digestates, and food wastes, we report plas-

tic abundance values that include all size fractions measured

for a given study. In some instances, this includes or is solely

comprised of macroplastics.

All the studies we reviewed reported finding plastics in

composts, digestates, and/or food wastes, even in cases where

the compost was derived exclusively from green waste. The

most frequently identified polymers included polyethylene

(PE), polypropylene (PP), and polystyrene (PS) (Tables 2

and 3), which are also some of the most common plastics used

in food packaging (Ncube et al., 2020). “Biodegradable” and

“compostable” bioplastics, including polylactic acid (PLA),

Mater-Bi®, and cellulose-based polymers, were identified as

well (Tables 2 and 3).

Plastic abundance in food waste alone spanned five orders

of magnitude on a count per weight basis (Table 2) and

three orders of magnitude on a w/w basis (Table 3). Values

for homogenized food waste ranged from 36 (Schwingham-

mer et al., 2020) to 1400 ± 150 particles kg−1 dry material

(Ruggero et al., 2021); however, the former study only consid-

ered larger particles (1–5 mm) and the latter only considered

smaller particles (0.1–2 mm). A study of grocery waste in the

United States found 300,000 particles kg−1 dry material, but

no information about the size fraction was available (Golwala

et al., 2021). On a mass basis, plastic abundance ranged from

∼0.025% w/w in homogenized food waste (Schwingham-

mer et al., 2020) to 5.6% w/w in source-separated household

biowaste (do Carmo Precci Lopes et al., 2019).

Reported values also varied widely both within and

between studies measuring plastic abundance in composts—

spanning seven orders of magnitude on a count per mass

basis (Table 2), and five orders of magnitude on a w/w basis

(Table 3). Plastic abundance ranged from 12 ± 8 (Braun et al.,
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PORTERFIELD ET AL. 5

T A B L E 2 Plastic abundance in composts, digestates, and food wastes on a count basis

Feedstock
Abundance
(particles kg−1 dry) Size (mm) Polymer types Location References

Compost
Green waste 12 ± 8 to 46 ± 8 >0.3b n/a Germany Braun et al. (2021)

Green waste 82,800 ± 17,400a 1–5 PLA Netherlands Huerta-Lwanga et al., 2021

Green waste 1253 ± 561 0.03–2 PE, PP Netherlands van Schothorst et al., 2021

Green waste 5733 ± 850 to

6433 ± 751

0.05–5 Mostly PP, also PE, nitrile

rubber, PES

Lithuania Sholokhova et al., 2021

Green and

household

waste

20–24 >1 Mostly styrene-based

polymers (PS etc.) & PE,

also PES, PP, PET, PVC

Germany Weithmann et al., 2018

Food waste 3783 ± 351 to

4066 ± 658

0.05–5 Mostly PE & PS, also PET,

PP

Lithuania Sholokhova et al., 2021

Household

biowaste

32 ± 20b
>0.3b n/a Germany Braun et al., 2021

Rural domestic

waste

2400 ± 358 0.05–5 Mostly PES, PP & PE, also

PVC, PS, PE:PP, PU

China Gui et al., 2021

OFMW digestate 39–102 1–5 Mostly PE & PVC, also PET,

PS, PES, PUR, Other

Germany Schwinghammer et al., 2020

OFMW 2800 ± 616 0.03–2 PE, PP Netherlands van Schothorst et al., 2021

OFMW 10,000–30,000 >0.025 Mostly PE, also PS, PP, PES,

PVC, ACR

Spain Edo et al., 2022

Unknown 5.2–42.8 (15.4) Mila 0.005–1 n/a Austria Meixner et al., 2020

Digestate
OFMW 75–240b 1–5 Mostly PES and PVC, also

PP, PE, PET, PS, PA, EVA

Germany Schwinghammer et al., 2020

Commercial

biowaste

895 >1 n/a Germany Weithmann et al., 2018

Household

biowaste

70–146 >1 Mostly styrene-based

polymers (PS etc.), also

PES, PE, PP, PET, PVC,

PVDC, PA, PUR, latex,

and cellulose-based

polymers

Germany Weithmann et al., 2018

Food waste and

dairy manure

1670 >1 n/a USA O’Brien, 2019

Unknown 0.6–38.7 (7.1) Mila 0.005–1 n/a Austria Meixner et al., 2020

Food waste
Grocery store 300,000a n/a n/a USA Golwala et al., 2021

Pulped food

waste

1400 ± 150a 0.1–2 Mostly Mater-Bi®, also PP,

PE, PS, CE

Italy Ruggero et al., 2021

Homogenized

food waste

36 1–5 Mostly PE, also PP, PS Germany Schwinghammer et al., 2020

Abbreviations: OFMW, organic fraction municipal waste; ACR, acrylic polymers; CE, cellophane; PA, polyamide; EVA, ethylene vinyl acetate; PE, polyethylene;

PES, polyester; PET, polyethylene terephthalate; PLA, polylactic acid; PP, polypropylene; PS, polystyrene; PU/PUR, polyurethane; PVC, polyvinyl chloride; PVDC,

polyvinylidene chloride.
a Dry/as-is not reconciled.
b Estimated from figure.
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6 PORTERFIELD ET AL.

T A B L E 3 Plastic abundance in composts, digestates, and food wastes on a w/w basis

Feedstock Abundance (% w/w dry) Size (mm) Polymer types Location References
Compost
Green waste 0.00024–0.0065 >0.5 n/a Germany Bläsing & Amelung, 2018

Green waste 0.0048 ± 0.0089 to

0.065 ± 0.06b

>0.3b n/a Germany Braun et al., 2021

Green waste 0.82 ± 0.11 to 1 ± 0.51a
>1 PLA Netherlands Huerta-Lwanga et al., 2021

Green waste 0.0237 1–5 Mostly PP, also PE, nitrile

rubber, PES

Lithuania Sholokhova et al., 2021

Food waste 0.0845 1–5 Mostly PE & PS, also

PET, PP

Lithuania Sholokhova et al., 2021

Biowaste 0.018 >0.5 n/a Germany Bläsing & Amelung, 2018

Household biowaste 0.1358 ± 0.0596 >0.3b n/a Germany Braun et al., 2021

Organic waste 0.001–0.0102a All PET Germany Müller et al., 2020

OFMW digestate 0.005–0.05b 1–5 Mostly PE and PVC, also

PET, PS, PES, PUR,

Other

Germany Schwinghammer et al., 2020

Digestate
Kitchen and green waste 0.12 ± 0.12c

>6 n/a Switzerland Kawecki et al., 2020

Organic waste 0.0209–0.0776a All PET Germany Müller et al., 2020

Food waste + dairy

manure

0.25 >1 n/a USA O’Brien, 2019

OFMW 0.01–0.0350b 1–5 Mostly PES & PVC, also

PP, PE, PET, PS, PA,

EVA

Germany Schwinghammer et al., 2020

Food waste
Kitchen and green waste 0.5 ± 0.46c

>6 n/a Switzerland Kawecki et al., 2020

Homogenized food waste 0.025b 1–5 Mostly PE, also PP and

PS

Germany Schwinghammer et al., 2020

Household biowaste 3.0–5.6d
>2 n/a Austria do Carmo Precci Lopes et al., 2019

Household biowaste

(mechanically sorted)

0.04–2.9 >2 n/a Austria do Carmo Precci Lopes et al., 2019

Abbreviations: OFMW, organic fraction municipal waste; PA, polyamide; EVA, ethylene vinyl acetate; PE, polyethylene; PES, polyester; PET, polyethylene terephthalate;

PLA, polylactic acid; PP, polypropylene; PS, polystyrene; PUR, polyurethane; PVC, polyvinyl chloride.
a Dry/as-is not reconciled.
b Estimated from figure.
c as-is.
d Calculated by mass balance.

2021) to 82,800 ± 17,400 (Huerta-Lwanga et al., 2021) par-

ticles dry kg−1 green waste-derived composts and from 20

(Weithmann et al., 2018) to 30,000 (Edo et al., 2022) parti-

cles dry kg−1 of composts made with food waste, with one

study reporting 4.28 × 107 particles dry kg−1 of a compost

of unknown origin (Meixner et al., 2020). On a mass basis,

plastic abundance ranged from 0.00024% w/w (Bläsing &

Amelung, 2018) to 1 ± 0.5% w/w (Huerta-Lwanga et al.,

2021) in green waste-derived composts and from 0.001% w/w

(Müller et al., 2020) to 0.1358 ± 0.0596% w/w (Braun et al.,

2021) in composts made with food waste.

Plastic levels in digestates were comparable to those found

in composts in both magnitude and variability—also span-

ning seven orders of magnitude on a count per mass basis

(Table 2), and just two orders of magnitude on a w/w basis

(Table 3), albeit with fewer studies. Plastic counts typically

ranged between 70 and 1670 particles dry kg−1 in diges-

tates derived from commercial organic waste and codigested

manure and food waste, respectively (O’Brien, 2019; Weith-

mann et al., 2018), with one study reporting up to 3.87 × 107

particles dry kg−1 of a digestate of unknown origin (Meixner

et al., 2020). On a w/w basis, plastic estimates ranged from

0.01% w/w in digestate derived from the organic fraction of

municipal waste (Schwinghammer et al., 2020), to 0.25% w/w

in digestate derived from codigested dairy manure and food

waste (O’Brien, 2019).
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PORTERFIELD ET AL. 7

With a limited number of studies reporting microplastic

abundance in composts, digestates and food wastes, caution

should be taken when drawing any conclusions. Nonetheless,

we observed the following patterns: (1) estimated microplas-

tic abundance varies widely both within and between studies

of food wastes, composts, and digestates; (2) methods used to

quantify microplastics vary widely, and likely exert a strong

influence on abundance estimates (see Section 3). (3) The

overlapping ranges of microplastic abundance in food waste-

derived composts and digestates indicates that neither practice

necessarily produces contaminant-free soil amendments and

(4) the presence of microplastics in green-waste-derived com-

posts indicates that packaging from food waste is not the only

possible source of plastics in organic soil amendments.

3 MICROPLASTIC MEASUREMENT

To date, there are no standardized methods for measuring

microplastics in composts, digestates, and food waste. Meth-

ods for measuring microplastics in solid organic matrices

such as these typically involve a sequence of steps aimed

at isolating, identifying, and characterizing the microplas-

tics in each sample (Ruggero et al., 2020). Isolation methods

include flotation, elutriation, centrifugation, digestion (with

e.g., H2O2, Fenton’s reagent), and sieving (Junhao et al., 2021;

Ruggero et al., 2020). Identification methods include fluores-

cence microscopy, thermal degradation (e.g., TED–GC–MS,

PY–GC–MS), spectroscopy (e.g., Fourier transform infrared

spectroscopy (FTIR), Raman) and visual analysis (with or

without light microscopy) (Junhao et al., 2021; Ruggero et al.,

2020). It is common for multiple isolation and identifica-

tion methodologies to be combined in series (Ruggero et al.,

2020). Studies of microplastic abundance in food wastes,

composts, and digestates largely report values on a count

per weight basis (Table 2), with a smaller number of studies

reporting values on a weight per weight (w/w) basis (Table 3).

Only a third of studies reviewed report values in both units

(Braun et al., 2021; Huerta-Lwanga et al., 2021; O’Brien,

2019; Schwinghammer et al., 2020; Sholokhova et al., 2021).

Below, we summarize the most common methods used to

quantify microplastics in food waste, compost and digestate,

as well as some of the challenges that arise due to the lack of

standardized methods.

A limited number of studies have measured microplastic

abundance in food waste alone (Tables 2 and 3). In these

studies, microplastic isolation was achieved by organic matter

oxidation with 30–35% H2O2 (Ruggero et al., 2021; Schwing-

hammer et al., 2020), density separation with a saturated salt

solution (Golwala et al., 2021; Ruggero et al., 2021), and/or

wet sieving (do Carmo Precci Lopes et al., 2019; Kawecki

et al., 2020; Schwinghammer et al., 2020). Microplastics were

identified using fluorescence microscopy (Ruggero et al.,

2021), visual analysis (do Carmo Precci Lopes et al., 2019;

Golwala et al., 2021; Kawecki et al., 2020; Schwinghammer

et al., 2020), and/or FTIR (Golwala et al., 2021; Ruggero et al.,

2021; Schwinghammer et al., 2020).

More studies (albeit still a relatively small number) have

examined microplastics in food waste-derived composts or

digestates than in food waste itself (Tables 2 and 3). Among

studies reporting microplastic abundance on a count per

weight basis, isolation strategies included sieving (Edo et al.,

2022; O’Brien, 2019; Schwinghammer et al., 2020; Wei-

thmann et al., 2018), organic matter oxidation with 30%

H2O2 (Edo et al., 2022; Gui et al., 2021; Meixner et al.,

2020; Schwinghammer et al., 2020) or Fenton’s reagent

(Sholokhova et al., 2021), density separation with a satu-

rated salt solution (Braun et al., 2021; Edo et al., 2022;

Gui et al., 2021; Meixner et al., 2020; Sholokhova et al.,

2021), and centrifugation (van Schothorst et al., 2021). Light

microscopy was used in most cases to identify and count puta-

tive microplastics based on morphology, color, and response

to heat, resulting in values on a count per weight basis. Subse-

quently, FTIR was used to confirm and identify the polymer

type of some or all the putative microplastics (Edo et al., 2022;

Gui et al., 2021; Schwinghammer et al., 2020; Sholokhova

et al., 2021; van Schothorst et al., 2021; Weithmann et al.,

2018). Studies reporting microplastic abundance in composts

and digestates on a w/w basis employed more variable meth-

ods, including quantification of a single polymer type using

alkaline extraction followed by liquid chromatography with

UV detection (Müller et al., 2020), direct weighing of larger

size fractions (Bläsing & Amelung, 2018; Braun et al., 2021;

Kawecki et al., 2020; O’Brien, 2019; Schwinghammer et al.,

2020), and estimation based on polymer densities for smaller

size fractions (Braun et al., 2021).

There are several challenges associated with current

approaches to quantifying microplastics in the scientific lit-

erature. The most significant one is that two different units

are being used (count per weight and w/w), and there is

no consistent way to convert between them without know-

ing or assuming shape, size, and polymer type (Braun et al.,

2021; Leusch & Ziajahromi, 2021). This is problematic not

only because it prevents comparison between studies, but

also because microplastic ecotoxicity thresholds and regula-

tory limits are typically delineated on a w/w basis (Leusch

& Ziajahromi, 2021; USEPA, 2021a), while 44% of the stud-

ies we reviewed reported microplastic abundance in composts

and/or digestates exclusively on a count per weight basis

(Table 2). This results in a mismatch between science and pol-

icy whereby a large fraction of the existing body of knowledge

cannot effectively inform regulatory limits. This disconnect

makes it difficult to design studies that evaluate microplas-

tic ecotoxicity risk at real world concentrations, or in ways

that can contribute directly to existing policy. There is also

an inherent challenge in the use of count per weight units
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8 PORTERFIELD ET AL.

Standard methods 
for measuring
plastic content of food 
wastes, composts, 
digestates and soils, 
including standard:

i. Abundance on a 
w/w basis

ii. Upper and lower 
size limits 

iii. Size fraction 
delineation

iv. Polymer 
categorization

v. Soil depth
Plastic abundance in 

agricultural soils

Risk-based regulatory 
standards for plastic 

content in soil amendments

(a) (b)

Plastic abundance in 
food wastes, composts & 

digestates

Ecotoxicity thresholds and 
effects at real-world 

concentrations of plastics

Programs to minimize 
plastic contamination in 

food waste streams

Impact of upstream and 
downstream policy design 

on plastic content in 
composts and digestates

(c) 

Sources of plastics 
contamination in food 
wastes, composts & 

digestates

Regulatory standards 
for food packaging design

Clear management 
guidelines for different 

food waste streams

Plastic polymers in food 
wastes, composts & 

digestates

Plastic size fraction 
distribution in food wastes,

composts & digestates

Impact of separation 
strategy (e.g., human labor, 

mechanical) on plastic 
content

F I G U R E 3 Schematic illustrating a design process to harmonize food waste microplastics science and policy

caused by the propensity of plastics to fragment in the envi-

ronment (Ali et al., 2021). Given that a single macroplastic

can fragment into an indeterminate number of micro- or

nanoplastics, vastly different abundances could be concluded

from the same starting amount of plastic depending on the

degree of fragmentation undergone. Variation in microplastic

size fraction and other categorizations (e.g., shape, polymer

type, color etc.) complicates comparison among studies as

well. For example, while it is widely accepted that microplas-

tics are defined as particles <5 mm in size, there is far less

consensus on other size-based delineations (Gigault et al.,

2018). Macroplastics are sometimes defined as plastic parti-

cles >5 mm (L. Zhang et al., 2018), although other studies

further divide into meso- (5–25 mm) and macro- (>25 mm)

plastics (Braun et al., 2021; Golwala et al., 2021; Gui et al.,

2021). The term “nanoplastic” remains under debate as well

and has been used to refer to plastic particles less than 0.1,

1, or even 1000 μm throughout the literature (Gigault et al.,

2018; R. Qi et al., 2020). Most of the studies reviewed here

focused on microplastics >1 mm (Tables 2 and 3). However,

some studies reported lower bounds as small as 30 μm (van

Schothorst et al., 2021), while others report no lower limit of

detection at all (Table 2). On the opposite end of the spectrum,

some studies include or even exclusively measure macroplas-

tics (e.g., Kawecki et al., 2020). One final challenge is that the

most common methods used to isolate plastics from complex

organic matrices may not be appropriate for all polymer types.

High-density plastics (e.g., PVC, PET) may not be recovered

with density separation and flotation methods (M. Liu et al.,

2018), and organic matter oxidation with 30% H2O2 has been

shown to cause visual changes to PA, PP, PC, PET, and linear

LDPE (Nuelle et al., 2014). These methodological differences

likely exert a strong influence on total counts of microplastic

abundance and underscore the need to develop standardized

methods for measuring microplastics in composts, digestates,

and food wastes. This should include standard sampling, iso-

lation, and identification protocols as well as known lower

thresholds and efficiencies.

4 IMPLICATIONS FOR AGRICULTURE

Microplastics have been widely documented in agricultural

soils. Reported abundance values typically range from the

10s to 1000s of particles per dry kg of soil (Table S2).

Land application of contaminated organic amendments is

one of multiple potential pathways by which microplastics

may enter agricultural soils. Primary microplastics—those

that are intentionally engineered to be small (Golwala et al.,

2021)—are directly applied to agricultural soils in the form of

plastic-coated controlled-release fertilizers, treated seeds, and

capsule suspension plant protection products (ECHA, 2020;

Stubenrauch & Ekardt, 2020). Secondary microplastics—

which form from the breakdown of macroplastics—can be

unintentionally added to soils in the form of contaminated soil

amendments (e.g., biosolids, composts, digestates) or through

the breakdown of plastic mulching (Bläsing & Amelung,

2018; Corradini et al., 2021; F. Zhu et al., 2019). Plastic

mulching made with LDPE or biodegradable polymers is

often used in agriculture to boost crop yields, suppress weeds,

retain water and fumigants, and reduce fertilizer and herbicide

requirements (Brodhagen et al., 2017; Serrano-Ruiz et al.,

2021). However, plastic mulch can also fragment through time

and release microplastics into agricultural soils, and in some

cases is even tilled into soils intentionally at the end of the sea-

son (Brodhagen et al., 2017; Feng et al., 2021; Serrano-Ruiz

et al., 2021; B. Zhou et al., 2020). Other sources of sec-

ondary microplastics include irrigation water (B. Zhou et al.,
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PORTERFIELD ET AL. 9

2020), roads (Chen et al., 2020; Sommer et al., 2018), litter

(de Souza Machado et al., 2018a), and atmospheric deposi-

tion (Bianco & Passananti, 2020; Scheurer & Bigalke, 2018; J.

Zhang et al., 2020b). Not all potential sources will necessarily

influence microplastic abundance at a specific site (Corra-

dini et al., 2021; L. Yu et al., 2021). More research is needed

to understand the relative importance of different pathways

of microplastics introduction to agricultural soils, includ-

ing the use of soil amendments derived from food waste.

Effective mitigation will require knowledge of the magni-

tudes of existing microplastic inputs from all possible sources

and the use of reference soils (i.e., experimental controls) to

help delineate microplastic inputs from various sources (e.g.,

distinguish between microplastics introduced by soil amend-

ments versus atmospheric deposition) (Harms et al., 2021;

Kumar & Sheela, 2021).

Several recent reviews summarize documented effects of

microplastics on soil physical properties, biota and crops (e.g.,

Iqbal et al., 2020; Ng et al., 2018; R. Qi et al., 2020; J. Wang

et al., 2019; B. Xu et al., 2020; Y. Zhou et al., 2020; F. Zhu

et al., 2019). These authors largely conclude—as do we based

on our review—that the long-term impacts of microplastics

in agricultural soils are still poorly understood. A selection

of documented effects of plastics (macro-, micro-, and/or

nano-) in agricultural systems is summarized in Table S3.

Briefly, physical impacts include increased water repellence

and porosity, as well as decreased soil bulk density and aggre-

gate size (e.g., de Souza Machado et al., 2018b, 2019; Kim

et al., 2021; Y. Qi et al., 2020; see Table S3 for additional

references). Delayed or reduced seed germination, reductions

in plant growth, and uptake into plant tissues have been doc-

umented in multiple crop varieties (e.g., Boots et al., 2019;

Pflugmacher et al., 2020; Tympa et al., 2021; see Table S3

for additional references). Effects on soil microbes include

changes in biomass, species dominance, diversity, and rich-

ness (e.g., Blöcker et al., 2020; Fei et al., 2020; Ren et al.,

2020; see Table S3 for additional references). Oxidative stress,

abnormal gene expression, gut microbiota perturbation, and

movement inhibition have been observed in soil macrofauna

(e.g., Cheng et al., 2020; Kim & An, 2019; D. Zhu et al., 2018;

see Table S3 for additional references). Microplastic ingestion

and bioaccumulation has also been reported in some livestock

species (Beriot et al., 2021; Huerta Lwanga et al., 2017; J.

Yang et al., 2021). These impacts tend to vary by polymer

type, size and shape, soil characteristics, microplastic dose,

and exposure time (de Souza Machado et al., 2018b; Lozano

et al., 2021; Zhao et al., 2021). For instance, plant biomass

reductions were only observed for certain polymer types but

not others (de Souza Machado et al., 2019; Y. Qi et al., 2018;

F. Wang et al., 2020; M. Yang et al., 2021), at certain sizes

but not others (Z. Li et al., 2020; M. Yang et al., 2021), or

under certain soil pH conditions (Y. Liu et al., 2021). In one

study, for example, the dry biomass of spring onion (Allium

fistulosum) bulbs decreased with exposure to polyamide beads

when compared with an untreated control, but nearly dou-

bled with exposure to polyester fibers (de Souza Machado

et al., 2019). These effects may not be limited to conven-

tional petroleum-based microplastics either—there have been

reports of biodegradable plastics having ecotoxic effects in

soils as well (Boots et al., 2019; Iqbal et al., 2020; Y. Qi et al.,

2018; Serrano-Ruiz et al., 2021).

While several studies report potential negative effects of

microplastics in soil–plant systems, existing data are not

sufficient to fully evaluate the risks of microplastics in agri-

cultural soils (Gouin et al., 2019; USEPA, 2021a). The lack

of common units between many microplastic ecotoxicity and

abundance studies precludes evaluation of the environmental

relevance of the microplastic doses at which negative effects

are observed (Leusch & Ziajahromi, 2021). Connors et al.

(2017) suggest nine areas of improvement to advance the qual-

ity of environmental microplastic research, which we suggest

should be applied in the context of food waste-derived soil

amendments and agricultural soils:

1. Environmental relevance of test concen-

trations, 2. Provision of sufficient detail for

converting particle concentrations, 3. Thorough

characterization and/or description of test parti-

cles, 4. Detailed reporting of particle preparation

techniques and [stability], 5. Analytical verifica-

tion of test concentrations, 6. Consideration of

the environmental relevance of particle size, 7.

Inclusion of appropriate controls. . . 8. Consider-

ation of endpoint applicability to environmental

risk assessment framework. . . [and] 9. Reporting

findings accurately, without conjecture beyond

experimental limits.

(p. 1702)

Additional research is also needed to determine remedia-

tion options for soils that have already been contaminated with

microplastics.

5 HARMONIZING SCIENCE AND
POLICY

Prevailing scientific uncertainty creates a challenging con-

text for policy design related to microplastics and food waste

diversion efforts. Scientists continue to debate the risk posed

by microplastics generally and the best course of action for

risk management, with differing viewpoints (Backhaus &

Wagner, 2020; Burton, 2017; Coffin et al., 2021; Gouin

et al., 2019; Hale, 2018; Kramm et al., 2018). Most sci-

entists continue to frame microplastic risks as uncertain,

which stands in contrast to the prevailing media narrative that

 15372537, 0, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/jeq2.20450 by U

niversity O
f V

erm
ont, W

iley O
nline L

ibrary on [06/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 PORTERFIELD ET AL.

microplastics are emphatically harmful to humans and the

environment (Völker et al., 2020). Despite the lack of scien-

tific consensus on the risks posed by microplastics in soils

and the relative input from organic amendments, a growing

number of entities have imposed regulatory thresholds for

microplastics in composts and digestates (USEPA, 2021a).

Thirteen U.S. states (California, Iowa, Maryland, Minnesota,

Montana, New Hampshire, New York, North Carolina, Ohio,

Rhode Island, South Carolina, Washington, and Wisconsin)

have enacted regulatory limits on physical contaminants in

compost, and the state of California regulates physical con-

taminants in both composts and digestates (USEPA, 2021a).

Total physical contaminant limits (a category encompassing

glass, metal, and other human-made inert materials in addi-

tion to plastics) range from 0.5 to 6% w/w with most falling

in the 1–2% w/w range (USEPA, 2021a). Four of the thirteen

states (California, Maryland, Ohio, Washington) have addi-

tional limits specifically for plastics or film plastics ranging

from 0.1 to 2% w/w (USEPA, 2021a). Only five states specify

a lower size threshold for consideration—4 mm in all cases—

though testing requirements and detection limitations may

implicitly determine the size fractions measured (USEPA,

2021a).

Regulations tend to be more stringent outside the United

States, with limits largely falling between 0.25 and 0.5%

w/w for total physical contaminants and between 0.05 and

0.5% w/w for plastics or film plastics (USEPA, 2021a). Most

countries set the lower size threshold for consideration at

2 mm except for Germany, which regulates particles >1 mm

(USEPA, 2021a).

There are multiple limitations to the existing regulatory

approach to microplastic contamination in composts and

digestates. First, regulatory standards are in units of w/w,

while 44% of the studies we reviewed reported microplas-

tic abundance in composts and/or digestates exclusively on

a count per weight basis (Table 2). This results in a mis-

match between science and policy whereby a large fraction

of the existing body of knowledge cannot effectively inform

regulatory limits. Second, due to an incomplete understanding

of the risks posed by microplastics in soils under different con-

ditions (e.g., dosing rates, edaphic factors, polymer types, size

distributions etc.), allowable contamination levels and lower

particles size thresholds may instead be determined by aes-

thetic concerns and detection limits rather than known risk

(USEPA, 2021a). Third, regulating microplastics content in

finished products, without considering the fertilizer value of

the material or application rate, does not limit the ultimate

flow of microplastics to soils via organic amendments. For

example, under the current regulatory structure, it may be

permissible to land apply a large amount of microplastics in

a dilute form, but not a smaller amount of microplastics in

a more concentrated form. Finally, regulating contamination

levels in organic amendments alone may be insufficient to

fully mitigate the flow of microplastics into agricultural soils

given the existence of other entry points (see Section 4).

There are other examples of narrowly focused microplas-

tics policy that similarly do not address multiple pathways of

introduction to the environment. For example, current or pro-

posed policies in the United States, European Union, China,

and South Korea restrict the use of primary microplastics in

cosmetic products, but exclude other sources of microplas-

tics (e.g., plastic mulching, plastic packaging, tires) (Mitrano

& Wohlleben, 2020). There are, however, existing regula-

tions that could be applicable to microplastics and should

be considered in current discussions. Certain heavy met-

als in biosolids, for example, underwent rigorous toxicity

assessments to determine allowable contamination thresholds

grounded in scientific evidence (Lu et al., 2012). Currently,

the same is not true for microplastics in composts and

digestates; thus, current regulatory thresholds lack a scien-

tific basis, and the benefits of such regulations are largely

unknown. Given the persistence of microplastics, uncertain-

ties regarding toxicity, and the upward trend in both plastic

production and environmental detection, some have argued

for a more precautionary approach than the traditional reg-

ulatory paradigms for threshold contaminants (Coffin et al.,

2021). Depending on the degree of precaution taken, this

type of approach could create undesirable tradeoffs in the

context of present-day food waste diversion efforts. If, for

example, extremely strict limits for microplastic presence in

soil amendments are put in place as a precautionary mea-

sure, this could potentially lead to a return to landfilling most

food waste streams and subsequent methane emissions to the

atmosphere. Therefore, it is critical to consider counterfactual

scenarios: The net benefit of diverting food waste from land-

fills must be weighed against the potential cost of sending

additional microplastics to agricultural soils. Future studies

incorporating microplastics into life cycle analyses of food

waste management strategies could help to elucidate these

tradeoffs.

We propose the following path forward to better align

efforts to quantify microplastics in organic amendments,

understand their effects in soils, and establish related pol-

icy. First, standardized methods for measuring microplastics

in food wastes, composts, digestates, and soils must be

developed, ideally at the national or international level to

enable collaboration and data comparison (Figure 3a). We

recommend the development of methods that generate abun-

dance values on a w/w basis, given that these are the units

that are used in ecotoxicity studies and existing regulatory

structures (Leusch & Ziajahromi, 2021; USEPA, 2021a).

Using these standard methods, future studies should char-

acterize both the extent of microplastic contamination in

food wastes, composts, digestates, and soils as well as the

sources, impacts, and most effective strategies to mitigate

this contamination (Figure 3b). Third, if toxicity is well
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PORTERFIELD ET AL. 11

established, evidence- and risk-based regulatory measures

can be implemented to reduce microplastic contamination

from all sources (Figure 3c).

This will take time and precautionary steps in the interim

are, in our opinion, justified to help limit contamination.

For example, in Germany, a limit of 0.1% w/w has been

established for film plastics >1 mm in fertilizers (USEPA,

2021a). Based on the range of microplastic contamination

values available to date (Table 3), this would theoretically

eliminate land application of the most contaminated mate-

rials. Plastic contamination in food waste-derived composts

and digestates could also be reduced through innovations

in mechanical depackaging technology and improved source

separation. However, given the challenges of achieving per-

fect separation in both instances (Dai et al., 2016; do Carmo

Precci Lopes et al., 2019; Edwards et al., 2018; Friege &

Eger, 2021), the most transformative solutions may lie in

redesigning the way we package food in the first place.

Biodegradable plastics are a promising alternative to conven-

tional petroleum-based plastics because they can be broken

down by microbes into nontoxic compounds like carbon diox-

ide and water (Folino et al., 2020; Shaikh et al., 2021).

However, the current array of biodegradable plastics on the

market come with remaining challenges (Calabró & Grosso,

2018; European Commission, 2018; Haider et al., 2019;

Markowicz & Szymańska-Pulikowska, 2019; Serrano-Ruiz

et al., 2021). First, the terminology used to label these plas-

tics can be misleading. “Bioplastics” can be bio-based (made

from renewable carbon sources) or biodegradable (able to

be broken down by organisms) or both (Folino et al., 2020).

Therefore, not all bioplastics are bio-based or biodegradable

and some biodegradable plastics are actually petroleum-based

(Folino et al., 2020). Some biodegradable plastics also meet

ASTM criteria established for compostable materials, mean-

ing that they can be broken down within a similar timeframe

as natural materials (e.g., food scraps) under controlled com-

posting conditions (Brodhagen et al., 2017; Shaikh et al.,

2021). However even these standards allow for the persistence

of fragments <2 mm, therefore compostable microplastics

may still accumulate in soils over time (Brodhagen et al.,

2017). In fact, most biodegradable plastics (including com-

postable plastics) do not fully degrade under all field or

operational conditions they might be subject to (e.g., com-

post windrows, anaerobic digesters, and soils) (Brodhagen

et al., 2017; Calabró et al., 2020; Folino et al., 2020; Haider

et al., 2019; Huerta-Lwanga et al., 2021). Furthermore, com-

postable products are not all environmentally benign—some

are treated with per- and polyfluoroalkyl substances and can

have environmental footprints larger than those of noncom-

postable alternatives (Mistry et al., 2018). Finally, consumers

can mistake noncompostable plastic and plastic-coated food-

ware for compostable versions, increasing contamination in

some instances (Mistry et al., 2018). Clearly, this generation

of biodegradable and compostable plastics is not a panacea for

the issue of microplastics contamination in food waste (Folino

et al., 2020); however, advances in the field could enable a

more circular economy of resource use in the future.

Technological advances that improve separation of food

waste from packaging in conjunction with evidence-based

regulations on microplastics content in food waste-derived

composts and digestates could help to limit the flow of

microplastics to soils. Both upstream and downstream inter-

ventions such as these should be analyzed in future studies to

determine their effectiveness and the resultant benefits and

burdens for the environment. Ultimately, plastic packaging

that was developed within a linear economy is not designed

to function within a circular economy model. Advances in

green chemistry for packaging (Deng et al., 2021; Kramm

et al., 2018), stricter regulations of biodegradable and com-

postable plastics (Brodhagen et al., 2017) and elimination

of unnecessary packaging should all be pursued as part of

a comprehensive approach to reducing microplastic pollu-

tion, including that originating from food waste diversion

programs.

6 CONCLUSIONS

Microplastic abundance varies widely within and among stud-

ies of food wastes, composts, and digestates. There is some

evidence that microplastics may adversely affect soils and

plants; however, lack of common units between microplastic

ecotoxicity and abundance studies precludes rigorous assess-

ment. Existing regulations establish weight-based limits for

finished composts and digestates, which is incongruent with

many scientific studies that use count-based estimates of

microplastic abundance. Further work is necessary to elu-

cidate tradeoffs associated with diverting food waste from

landfills and to design policies that maximize the bene-

fits of recovering food waste while minimizing the risk of

microplastic pollution in soils.
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