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Abstract

Two Steiner triple systems (STS) are orthogonal if their sets of triples are disjoint,
and two disjoint pairs of points defining intersecting triples in one system fail to do so
in the other. In 1994, it was shown [2] that there exist a pair of orthogonal Steiner
triple systems of order v for all v ≡ 1, 3 (mod 6), with v ≥ 7, v 6= 9. In this paper we
show that there exist three pairwise orthogonal Steiner triple systems of order v for all
v ≡ 1 (mod 6), with v ≥ 19 and for all v ≡ 3 (mod 6), with v ≥ 27 with only 24 possible
exceptions.
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1 Introduction

A Steiner triple system (STS) of order v is a pair (V,B), where V is an v-set of elements
and B is a collection of 3-subsets (triples) of V such that every pair of elements in V is
contained in a unique triple of B. The necessary numerical condition is well-known [17] to
be v ≡ 1, 3 (mod 6).

Two STS, (V,B1) and (V,B2), are orthogonal if
(i) B1 ∩ B2 = ∅, and
(ii) for u, v, x, y distinct, {u, v, a}, {x, y, a} ∈ B1 and {u, v, w}, {x, y, z} ∈ B2 implies

w 6= z.

Orthogonal Steiner triple systems were first introduced by O’Shaughnessey [14] in 1968 as
a means to finding Room squares. After much work, the spectrum problem for orthogonal
STS was completely solved [2] in 1994. The interested reader will find a nice history of the
topic in that paper. The paper [10] gives a description of the algorithms used to find many
small orders. In [5] further direct constructions (both in finite fields and of a hill-climbing
nature) were given to find sets of three or more pairwise orthogonal STS(v) for v ≤ 500.
Earlier papers dealing with sets of more than two pairwise orthogonal Steiner triple systems
include [11] and [18].

If there exists a set of three pairwise orthogonal Steiner triple systems on v points we say
that there exists a 3OSTS(v) or that there exists 3OSTS(v). In this paper we will proceed
down a well followed path. We will first construct 3OSTS(v) for many “small” values of
v, then we will use Wilson fundamental construction-type recursion to get all of the large
orders. We will leave only a relatively small number of outstanding cases unsolved. We
begin by noting the values of v < 500 for which 3OSTS(v) are known to exist.

Theorem 1.1 (see [5]) There exists 3OSTS(v) for all v ≡ 1, 3 (mod 6), with 25 ≤ v ≤ 85.
Also, 3OSTS(v) exist for all v ∈ {19, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163,
169, 175, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 289, 307, 313, 331, 337, 343, 349, 361,367
373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499}

For completeness we give the following results about nonexistence of 3OSTS.

Theorem 1.2 There does not exist a 3OSTS(v) for v = 3, 7, 9 (see [12]), 13 or 15 (both
[8]).
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The main ingredient in the recursive construction used to find the spectrum of orthogonal
Steiner triple systems was a special type of group divisible design called an orthogonal
group divisible design, or OGDD. In this paper we extend these (basically from two to three
underlying block sets) to what we term 3OGDD. Here are the definitions.

A group divisible design (or GDD) is a triple (X,G,A) which satisfies three properties:

1. G is a partition of the point set X into subsets called groups;

2. A is a set of subsets of X (called blocks) such that a group and a block contain at
most one point in common; and

3. every pair of points from distinct groups occurs in a unique block.

If all the blocks of a GDD have the same size k it is called k−GDD. A transversal design,
TD(k, n) is a GDD with k groups each of size n and |b| = k for all blocks b ∈ A. In other
words, a transversal design is a group divisible design where all the groups have the same
size and each block intersects each group in exactly one point. In many places in this paper
we will be using the existence of TD(k, n). In most cases these transversal designs will exist
by the standard finite field construction which states that when n = q is a prime power,
there is a TD(k, n) for all k ≤ n + 1.

For the remainder of this paper we will assume that in every GDD, all blocks have size three
(except of course in the transversal design cases). Let (X,G,A1), (X,G,A2) and (X,G,A3)
be three 3-GDD’s on the same pointset X and with the same groups G. These three 3-
GDD’s are pairwise orthogonal, and are termed a 3OGDD, if the following orthogonality
conditions are satisfied:

1. if {x, y, z} ∈ Ai and {x, y, w} ∈ Aj , with i 6= j, then z and w are in different groups;

2. if {{a, b, c}, {a, d, e}} ⊂ Ai and if {{x, b, c}, {y, d, e}} ⊂ Aj , with i 6= j, then x 6= y.

Adopting the standard notation, we say that a 3OGDD has type (g1)u1 · · · (gs)us if the
3OGDD has ui groups of size gi for each 1 ≤ i ≤ s, and no other groups. Note that a
3OSTS(v) is therefore the same as a 3OGDD of type 1v.

As noted earlier, our main recursive construction will be Wilson’s Fundamental Construc-
tion, here applied to 3OGDD, in conjunction with a filling in the groups construction. We
state both of these theorems here and refer the reader to [16] or [2] for proofs of these results
in the case of two orthogonal triple systems (or two OGDD’s). The proofs for the 3OSTS
and 3OGDD’s are analogous. Note that we give several versions of the filling in the groups
construction.
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Theorem 1.3 (Wilson’s Fundamental Construction) Let (V,G,B) be a GDD (the master
GDD) with groups G1, G2, . . . Gt. Suppose there exists a (weight) function w : V → Z+∪{0}
(a weight function) which has the property that for each block B = {x1, x2, . . . xk} ∈ B there
exists a 3OGDD of type (w(x1), w(x2), . . . , w(xk)). Then there exists a 3OGDD of type

(
∑

x∈G1

w(x),
∑

x∈G2

w(x), · · · ,
∑

x∈Gt

w(x)).

Theorem 1.4 (Filling In Groups) a) If there is a 3OGDD of type ugvh and there exist a
3OSTS(u + 1) and a 3OSTS(v + 1), then there exists a 3OSTS(gu + hv + 1).

b) If there is a 3OGDD of type ugvh and there exist a 3OSTS(u) and a 3OSTS(v), then
there exists a 3OSTS(gu + hv).

c) If there is a 3OGDD of type ugv1 and there exist a 3OGDD of type 1u31 and a
3OSTS(v + 3), then there exists a 3OSTS(gu + v + 3).

In the next section we will give direct constructions for many 3OSTS and 3OGDD. In order
to check for orthogonality we note that every STS defines a third element function Θ :

(V
2

)
→

V given by Θ({u, v}) = w if and only if {u, v, w} is a triple. It follows from the definition
that two STS (V,B1) and (V,B2) with third element functions Θ1 and Θ2, respectively,
are orthogonal if and only if for each c ∈ V , the list (Θ2({u, v})|Θ1({u, v}) = c) consists
of distinct elements none of which equal c. This verification is called the orthogonality
certificate. A similar type of certificate exists for 3OGDD.

In Section 2 we discuss the direct constructions for the small 3OSTS and 3OGDD’s that
were necessary to find directly via computer algorithms. In Section 3 we study the spectrum
of 3OSTS(v) with v ≡ 1 (mod 6) and in Section 4 we will do the same for v ≡ 3 (mod 6).
We note here that most of the real work in this paper was in finding the small designs (both
3OSTS and 3OGDD) in Section 2. Once these were in place, the recursions kicked in and
the results in the subsequent sections followed in a relatively straightforward manner. We
must add that we were extremely pleased that in the v ≡ 1 (mod 6) case that we were able
to determine the spectrum completely with no exceptional cases.

2 Direct constructions

In this section, certain sets of three pairwise orthogonal STS and 3−GDD’s are presented
with a brief description of the various algebraic and computational methods used. The
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designs here will be used as ingredients in the recursive constructions that follow. We will
give a complete verification of orthogonality for only the smallest design found by a certain
method. The authors may be contacted for all other orthogonality certificates.

2.1 3OSTS

All of the direct constructions in this section use the hill-climbing method of search (see [9]
and [10]). However, all of these searches are far too difficult by just that method alone and
in every case it is necessary to use some possible automorphism of the purported design.
This is the art of this search.

For many orders, cyclic automorphisms may be exploited. We extend a method used in
Section 3.2 of [5] to some larger values here. A hill-climb is first used to construct a Steiner
triple system S in a additive cyclic group of order v subject to the condition that S is
orthogonal to its (elementwise) negative, −S. Such STS are called opposite orthogonal. An
easy check of opposite orthogonality is that the elements among the (v−1)/6 zero-sum base
triples are all distinct [15]. A second hill-climb then attempts to complete another cyclic
Steiner triple system T , the mate, which is orthogonal to both S and to −S. It should
be noted that when successful, this actually produces a subgraph isomorphic to K4 minus
an edge in the graph of orthogonality between all STS(n), namely S,−S, T,−T . Many
opposite orthogonal bases are often needed to be searched to find a mate. This method has
an advantage over a three-stage hill-climb because of the relatively quick construction of
opposite orthogonal STS.

Lemma 2.1 There exist 3OSTS of orders v = 187, 205, 253, 265, 295 and 319.

Proof. Below we give the (v − 1)/6 zero-sum triples which form the base blocks for S,
followed by (v − 1)/6 base triples for the mate T . Each full system is generated in the
additive group Zv. Orthogonality of S with −S can be seen by inspecting the first set of
base blocks for repetitions. The orthogonality certificate of T with S and −S is given for
the smallest order only as a list of elements (a, b) such that xya and xyb are blocks of S and
−S, respectively, over all triples of the form 0xy in the mate. Checking that no repetition
occurs among first coordinate entries or second coordinate entries establishes orthogonality
of T with both S and −S.

v = 187:
{4, 52, 131}, {28, 142, 17}, {120, 177, 77}, {97, 153, 124}, {9, 16, 162}, {133, 53, 1}, {94, 62, 31},
{55, 58, 74}, {40, 41, 106}, {63, 57, 67}, {81, 121, 172}, {127, 181, 66}, {49, 125, 13}, {54, 156, 164},
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{163, 22, 2}, {69, 155, 150}, {3, 91, 93}, {168, 26, 180}, {15, 65, 107}, {176, 60, 138}, {29, 47, 111},
{5, 103, 79}, {101, 8, 78}, {71, 92, 24}, {46, 104, 37}, {32, 160, 182}, {7, 21, 159}, {161, 186, 27},
{167, 84, 123}, {154, 51, 169}, {139, 109, 126};

{128, 75, 84}, {166, 5, 71}, {161, 143, 52}, {0, 39, 132}, {90, 148, 21}, {147, 117, 58}, {27, 141, 113},
{48, 16, 12}, {121, 75, 5}, {10, 48, 90}, {139, 74, 88}, {148, 168, 80}, {106, 155, 49}, {66, 45, 16},
{119, 43, 36}, {118, 166, 54}, {109, 132, 120}, {135, 83, 68}, {119, 29, 153}, {159, 44, 175},
{105, 146, 113}, {54, 57, 157}, {178, 183, 184}, {10, 154, 12}, {125, 165, 103}, {27, 109, 183},
{97, 121, 84}, {183, 173, 156}, {86, 165, 39}, {100, 81, 135}, {93, 68, 178}

CERTIFICATE: (14, 76), (157, 92), (16, 19), (27, 91), (24, 16), (141, 75), (118, 129), (134, 167),

(173, 27), (109, 62), (13, 41), (138, 11), (166, 10), (45, 144), (60, 136), (120, 135), (104, 54), (76, 72),

(61, 139), (154, 78), (90, 39), (145, 161), (108, 107), (160, 67), (164, 48), (8, 155), (96, 90), (175, 130),

(97, 94), (29, 36), (87, 171), (161, 105), (172, 52), (22, 117), (146, 120), (42, 114), (135, 44), (38, 181),

(92, 71), (110, 6), (63, 116), (169, 97), (70, 145), (32, 37), (158, 119), (159, 12), (57, 157), (4, 172),

(56, 165), (102, 50), (106, 82), (17, 51), (181, 43), (147, 122), (65, 66), (131, 83), (151, 65), (43, 45),

(112, 134), (117, 110), (183, 53), (44, 69), (26, 186), (46, 60), (115, 169), (103, 68), (71, 127), (5, 178),

(100, 80), (156, 177), (142, 133), (55, 85), (51, 154), (184, 88), (113, 158), (180, 58), (137, 42), (49, 95),

(152, 46), (133, 180), (126, 111), (3, 147), (39, 141), (23, 21), (7, 25), (129, 40), (186, 174), (107, 96),

(68, 5), (136, 149), (77, 170), (33, 102), (130, 49)

v = 205:
{118, 21, 66}, {102, 168, 140}, {13, 161, 31}, {12, 146, 47} {177, 138, 95}, {65, 176, 169}, {148, 182, 80},
{200, 136, 74}, {129, 62, 14} {181, 35, 194}, {185, 50, 175}, {183, 88, 139}, {134, 56, 15}, {198, 77, 135}
{113, 64, 28}, {30, 142, 33}, {191, 6, 8}, {29, 116, 60}, {125, 36, 44}, {104, 133, 173} {72, 76, 57},
{32, 9, 164}, {196, 17, 197}, {159, 153, 98}, {10, 143, 52}, {117, 149, 144} {63, 192, 155},
{106, 189, 115}, {202, 18, 190}, {53, 83, 69}, {180, 103, 127} {162, 151, 97}, {4, 109, 92}, {188, 141, 81};

{60, 15, 90}, {13, 199, 133}, {76, 198, 88}, {99, 177, 109}, {167, 27, 173} {101, 192, 7}, {113, 25, 203},
{159, 66, 115}, {102, 137, 153}, {76, 129, 6}, {105, 31, 38} {112, 141, 55}, {111, 8, 70}, {118, 55, 5},
{143, 134, 37}, {193, 97, 21}, {29, 57, 109} {162, 159, 161}, {7, 164, 43}, {117, 75, 93}, {47, 10, 81},
{79, 102, 41}, {130, 98, 90} {149, 203, 160}, {163, 63, 150}, {17, 42, 183}, {170, 201, 11}, {42, 98, 38}
{121, 100, 126}, {93, 71, 172}, {171, 73, 154}, {134, 189, 61}, {194, 78, 147}, {105, 119, 177}

v = 253:
{203, 175, 128}, {123, 237, 146}, {114, 151, 241}, {99, 47, 107}, {210, 149, 147}, {226, 111, 169},
{202, 168, 136}, {120, 224, 162}, {3, 102, 148}, {80, 64, 109}, {78, 156, 19}, {100, 57, 96}, {205, 2, 46},
{22, 42, 189}, {115, 8, 130}, {247, 89, 170}, {174, 90, 242}, {73, 190, 243}, {39, 110, 104},
{251, 71, 184}, {30, 172, 51}, {155, 158, 193}, {124, 69, 60}, {166, 92, 248}, {219, 35, 252},
{28, 211, 14}, {49, 62, 142}, {84, 173, 249}, {16, 103, 134}, {86, 186, 234}, {34, 106, 113}, {132, 40, 81},
{245, 244, 17}, {77, 94, 82}, {140, 116, 250}, {118, 167, 221}, {101, 61, 91}, {157, 37, 59}, {25, 176, 52},
{144, 229, 133}, {204, 223, 79}, {88, 218, 200};

{214, 130, 36}, {195, 135, 110}, {99, 202, 224}, {22, 98, 138}, {197, 65, 32}, {201, 245, 44},
{111, 234, 43}, {210, 28, 106}, {72, 71, 108}, {7, 218, 62}, {213, 156, 203}, {159, 90, 164},
{171, 185, 206}, {68, 29, 251}, {206, 80, 152}, {64, 14, 251}, {72, 153, 201}, {245, 53, 10}, {61, 37, 10},
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{174, 68, 178}, {7, 20, 178}, {109, 29, 26}, {239, 50, 186}, {240, 248, 54}, {136, 143, 234},
{139, 30, 204}, {84, 142, 11}, {199, 60, 106}, {125, 127, 157}, {34, 197, 46}, {11, 177, 100},
{212, 171, 197}, {219, 213, 202}, {131, 32, 140}, {202, 101, 146}, {91, 110, 5}, {77, 195, 223},
{198, 221, 87}, {58, 248, 24}, {64, 225, 176}, {171, 209, 56}, {191, 71, 211}

v = 265:
{209, 102, 219}, {48, 243, 239}, {131, 115, 19}, {98, 175, 257}, {177, 163, 190}, {140, 111, 14},
{27, 38, 200}, {185, 251, 94}, {52, 223, 255}, {146, 170, 214}, {210, 61, 259}, {143, 78, 44},
{213, 99, 218}, {191, 113, 226}, {129, 93, 43}, {208, 236, 86}, {199, 184, 147}, {144, 97, 24},
{92, 164, 9}, {138, 116, 11}, {127, 37, 101}, {35, 95, 135}, {194, 217, 119}, {125, 171, 234},
{36, 232, 262}, {15, 242, 8}, {26, 155, 84}, {186, 166, 178}, {13, 55, 197}, {205, 253, 72},
{244, 183, 103}, {139, 122, 4}, {28, 250, 252}, {136, 264, 130}, {231, 87, 212}, {5, 23, 237},
{261, 216, 53}, {89, 174, 2}, {206, 29, 30}, {167, 142, 221}, {215, 156, 159}, {117, 22, 126},
{69, 16, 180}, {56, 132, 77};

{67, 34, 264}, {189, 63, 215}, {254, 230, 170}, {126, 119, 251}, {117, 169, 159}, {183, 54, 140},
{162, 25, 146}, {14, 118, 163}, {180, 125, 3}, {127, 141, 216}, {27, 185, 221}, {261, 107, 166},
{17, 251, 80}, {1, 197, 47}, {2, 81, 59}, {182, 19, 92}, {258, 262, 239}, {49, 17, 238}, {114, 115, 77},
{64, 10, 224}, {38, 56, 263}, {179, 102, 200}, {64, 126, 191}, {188, 244, 64}, {73, 65, 90},
{185, 198, 213}, {151, 156, 217}, {130, 208, 60}, {41, 94, 197}, {150, 53, 3}, {156, 65, 76}, {91, 24, 260},
{183, 32, 163}, {156, 197, 55}, {40, 175, 256}, {7, 200, 153}, {14, 196, 96}, {212, 39, 138}, {159, 51, 49},
{26, 146, 53}, {72, 231, 225}, {66, 63, 75}, {103, 69, 39}, {140, 53, 101}

v = 295:
{158, 206, 226}, {262, 261, 67}, {216, 72, 7}, {62, 132, 101}, {73, 33, 189}, {120, 152, 23},
{109, 56, 130}, {172, 105, 18}, {93, 276, 221}, {293, 249, 48}, {282, 3, 10}, {134, 17, 144}, {5, 288, 2},
{183, 12, 100}, {202, 175, 213}, {70, 292, 228}, {260, 266, 64}, {245, 98, 247}, {176, 268, 146},
{236, 270, 84}, {116, 239, 235}, {153, 38, 104}, {79, 53, 163}, {248, 16, 31}, {199, 274, 117},
{69, 149, 77}, {133, 147, 15}, {86, 182, 27}, {190, 227, 173}, {29, 255, 11}, {60, 251, 279}, {78, 185, 32},
{55, 220, 20}, {25, 114, 156}, {151, 241, 198}, {234, 37, 24}, {197, 257, 136}, {4, 242, 49},
{165, 140, 285}, {99, 210, 281}, {87, 212, 291}, {75, 42, 178}, {294, 21, 275}, {82, 26, 187},
{43, 157, 95}, {90, 196, 9}, {265, 96, 229}, {208, 203, 179}, {92, 169, 34};

{244, 208, 234}, {179, 90, 132}, {289, 84, 248}, {255, 21, 94}, {105, 86, 261}, {106, 164, 229},
{97, 37, 251}, {120, 12, 230}, {201, 126, 34}, {249, 61, 186}, {213, 284, 160}, {86, 276, 98},
{14, 198, 80}, {281, 292, 258}, {18, 230, 210}, {187, 174, 205}, {201, 39, 72}, {47, 187, 55},
{98, 198, 241}, {212, 115, 59}, {278, 92, 143}, {248, 180, 239}, {174, 203, 53}, {192, 12, 293},
{13, 209, 20}, {234, 240, 194}, {19, 219, 276}, {117, 266, 33}, {70, 75, 168}, {54, 81, 219},
{207, 277, 279}, {119, 87, 37}, {31, 119, 210}, {83, 162, 66}, {56, 170, 214}, {138, 89, 163},
{171, 23, 290}, {263, 285, 5}, {2, 50, 5}, {122, 200, 106}, {125, 177, 212}, {184, 15, 188}, {71, 72, 157},
{76, 188, 37}, {127, 254, 23}, {164, 140, 194}, {286, 93, 206}, {191, 170, 115}, {173, 240, 14}

n = 319:
{7, 285, 27}, {200, 264, 174}, {19, 213, 87}, {39, 240, 40}, {270, 127, 241}, {38, 276, 5}, {95, 245, 298},
{220, 269, 149}, {244, 217, 177}, {296, 313, 29}, {119, 218, 301}, {317, 113, 208}, {66, 121, 132},
{192, 242, 204}, {93, 193, 33}, {126, 30, 163}, {196, 107, 16}, {246, 302, 90}, {237, 222, 179},
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{183, 54, 82}, {166, 135, 18}, {61, 318, 259}, {76, 120, 123}, {148, 236, 254}, {36, 20, 263},
{99, 223, 316}, {257, 308, 73}, {249, 272, 117}, {11, 252, 56}, {314, 293, 31}, {176, 182, 280},
{275, 69, 294}, {98, 12, 209}, {198, 64, 57}, {191, 24, 104}, {100, 114, 105}, {3, 160, 156},
{89, 268, 281}, {49, 260, 10}, {118, 195, 6}, {171, 1, 147}, {136, 287, 215}, {63, 235, 21},
{168, 312, 158}, {170, 9, 140}, {211, 141, 286}, {203, 129, 306}, {307, 70, 261}, {153, 15, 151},
{53, 116, 150}, {216, 238, 184}, {300, 292, 46}, {65, 299, 274};

{63, 222, 221}, {132, 317, 108}, {291, 158, 224}, {30, 166, 136}, {317, 187, 295}, {72, 194, 251},
{107, 115, 73}, {126, 144, 221}, {103, 195, 67}, {92, 153, 265}, {256, 240, 315}, {245, 205, 248},
{1, 143, 163}, {175, 200, 85}, {44, 32, 100}, {124, 305, 72}, {308, 192, 190}, {14, 53, 202},
{89, 186, 234}, {134, 178, 52}, {152, 316, 179}, {249, 10, 318}, {84, 47, 34}, {15, 281, 114},
{229, 142, 262}, {28, 242, 300}, {155, 38, 210}, {259, 308, 304}, {160, 69, 261}, {264, 315, 58},
{52, 26, 21}, {86, 3, 146}, {65, 163, 234}, {238, 303, 138}, {292, 84, 61}, {144, 251, 158}, {15, 249, 34},
{121, 224, 256}, {16, 314, 139}, {98, 19, 113}, {30, 183, 59}, {77, 161, 36}, {300, 132, 54}, {11, 4, 85},
{173, 97, 211}, {159, 27, 205}, {197, 26, 206}, {285, 221, 215}, {63, 0, 28}, {197, 76, 293},
{154, 283, 273}, {269, 113, 4}, {41, 271, 24} 2

Lemma 2.2 There exist 3OSTS of orders v = 217, 247, 259 and 301.

Proof. These constructions use the same idea as in the previous lemma, but computation
is aided by the use of a multiplier ζ of order three in Z∗

n. Each system is generated with
multiplication by {1, ζ, ζ2} in addition to cyclic automorphism. So d(v − 1)/18e zero-sum
triples are given for both the opposite orthogonal basis and mate. Note up to two triples
may be fixed under ζ, and these are given at the end of each list.

v = 217, ζ = 67:
{204, 179, 51}, {184, 135, 115}, {185, 154, 95}, {175, 172, 87}, {94, 79, 44}, {195, 174, 65},
{133, 66, 18}, {150, 144, 140}, {199, 159, 76}, {116, 99, 2}, {145, 71, 1}, {117, 61, 39};

{99, 79, 39}, {196, 161, 77}, {132, 44, 41}, {87, 69, 61}, {214, 143, 77}, {133, 74, 10},
{96, 86, 35}, {211, 184, 39}, {164, 136, 134}, {186, 147, 101}, {122, 48, 47}, {142, 53, 22}

v = 247, ζ = 87:
{97, 81, 69}, {216, 171, 107}, {198, 169, 127}, {148, 93, 6}, {211, 200, 83}, {197, 180, 117},
{236, 147, 111}, {157, 76, 14}, {156, 87, 4}, {135, 89, 23}, {115, 82, 50}, {178, 163, 153},
{239, 137, 118}, {120, 66, 61}, {226, 149, 119};

{120, 67, 60}, {239, 235, 20}, {190, 187, 117}, {106, 76, 65}, {165, 61, 21}, {141, 91, 15},
{213, 205, 76}, {246, 151, 97}, {194, 178, 122}, {234, 142, 118}, {233, 155, 106}, {118, 76, 53},
{159, 53, 35}, {123, 80, 44}, {112, 111, 24}

v = 259, ζ = 121:
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{232, 146, 140}, {151, 107, 1}, {240, 158, 120}, {136, 68, 55}, {204, 35, 20}, {198, 49, 12},
{229, 194, 95}, {205, 171, 142}, {183, 69, 7}, {242, 239, 37}, {258, 189, 71}, {127, 84, 48},
{195, 58, 6}, {196, 168, 154}, {237, 187, 94};

{252, 243, 23}, {224, 182, 112}, {137, 64, 58}, {210, 178, 130}, {214, 43, 2}, {241, 206, 71},
{190, 36, 33}, {219, 214, 85}, {163, 49, 47}, {245, 229, 44}, {191, 64, 4}, {245, 244, 29},
{248, 227, 43}, {256, 157, 105}, {225, 30, 4}

n = 301, ζ = 135:
{267, 238, 97}, {130, 117, 54}, {276, 240, 86}, {220, 70, 11}, {116, 101, 84}, {197, 76, 28},
{284, 231, 87}, {285, 279, 38}, {201, 82, 18}, {297, 173, 132}, {137, 127, 37}, {165, 94, 42},
{209, 75, 17}, {158, 138, 5}, {153, 80, 68}, {273, 266, 63}, {121, 99, 81}, {258, 215, 129};

{298, 202, 102}, {166, 125, 10}, {160, 135, 6}, {151, 79, 71}, {252, 250, 100}, {287, 226, 89},
{292, 210, 100}, {163, 128, 10}, {292, 207, 103}, {229, 63, 9}, {200, 60, 41}, {278, 273, 51},
{108, 101, 92}, {300, 276, 26}, {179, 81, 41}, {163, 98, 40}, {274, 268, 60}, {260, 184, 158} 2

We now turn to the direct construction of 3OSTS of orders v ≡ 3 (mod 6). A common theme
will be exploiting cube roots of unity with various automorphisms. An STS(2m+1) with an
automorphism consisting of two cycles of length m and a fixed point is called 2-rotational.
The STS is determined completely by (2m + 1)/3 base blocks. More concretely, we use
the set of points V = Zm × {0, 1} ∪ {∞}, with generating automorphism xi 7→ (x + 1)i,
∞ 7→ ∞. The examples in the following lemma are found by choosing ω of order three in
Z∗

m and hill-climbing to a set of base blocks so that the resulting design (V,B) is orthogonal
to (V, ωB), implying that (V,B), (V, ωB) and (V, ω2B) are 3OSTS.

Lemma 2.3 There exist 3OSTS of order v = 87, 99, 123, 135, and 159.

Proof. The cube roots and base triples are given below. The orthogonality certificate is
described by giving third elements c occurring in ωB with all pairs xy that occur in B with
00, and with 01. Orthogonality is satisfied when these two lists consist of distinct elements
not equal to 00 or 01, respectively. The block {∞, 00, 01} must also be avoided.

v = 87, m = 43, ω = 6:
{01, 210, 250}, {01, 280, 410}, {41, 51, 341}, {01, 50, 400}, {00, 11, 271}, {01, 130, 180},
{21, 81, 331}, {00, 81, 291}, {01, 90, 230}, {01, 240, 360}, {191, 291, 381}, {01, 40, 190},
{00, 171, 331}, {81, 161, 191}, {01, 300, 320}, {00, 41, 321}, {00, 401, 421}, {00, 161, 231},
{00, 61, 261}, {170, 330, 360}, {00, 371, 411}, {00, 311, 361}, {01, 310, 380}, {01, 80, 290},
{10, 180, 240}, {01, 150, 330}, {70, 390, 400}, {01, 00, 340}, {∞, 00, 211}

CERTIFICATE:
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(00) 90, 150, 181, 260, 160, 50, 121, 421, 390, 151, 381, 310, 01, 350, 351, 70, 270, 130, 360, 211,
341, 371, 311, 141, 61, 330, 170, 111, 91, 10, 221, 340, 400, 320, 140, 271, 110, 191, 290, 101, 11,
410, 240

(01) 401, 61, 231, 280, 40, 91, 351, 301, 311, 261, 00, 201, 340, 10, 81, 161, 260, 20, 80, 290, 321,

310, 60, 181, 381, 211, 370, 30, 170, 430, 150, 31, 101, 71, 90, 271, 391, 141, 220, 251, 50, 70, 191

v = 99, m = 49, ω = 18:
{01, 120, 150}, {01, 380, 460}, {00, 11, 121}, {110, 430, 440}, {01, 70, 170}, {50, 100, 340},
{61, 71, 361}, {00, 71, 471}, {01, 300, 440}, {00, 231, 301}, {01, 230, 360}, {01, 210, 390},
{01, 00, 90}, {00, 151, 211}, {51, 131, 311}, {50, 160, 280}, {01, 180, 400}, {01, 250, 290},
{00, 41, 161}, {00, 81, 221}, {00, 411, 431}, {31, 71, 391}, {01, 40, 100}, {00, 21, 351},
{01, 10, 160}, {01, 50, 350}, {01, 130, 200}, {81, 181, 231}, {00, 171, 381}, {01, 220, 240},
{171, 391, 421}, {01, 30, 310}, {∞, 00, 61}

v = 123, m = 61, ω = 47:
{61, 201, 351}, {00, 61, 421}, {01, 00, 130}, {00, 51, 181}, {01, 370, 470}, {00, 261, 321},
{01, 110, 140}, {220, 480, 520}, {01, 320, 460}, {131, 531, 561}, {00, 111, 331}, {01, 180, 240},
{00, 441, 561}, {00, 411, 601}, {00, 271, 551}, {61, 231, 321}, {01, 230, 450}, {00, 211, 591},
{00, 201, 251}, {160, 490, 570}, {01, 120, 310}, {01, 440, 590}, {01, 300, 420}, {00, 131, 541},
{110, 160, 340}, {01, 330, 570}, {01, 160, 270}, {61, 561, 601}, {01, 40, 250}, {00, 511, 531},
{71, 231, 311}, {00, 101, 401}, {01, 90, 380}, {50, 60, 500}, {00, 81, 91}, {00, 121, 461},
{01, 260, 600}, {00, 71, 581}, {370, 390, 460}, {01, 220, 580}, {∞, 00, 221}

v = 135, m = 67, ω = 37:
{71, 171, 431}, {01, 180, 660}, {01, 250, 450}, {00, 71, 551}, {00, 251, 391}, {00, 111, 571},
{01, 90, 400}, {121, 231, 321}, {00, 01, 131}, {00, 171, 331}, {211, 481, 651}, {00, 341, 371},
{161, 531, 651}, {01, 530, 550}, {01, 360, 410}, {01, 40, 490}, {01, 50, 160}, {00, 451, 501},
{01, 110, 350}, {40, 180, 450}, {240, 490, 610}, {00, 291, 541}, {00, 401, 411}, {01, 20, 480},
{01, 60, 630}, {171, 551, 621}, {01, 10, 520}, {00, 281, 521}, {01, 210, 240}, {330, 390, 620},
{30, 70, 570}, {00, 31, 361}, {00, 81, 161}, {00, 61, 381}, {00, 211, 231}, {01, 370, 650},
{00, 471, 531}, {00, 91, 481}, {370, 450, 520}, {230, 550, 560}, {01, 80, 570}, {00, 601, 641},
{01, 230, 320}, {00, 51, 201}, {∞, 00, 241}

v = 159, m = 79, ω = 23:
{231, 251, 311}, {00, 241, 471}, {160, 220, 410}, {01, 280, 730}, {01, 110, 430}, {01, 700, 720},
{00, 631, 781}, {70, 170, 550}, {01, 00, 120}, {00, 271, 711}, {01, 170, 690}, {00, 601, 721},
{00, 41, 331}, {351, 491, 741}, {00, 551, 771}, {01, 480, 770}, {00, 31, 161}, {00, 131, 591},
{00, 421, 701}, {00, 121, 321}, {430, 500, 650}, {380, 580, 620}, {00, 231, 301}, {00, 201, 561},
{00, 441, 761}, {01, 530, 610}, {01, 290, 650}, {01, 340, 450}, {01, 140, 540}, {00, 211, 481},
{00, 111, 521}, {01, 410, 440}, {00, 171, 661}, {00, 401, 641}, {00, 51, 221}, {00, 391, 491},
{300, 560, 720}, {00, 531, 541}, {00, 431, 611}, {411, 571, 601}, {00, 11, 461}, {00, 371, 411},
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{120, 250, 420}, {191, 671, 721}, {00, 191, 281}, {50, 230, 510}, {00, 151, 571}, {00, 581, 691},
{450, 540, 590}, {00, 81, 291}, {01, 40, 50}, {310, 520, 750}, {∞, 00, 731} 2

The next construction also constructs 2-rotational 3OSTS. However in this case it is assumed
that there are 19 infinite points (instead of one). So in these cases v = 2m + 19. None of
these infinite points occur together in any blocks of the difference set so when the blocks
below are developed via the group, there is a hole of size 19. This can then be filled in with
the 3OSTS(19) on the infinite points {∞1,∞2, . . . ,∞19}

Lemma 2.4 There exist 3OSTS of order v = 141 and 153.

Proof. The set D of mixed differences occurring with the fixed points was chosen before
the hill-climb. Powers of a generator were chosen in D to ensure that D, ωD, and ω2D
are pairwise disjoint, which will hold for m > 3 · 19. Note that the 19 blocks containing
the infinite points are given at the end of each list. In both cases these 19 blocks are:
{∞j , 00, (2j)1} for 0 ≤ j < 19.

m = 61, ω = 13, 19 fixed points:
{91, 131, 391}, {00, 51, 501}, {01, 350, 460}, {351, 401, 471}, {01, 00, 100}, {01, 80, 420},
{271, 361, 591}, {01, 90, 210}, {10, 60, 540}, {120, 540, 560}, {01, 120, 320}, {110, 540, 570},
{00, 211, 421}, {01, 150, 310}, {121, 511, 591}, {41, 71, 501}, {00, 331, 431}, {00, 101, 381},
{40, 280, 290}, {00, 541, 601}, {00, 391, 581}, {01, 20, 240}, {70, 140, 400}, {00, 561, 571},
{00, 281, 411}, {01, 140, 540}, {11, 181, 421}, {01, 60, 360}, {01, 410, 470}, {01, 440, 480},
{270, 360, 590}, {311, 331, 581}, {00, 231, 341}, {01, 160, 300}, {∞j , 00, (2j)1} for 0 ≤ j < 19

m = 67, ω = 29, 19 fixed points:
{290, 440, 610}, {00, 241, 471}, {281, 431, 631}, {01, 340, 420}, {01, 140, 410}, {01, 440, 600},
{20, 50, 600}, {121, 141, 411}, {01, 360, 400}, {00, 481, 571}, {141, 561, 641}, {00, 121, 601},
{00, 301, 521}, {00, 341, 451}, {381, 451, 511}, {00, 371, 491}, {60, 190, 420}, {370, 380, 590},
{00, 221, 461}, {01, 10, 380}, {01, 160, 640}, {00, 421, 581}, {01, 00, 50}, {321, 421, 601},
{71, 121, 481}, {431, 441, 471}, {00, 281, 651}, {01, 130, 540}, {01, 260, 280}, {00, 61, 591},
{350, 460, 530}, {00, 171, 631}, {01, 170, 460}, {01, 110, 530}, {00, 111, 441}, {320, 460, 560},
{01, 320, 520}, {240, 520, 580}, {∞j , 00, (2j)1} for 0 ≤ j < 19 2

An STS(3m) with an automorphism consisting of three cycles of length m is called 3-cyclic.
Such a system is determined completely by (3m − 1)/2 base triples. A computational
construction for three mutually orthogonal 3-cyclic STS is given in Section 3.1 of [5]. The
pointset Zm ×Z3, was used with generating automorphism xi 7→ (x + 1)i. Here, subscripts
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represent the second coordinate in the product. Define the map on orbits α : xi 7→ xi+1.
A hill-climb was used to construct a set of base triples, which when developed form a set
B of blocks such that B, αB and α2B are orthogonal in pairs. Larger m than could be
handled in [5] are handled here using a multiplier ζ of order three in Zm. The non-abelian
automorphism group generated by xi 7→ (x+1)i and xi 7→ (ζx)i+1 is used in the next lemma.
As expected, this cuts computation time roughly to one-third of that for the algorithm in
[5].

Lemma 2.5 There exist 3OSTS of order 3m for m = 31, 37, 39, 43, 49, 57, 61, 65, 67,
73, 79, i.e. there exist 3OSTS of order v = 93, 111, 117, 129, 147, 171, 183, 195, 201, 219, 237.

Proof. We give (m−1)/2 base triples for one STS(3m). In addition to the base triples given,
the additional base triple {10, ζ1, ζ

2
2} (generating a short orbit) must be included in each

case. The indicated multiplier of order three in Zm is used in the non-abelian automorphism
group described above to get a full set of blocks B. As before, the three pairwise orthogonal
systems are generated by the map α. The orthogonality certificate amounts to a single list
of third elements c occurring in αB with all pairs xy that occur in B with 00.

m = 31, ζ = 5:
{02, 51, 101}, {00, 111, 112}, {01, 50, 70}, {02, 81, 121}, {00, 61, 282}, {02, 10, 280}, {01, 82, 172},
{71, 261, 291}, {02, 50, 80}, {00, 31, 102}, {00, 181, 191}, {00, 11, 172}, {141, 211, 271},
{01, 32, 112}, {02, 191, 211}

CERTIFICATE: (00) 122, 110, 180, 51, 240, 150, 232, 171, 162, 241, 231, 252, 161, 192, 202,
01, 10, 170, 262, 111, 11, 92, 102, 61, 141, 120, 151, 260, 191, 30, 132, 201, 172, 242, 222, 62,
182, 90, 71, 91, 261, 40, 80, 300, 52, 220

m = 37, ζ = 10:
{00, 241, 102}, {02, 161, 291}, {02, 101, 121}, {00, 162, 222}, {00, 02, 242}, {00, 71, 362},
{00, 301, 232}, {00, 81, 261}, {01, 22, 122}, {00, 221, 311}, {00, 351, 112}, {00, 22, 132},
{90, 130, 150}, {00, 271, 331}, {01, 50, 250}, {00, 42, 322}, {232, 242, 272}, {02, 20, 300}

m = 39, ζ = 16:
{00, 11, 211}, {22, 92, 302}, {00, 31, 202}, {00, 61, 92}, {02, 51, 341}, {01, 250, 370},
{00, 101, 171}, {02, 30, 70}, {01, 02, 332}, {01, 10, 340}, {02, 80, 110}, {00, 331, 132},
{00, 181, 191}, {00, 131, 352}, {01, 20, 100}, {171, 291, 331}, {01, 112, 122}, {00, 272, 292},
{02, 160, 290}

m = 43, ζ = 6:
{01, 10, 400}, {02, 270, 420}, {02, 120, 340}, {02, 51, 301}, {02, 191, 261}, {02, 81, 391},
{00, 182, 232}, {00, 02, 122}, {00, 191, 251}, {00, 91, 152}, {00, 71, 401}, {62, 392, 412},
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{02, 50, 290}, {02, 100, 300}, {01, 142, 272}, {00, 161, 172}, {00, 61, 281}, {00, 181, 411},
{01, 92, 152}, {01, 210, 310}, {02, 91, 201}

m = 49, ζ = 18:
{211, 301, 471}, {00, 201, 221}, {01, 260, 480}, {00, 142, 162}, {32, 42, 422}, {02, 150, 290},
{00, 41, 232}, {01, 242, 422}, {00, 461, 462}, {00, 352, 382}, {00, 161, 441}, {00, 181, 212},
{181, 331, 471}, {00, 72, 472}, {00, 82, 122}, {00, 241, 402}, {02, 21, 181}, {00, 121, 22},
{02, 431, 481}, {01, 390, 400}, {00, 371, 471}, {01, 40, 210}, {00, 401, 182}, {02, 360, 440}

m = 57, ζ = 7:
{01, 40, 300}, {00, 91, 121}, {00, 211, 512}, {180, 450, 530}, {00, 511, 402}, {00, 161, 401},
{00, 481, 172}, {00, 41, 351}, {00, 181, 342}, {60, 520, 560}, {00, 31, 562}, {80, 240, 250},
{00, 261, 362}, {00, 361, 112}, {00, 111, 132}, {00, 171, 552}, {300, 360, 480}, {80, 520, 550},
{00, 221, 102}, {00, 131, 561}, {00, 281, 412}, {01, 30, 80}, {10, 150, 430}, {01, 110, 490},
{00, 241, 301}, {01, 320, 550}, {00, 151, 191}, {00, 11, 12}

m = 61, ζ = 13:
{00, 572, 592}, {01, 192, 532}, {01, 352, 412}, {02, 290, 340}, {00, 82, 302}, {01, 112, 462},
{00, 431, 491}, {01, 92, 382}, {02, 300, 540}, {02, 500, 590}, {00, 202, 382}, {01, 390, 550},
{00, 541, 542}, {00, 231, 381}, {190, 200, 220}, {00, 42, 282}, {00, 71, 441}, {00, 81, 501},
{72, 222, 322}, {00, 161, 481}, {02, 131, 141}, {01, 290, 580}, {00, 141, 342}, {02, 220, 350},
{00, 211, 411}, {01, 80, 140}, {00, 41, 192}, {02, 430, 470}, {00, 331, 362}, {01, 42, 572}

m = 65, ζ = 16:
{00, 101, 362}, {50, 90, 510}, {00, 291, 132}, {01, 00, 490}, {01, 180, 420}, {01, 320, 600},
{290, 420, 590}, {00, 391, 501}, {00, 631, 172}, {00, 551, 562}, {01, 300, 400}, {00, 561, 42},
{00, 371, 282}, {00, 201, 581}, {00, 61, 341}, {01, 240, 630}, {00, 221, 271}, {00, 171, 452},
{01, 340, 370}, {01, 80, 440}, {00, 321, 461}, {00, 31, 491}, {00, 111, 441}, {00, 81, 302},
{10, 130, 510}, {00, 121, 481}, {01, 270, 610}, {180, 230, 240}, {00, 301, 92}, {00, 591, 532},
{60, 130, 460}, {00, 431, 451}

m = 67, ζ = 29:
{02, 71, 371}, {02, 110, 640}, {00, 631, 382}, {00, 421, 611}, {02, 261, 621}, {01, 02, 62},
{00, 521, 412}, {02, 20, 370}, {02, 50, 520}, {10, 310, 350}, {02, 11, 551}, {02, 31, 241},
{02, 610, 660}, {02, 431, 531}, {00, 572, 592}, {02, 330, 360}, {00, 311, 551}, {01, 442, 572},
{22, 112, 542}, {00, 452, 522}, {01, 152, 522}, {02, 10, 250}, {00, 181, 212}, {00, 321, 532},
{00, 391, 431}, {01, 72, 492}, {01, 162, 622}, {00, 72, 122}, {01, 102, 322}, {00, 362, 642},
{01, 22, 182}, {01, 232, 262}, {01, 92, 402}

m = 73, ζ = 8:
{01, 500, 570}, {01, 430, 650}, {00, 382, 392}, {02, 50, 180}, {282, 532, 652}, {01, 110, 280},
{01, 230, 530}, {01, 312, 662}, {00, 411, 571}, {02, 81, 281}, {02, 440, 450}, {00, 371, 542},
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{01, 342, 602}, {02, 400, 720}, {00, 91, 502}, {02, 01, 121}, {52, 202, 482}, {00, 671, 242},
{50, 690, 720}, {00, 21, 51}, {01, 112, 672}, {00, 141, 602}, {02, 601, 651}, {02, 270, 470},
{02, 211, 671}, {02, 70, 620}, {02, 430, 590}, {01, 270, 580}, {02, 60, 460}, {02, 21, 411},
{00, 421, 692}, {02, 300, 660}, {00, 152, 572}, {00, 251, 511}, {02, 80, 560}, {00, 391, 352}

m = 79, ζ = 23:
{02, 51, 671}, {02, 180, 340}, {01, 72, 722}, {02, 100, 680}, {50, 250, 490}, {00, 371, 682},
{00, 391, 431}, {00, 82, 722}, {02, 21, 441}, {02, 91, 331}, {42, 202, 552}, {01, 390, 490},
{00, 172, 262}, {00, 541, 641}, {00, 61, 421}, {02, 40, 720}, {00, 501, 162}, {00, 451, 202},
{00, 111, 662}, {00, 661, 62}, {00, 151, 491}, {01, 52, 602}, {00, 361, 392}, {01, 20, 470},
{171, 641, 771}, {00, 441, 142}, {02, 01, 771}, {02, 230, 510}, {02, 540, 610}, {01, 230, 620},
{02, 410, 550}, {00, 681, 552}, {02, 311, 491}, {291, 621, 671}, {00, 351, 651}, {00, 121, 232},
{31, 251, 511}, {02, 60, 380}, {00, 251, 342} 2

We now summarize the results from the direct constructions given in this subsection.

Proposition 2.6 There exist 3OSTS(v) with v ≡ 1 (mod 6) for

v ∈ {187, 205, 217, 247, 253, 259, 265, 295, 301, 319}.

Proposition 2.7 There exist 3OSTS(v) with v ≡ 3 (mod 6) for

v ∈ {87, 93, 99, 111, 117, 123, 129, 135, 141, 147, 153, 159, 171, 183, 195, 201, 219, 237}

2.2 3OGDD

For a wide class of designs, the existence of small frames is a crucial ally for recursive
constructions. As in earlier OSTS work [2], it is desirable to find sets of pairwise orthogonal
3−GDDs: here we need three sets, while in [2] only two were required. Not surprisingly,
the available computational methods become more diverse with the 3OSTS problem. The
first approach we give involves an initial hill-climb to a random cyclic 3−GDD, followed by
a backtrack search of all possible orthogonal mates (also required to be cyclic). Then all
pairs of mates are checked to see if any happens to form an orthogonal pair. Because of the
(possibly several) exhaustive searches, this method is currently only feasible for less than
about ten base blocks.

Lemma 2.8 There exist 3OGDD of types 213 and 69.
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Proof. For each type gu, we use Zgu as a pointset with group partition defined by cosets
of 〈u〉. The g(u − 1)/6 base blocks for each of the three systems are presented. Note the
orthogonality certificates (relative to the point 0) must consist of distinct elements not in
〈u〉, the subgroup of order g.

213: I: {0,7,1}, {0,4,16}, {0,17,2}, {0,21,3};
II: {0,4,14}, {0,5,3}, {0,19,1}, {0,6,17};
III: {0,16,15}, {0,5,14}, {0,20,2}, {0,7,3}

CERTIFICATES:
I/II (0) 18,20,15,2,7,8,4,21,12,24,6,10
II/III (0) 3,1,9,23,2,11,25,18,21,7,6,17
III/I (0) 17,5,8,25,24,15,16,20,22,19,23,14

69: I: {0,40,39}, {0,50,21}, {0,30,37}, {0,23,3}, {0,2,46}, {0,41,19}, {0,5,11}, {0,12,28};
II: {0,21,2}, {0,39,38}, {0,13,47}, {0,40,29}, {0,4,30}, {0,22,12}, {0,31,48}, {0,49,3};
III: {0,38,37}, {0,21,46}, {0,4,19}, {0,13,10}, {0,40,28}, {0,22,20}, {0,23,47}, {0,5,48} 2

A few more 3OGDD were constructed by hill-climbing to a 3-cyclic GDD orthogonal to
its images under the order three orbit map α, as was done in Lemma 2.5, except here the
automorphism ζ is not needed.

Lemma 2.9 There exist 3OGDD of types 29, 212, 311, 68 and 612.

Proof. For type gu, we use the group Zgu/3×Z3. Action on the second coordinate generates
the three orthogonal systems. The group partition G is described, followed by g(u − 1)/2
base triples. An orthogonality certificate again accompanies the smallest example with the
same convention as in Lemma 2.5.

29: G = {{xi, (3 + x)i} : x = 0, 1, 2, i = 0, 1, 2}
{01, 52, 32}, {00, 51, 11}, {00, 42, 32}, {00, 41, 20}, {00, 22, 01}, {00, 12, 31}, {01, 02, 51},
{00, 02, 10}

CERTIFICATE:
(00) 32, 40, 10, 22, 41, 51, 12, 42

(01) 41, 11, 12, 52, 51, 10, 42, 30

(02) 20, 42, 40, 11, 51, 00, 50, 31

212: G = {{xi, (4 + x)i} : x = 0, 1, 2, 3, i = 0, 1, 2}
{00, 32, 22}, {00, 12, 11}, {01, 72, 52}, {00, 42, 61}, {00, 72, 31}, {01, 22, 71}, {00, 62, 51},
{00, 60, 50}, {00, 21, 01}, {00, 52, 02}, {00, 71, 41}
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311: G = {{x} × Z3 : x = 0, 1, . . . , 10}
{00, 91, 81}, {00, 92, 32}, {01, 61, 32}, {00, 101, 52}, {00, 51, 10}, {00, 22, 11}, {00, 82, 62},
{01, 92, 21}, {00, 21, 12}, {01, 52, 31}, {00, 60, 20}, {02, 42, 32}, {00, 71, 31}, {00, 102, 61},
{00, 72, 30}

68: G = {{x, x + 8} × Z3 : x = 0, 1, . . . , 7}
{01, 121, 11}, {00, 141, 90}, {00, 40, 111}, {00, 112, 92}, {00, 50, 21}, {00, 151, 91}, {00, 32, 20},
{01, 132, 91}, {00, 30, 102}, {00, 132, 31}, {01, 72, 142}, {01, 52, 112}, {00, 152, 122},
{02, 122, 112}, {00, 41, 100}, {01, 21, 12}, {00, 62, 10}, {00, 42, 11}, {01, 31, 92}, {00, 142, 121},
{00, 61, 22}

612: G = {{x, x + 12} × Z3 : x = 0, 1, . . . , 11}
{01, 31, 142}, {00, 51, 42}, {01, 41, 22}, {00, 221, 41}, {00, 231, 61}, {00, 91, 182}, {01, 102, 21},
{00, 150, 20}, {00, 181, 131}, {00, 81, 32}, {00, 142, 12}, {00, 102, 52}, {00, 111, 11}, {00, 192, 21},
{00, 112, 82}, {02, 162, 22}, {00, 222, 191}, {00, 92, 171}, {00, 62, 132}, {00, 70, 30}, {00, 201, 22},
{00, 172, 162}, {00, 211, 140}, {00, 212, 31}, {00, 151, 10}, {01, 212, 12}, {00, 60, 161},
{01, 202, 52}, {01, 72, 132}, {01, 42, 131}, {00, 190, 152}, {01, 161, 151}, {00, 80, 72} 2

Next, we use a variant of the previous method in which odd pure and/or mixed differences
are artificially pre-covered in the hill-climb. These differences are stored as occurring in
blocks with “infinite” points in a shorter orbit. Orthogonality checking is somewhat more
delicate in this case. Due to this and a relatively large number of base triples, several days
of CPU time were expended (on a parallel machine) on the next design.

Lemma 2.10 There exists a 3OGDD of type 61021.

Proof. The points and groups are the same as in the examples of type 6u in Lemma 2.9,
except with an additional group of 2 extra points. The generating automorphism acts in
orbits of length two on these points: ∞ and ∞′. This means for example that the blocks
generated by the base block {∞, 01, 32} are as follows: {∞′, 11, 42}, {∞, 21, 52}, {∞′, 31, 62},
... {∞′, 191, 22}. Note the orthogonality certificate must contain pairs occurring with a
representative from these short orbits as well.

61021: {00, 182, 51}, {00, 52, 122}, {01, 52, 42}, {00, 62, 12}, {02, 142, 122}, {00, 41, 22}, {01, 21, 112},
{00, 40, 10}, {00, 191, 161}, {00, 192, 82}, {00, 80, 172}, {00, 61, 132}, {00, 31, 121}, {00, 81, 71},
{00, 91, 171}, {01, 51, 12}, {00, 50, 140}, {01, 61, 142}, {00, 151, 20}, {00, 72, 42}, {00, 142, 21},
{01, 161, 152}, {00, 162, 130}, {01, 62, 22}, {00, 141, 112}, {00, 181, 111}, {∞, 00, 11},
{∞, 01, 32}, {∞, 02, 50}

CERTIFICATE:
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(00) 31, 141, 20,152, 171,122, 172,151, 161,192, ∞′, 142, 181, 111, 60, 61, 70, 51, 190, 50, 81,
52, 21, 80, 32, 140, 160, 180

(01) 190, 171, 141, 192, 162, 40, 90, 11, 80, 191, 52, 60, 151, 62, 42, ∞′, 132, 50, 130, 140, 122,
61, 10, 152, 51, 112, 21, 41

(02) ∞, 12, 92, 170, 140, 192, 112, 30, 91, 160, 151, 42, 71, 162, 50, 152, 131, 171, 122, 181,
132, 21, 121, 80, 110, 40, 22, 182

(∞) 90, 122, 40 + (0, 2, 4, . . . , 18)

A somewhat more subtle use of infinite points is required in the next construction. With
the same 3-cyclic structure as in the last two lemmas, we artificially cover an odd pure
difference with an orbit (∞,∞′), and two mixed differences in the other two orbits with a
fixed ∞ and ∞′. Orthogonality is an even tighter constraint here, so the following search
took several hours on a parallel computer.

Lemma 2.11 There exists 3OGDD of type 6821.

Proof. The base blocks and orthogonality certificate are presented below. The block at
the end of the list, given as {∞|∞′, 00, 10}, is shorthand notation for the following set
of blocks: {{∞, 00, 10}, {∞′, 10, 20}, {∞, 20, 30}, . . . , {∞, 140, 150}, {∞′, 150, 00}}. The two
different actions on ∞ and ∞′ contribute four (rather than two) elements in the orthogo-
nality certificates corresponding to 00, and 02, given at the end of each list.

6821: {00, 41, 30}, {00, 40, 112}, {00, 110, 91}, {00, 111, 12}, {00, 151, 131}, {01, 132, 42},
{00, 152, 92}, {01, 112, 101}, {00, 142, 32}, {00, 52, 22}, {01, 152, 32}, {00, 121, 100},
{01, 102, 92}, {00, 140, 51}, {01, 121, 11}, {00, 62, 101}, {00, 61, 31}, {01, 72, 91}, {00, 122, 102},
{00, 132, 90}, {∞, 01, 52}, {∞′, 01, 22}, {∞|∞′, 00, 10}

CERTIFICATE:
(00) 130, 110, 50, ∞, 140, 101, 142, 42, 100, 22, 151, 150, 91, 40, 111, 41, 72, 131, 31, 30, 122,
132, 102, 152

(01) 101, 41, 90, 120, 132, 110, 71, 70, 42, 51, 52, 151, 102, ∞, 60, 50, 61, 150, 141, 91, 100, 40

(02) 62, 120, 61, 112, 32, 122, 12, 90, ∞′, 42, 132, 72, 102, 11, 130, 142, 60, 31, 150, 152, 101,
131, 121, 151

(∞) 72 + (0, 2, 4, . . . , 14), 141 + (0, 1, 2, . . . , 15)
(∞′) 62 + (0, 2, 4, . . . , 14), 61 + (0, 1, 2, . . . , 15)

2

One important ingredient, a 3OGDD of type 611, cannot exist with either a cyclic or 3-cyclic
automorphism group (due to an odd number of odd differences). However, this design can
be found quickly with a 6-cyclic automorphism together with a multiplier to reduce the

17



number of base triples. As with the past several methods, an order 3 map on the orbits
generates the three mutually orthogonal systems. Extremely rapid success was observed
when applying this method to 3OGDD of type 6q for larger q ≡ 3 (mod 4). 3OGDD for
many of these orders were found, however, since we will not need them in our subsequent
recursive constructions they are not presented here.

Lemma 2.12 There exists 3OGDD of type 611.

Proof. The group Z11 × Z6 is used, with the second coordinate again represented by sub-
scripts. The multiplier µ of order 5 is applied to the first coordinates, and the 60 resulting
base blocks are developed additively over Z11. The groups of the GDD are {xi : i = 0, . . . , 5}
for a given x, and an order three map 0 7→ 2 7→ 4 7→ 0, 1 7→ 3 7→ 5 7→ 1 on the subscripts gen-
erates the three pairwise orthogonal systems. For the orthogonality certificate, we present
for each of the six additive orbits only one representative under multiplication by µ. No
two elements (with identical subscripts) in the same coset of 〈µ〉 may appear in a list.

611, µ = 4: {00, 11, 60}, {01, 12, 84}, {03, 12, 55}, {01, 13, 82}, {02, 14, 85}, {03, 11, 104},
{01, 15, 21}, {03, 14, 25}, {05, 15, 90}, {00, 14, 74}, {03, 13, 20}, {02, 12, 20}

CERTIFICATE:
(00) 84, 55, 52, 22, 51, 103 (01) 32, 54, 72, 15, 74, 50 (02) 35, 24, 83, 21, 100, 50

(03) 15, 31, 80, 73, 65, 84 (04) 101, 55, 13, 10, 91, 83 (05) 102, 34, 92, 20, 53, 21 2

We conclude our presentation of ingredients with two more applications of infinite points. In
each case, the non-abelian action is used as in Lemma 2.5, but on the first two coordinates
of the pointset Zm×Z3×{0, 1}. We represent a point (a, b, c) simply as abc for convenience.
As before, certain carefully chosen differences are pre-covered with fixed infinite points ∞i,
and action on the Z3 coordinate generates the three orthogonal systems. These hill-climbs
ran relatively fast due to the abundant algebraic structure.

Lemma 2.13 There exist 3OGDD of types 6721, 613 and 614.

Proof. The (non infinite) groups are simply {x}×Z3 ×{0, 1}, for x ∈ Zm. Base blocks and
one orthogonality certificate are presented below. Note that in the 3OGDD of type 6721

there is one base block which generates a short orbit, this block is given at the end of the
list. The automorphisms allow for checking merely two lists in the certificate.
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6721, ζ = 2: {000, 421, 200}, {000, 611, 100}, {001, 421, 201}, {001, 510, 220}, {001, 621, 101},
{000, 501, 201}, {001, 620, 321}, {000, 610, 411}, {011, 321, 120}, {010, 620, 120},
{010, 611, 320}, {∞1, 100, 211}, {∞2, 101, 210}, {100, 210, 420}

CERTIFICATE:
(000) 300, 610, 420, 200, 220, 310, 121, 311, ∞1, 111, 301, 110, 601, 221, 210, 211, 201, 400, 520

(001) 100, 511, 110, 301, 300, 120, 601, 420, 201, 121, 410, 210, 221, 421, ∞2, 621, 610, 521, 401

613, ζ = 3: {000, 1210, 1020}, {011, 821, 720}, {000, 611, 220}, {011, 1221, 921}, {001, 601, 320},
{001, 501, 420}, {000, 1111, 110}, {001, 920, 811}, {001, 921, 120}, {000, 700, 101},
{000, 410, 200}, {000, 801, 400}, {000, 821, 711}, {001, 721, 201}, {001, 1011, 820},
{011, 1020, 320}, {000, 721, 510}, {000, 1220, 121}, {010, 720, 211}, {001, 710, 301},
{010, 411, 310}, {000, 1010, 610}, {001, 821, 421}, {010, 1121, 611}

614, ζ = 3: {000, 1021, 911}, {000, 1120, 301}, {001, 1211, 221}, {000, 710, 500}, {011, 721, 220},
{011, 620, 211}, {011, 921, 421}, {010, 1020, 920}, {011, 411, 221}, {000, 1020, 321},
{010, 1220, 821}, {001, 810, 211}, {010, 610, 110}, {010, 1121, 921}, {000, 901, 801},
{010, 811, 310}, {010, 1221, 221}, {000, 620, 521}, {000, 1011, 401}, {001, 710, 411},
{000, 1110, 120}, {000, 1221, 510}, {∞1, 100, 011}, {∞2, 100, 211}, {∞3, 100, 711},
{∞4, 101, 010}, {∞5, 101, 210}, {∞6, 101, 710} 2

Lemma 2.14 There exists 3OGDD of type 14231.

m = 7, ζ = 2: {000, 220, 300}, {000, 211, 201}, {001, 621, 121}, {001, 520, 510}, {001, 020, 601},
{001, 411, 410}, {011, 420, 020}, {001, 611, 310}, {020, 421, 321}, {010, 320, 111},
{010, 120, 310}, {000, 611, 301}, {100, 210, 420}, {101, 211, 421}, {∞1, 101, 010},
{∞2, 100, 211}, {∞3, 100, 411}

CERTIFICATE:
(000) 201, 520, 320, 100, 321, ∞2, 610, 411, 300, 101, 121, 011, 621, 410, 210, 001, 020, 110,
200, 400, 500, 420
(001) 200, 520, 600, 510, 110, 601, ∞3, 401, 420, 201, 620, ∞1, 221, 021, 211, 410, 621, 411,

301, 501, 101, 511

We conclude this subsection with a summary of the 3OGDD constructed in the previous
lemmas. We note in passing that other 3OGDD’s were constructed that are not presented
here. These include 3OGDD’s of types 313, 61121, 61241, 61321, 61341, 17831 and 110431. These
are not needed in our subsequent recursive constructions.

Theorem 2.15 There exist 3OGDD for each of the following types: 29, 212, 213, 311, 6n for
n ∈ {8, 9, 11, 12, 13, 14}, 6n21 for n ∈ {7, 8, 10} and 14231.
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3 3OSTS with v ≡ 1 (mod 6)

In this section we will prove that 3OSTS(v) exist for all v ≡ 1 (mod 6) with v ≥ 19. It
is convenient to write v = 6n + 1 and base our analysis on the values of n. So for the
remainder of this section we assume that v = 6n + 1.

We begin by constructing 3OSTS for several small values not covered by any previous direct
construction or by the subsequent more general recursive constructions.

Proposition 3.1 There exists 3OSTS of order v = 6n + 1 for n = 39, 54, 59 and 119.

Proof: For n = 39, begin with a transversal design TD(9,13) and give every point weight 2.
Now, use Wilson’s Fundamental Construction (Theorem 1.3) with the ingredient a 3OGDD
of type 29 (which exists by Lemma 2.9) to construct a 3OGDD of type 269. Add a point
at infinity and fill in the groups with 3OSTS(27) (Theorem 1.1) to construct the desired
3OSTS(v) for v = 6× 39 + 1.

For n = 54, begin with a transversal design TD(8,7) and give weight 6 to every point in the
first 7. Give weight 2 to three of the points in the last group and weight 6 to the remaining
four points. Now, use Wilson’s Fundamental Construction with ingredients 3OGDD’s of
type 68 and 6721 (which exists by Lemma 2.15) to construct a 3OGDD of type 427301. Add
a point at infinity and fill in the groups with 3OSTS(31) and 3OSTS(43) to construct the
desired 3OSTS(v) for v = 6× 54 + 1.

For n = 59, begin with a transversal design TD(8, 8) and delete one point to form an
8−GDD of type 79. Now, in all but the last group of this GDD, give the points weight 6.
In the last group, give one point weight 6 and each of the remaining six points weight 2.
Now inflate using the 3OGDD’s of types 6721 and 68 (these exist by Theorem 2.15). This
produces a 3OGDD of type 428181. Finally, add one infinite point to this 3OGDD and fill
in the groups with 3OSTS(43) and 3OSTS(19) to get a 3OSTS of order 355 = 6× 59 + 1.

The case n = 119 is similar to the case of n = 54. Begin with a transversal design
TD(11,11) and use the ingredients 3OGDD’s of type 611 and 61021 to construct a 3OGDD
of type 6610541. Then fill in the groups with 3OSTS(67) and 3OSTS(55) to complete the
construction. 2

From Theorem 1.1 and Propositions 2.6 and 3.1 we have 3OSTS(6n + 1) for the following
for values of n ≤ 119. We use the notation a . . . b to denote all integers n with a ≤ n ≤ b.
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Proposition 3.2 There exists 3OSTS(6n+1) for n ∈ {3 . . . 63, 66, 68, 70, 72, 73, 76, 77, 81,
83, 119}.

The following recursive construction covers many cases. It utilizes the fact that there exist
3OGDD’s of types 68, 69, 6721 and 6821. All of these are given in the previous section.

Theorem 3.3 Assume there exists a transversal design TD(9, g) and there exist 3OSTS(6s+1)
for all 3 ≤ s ≤ g, then there exists 3OSTS(6n + 1) for n = 7g + bg/3c + x and for all
7g + bg/3c+ x + 2 ≤ n ≤ 9g, where x = 0, 1, or 2 with x ≡ g (mod 3).

Proof: Begin with a transversal design TD(9,g) and give every point in the first 7 groups
weight 6. In group 8 give 3a points weight 2 and the remaining g − 3a points weight 6.
In group 9 give b points weight 6 and the remaining points weight 0. Now, use Wilson’s
Fundamental Construction (Theorem 1.3) with ingredient 3OGDD’s of types 68, 69, 6721 and
6821 (which all exist by Theorem 2.15) to construct a 3OGDD of type (6g)7(6g − 12a)1b1.
Now, add a point at infinity and fill in the groups with 3OSTS(6g+1), 3OSTS(6(g−2a)+1),
and 3OSTS(6b + 1). This results in a 3OSTS of order v = 6(7g + (g − 2a) + b) + 1.

Now, we consider the range of orders for the resultant 3OSTS. The minimum such order
occurs when b = 0 and a is as large as possible, i.e. when a = bg/3c = α. At that value of
a the construction yields a 3OSTS(6n + 1) with n = 7g + α + x where x is defined in the
statement of this theorem. Let a = α− 1 to get a 3OSTS(6n + 1) with n = 7g + α + x + 2.
Now let b vary from 3 to g to obtain 3OSTS(6n+1) for all 7g+α+x+3 ≤ n ≤ 7g+α+x+g.
Finally, let a = 0 and b vary from 3 to g to get 3OSTS(6n+1) with for all 8g +3 ≤ n ≤ 9g,
completing the range. Note that since g ≥ 8 in order for the TD(9,g) to exist, then after
weighting the points, the size of the 8th group will be at least 18 (when g = 9). Hence the
required 3OSTS will exist by hypothesis. 2

Using Theorem 3.3 we can construct 3OSTS(6n + 1) for many relatively small values of n.

Proposition 3.4 There exist 3OSTS(6n + 1) for n ∈ {62 . . . 82, 84 . . . 118, 120 . . . 801}.

Proof: In the table below we apply Theorem 3.3 for many values of g noting that in each
case there exists a TD(9, g) and there is a 3OSTS(6g + 1). In the column labeled n range,
we give the values from 7g + bg/3c + x + 2 to 9g, where x = 0, 1, or 2 with x ≡ g (mod
3). Where necessary we also list n = 7g + bg/3c+ x. It is easy to verify that all necessary
ingredients exist for all of these applications of this construction.
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g n range
8 62 – 72
9 68 – 81
11 82, 84 – 99
13 98 – 117
16 118, 120 – 144
19 142 – 171
23 172 – 207
27 200 – 243

g n range
31 230 – 279
37 274 – 333
43 318 – 387
49 362 – 441
53 392 – 477
61 450 – 549
73 538 – 657
89 656 – 801 2

As a result of Propositions 3.2 and 3.4 we have the following result.

Proposition 3.5 There exists 3OSTS(6n + 1) for all 3 ≤ n ≤ 801.

We now complete the spectrum for 3OSTS(v) with v ≡ 1 (mod 6). We will use the
3OGDD’s of type 611, 612, 613 and 614 as the main ingredients in this recursive construction.

Theorem 3.6 There exists 3OSTS(6n + 1) if and only if n ≥ 3.

Proof: Assume there exists a transversal design TD(14,m). Now truncate points in the last
three groups and note that each block contains either 11, 12, 13 or 14 points. Give each
remaining point weight 6 and replace each block with a 3OGDD of type 611, 612, 613 and
614, whichever is appropriate. These 3OGDD exist by Theorem 2.15. This yields a 3OGDD
of type (6m)11(6a)1(6b)1(6c)1, where 0 ≤ a, b, c ≤ m. We add a point at infinity and can
fill in the groups if there exists 3OSTS of orders 6m + 1, 6a + 1, 6b + 1, and 6c + 1.

Assuming for the moment that there exist 3OSTS(6s + 1) for all 3 ≤ s ≤ m, then we can
complete this construction for all 3 ≤ a, b, c ≤ m as well as for a = 0, b = 0 or c = 0.
Therefore, by appropriate choices of a, b and c, if there exists a TD(14,m), then there exists
a 3OSTS(6n + 1) for all 11m + 3 ≤ n ≤ 14m.

To finish the proof, now assume that n > 801 and proceed by induction, i.e. we assume that
there exists a 3OSTS(6t + 1) for all 3 ≤ t < n. From the construction above we know that
if there exists a TD(14,m) and a 3OSTS(6m + 1) and if 11m + 3 ≤ n ≤ 14m, then there is
a 3OSTS(6n+1). The inequality gives a bound on m, namely that n/14 ≤ m ≤ (n−3)/11.
Now since n > 801, we have that m ≥ 58, and hence that there exists a 3OSTS(6m + 1),
by induction. Also, again since n > 801 the range of possible values for m is at least
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(801 − 3)/11 − 801/14 > 15. One can look at the table of lower bounds for MOLS given
in [1] and easily note that from 58 through 7288, there is at least one value of m with
N(m) ≥ 13 in any string of 15 consecutive integers, hence there is a TD(14,m). Once
m ≥ 7289 there is a TD(14,m) for all m [1]. Hence from the construction and with the
existence of all the ingredients, we have that there exists a 3OSTS(6n + 1). This completes
the case when n > 801. When 3 ≤ n ≤ 801 the existence result follows from Proposition
3.5. The required nonexistence of 3OSTS(6n + 1) for n = 1 and 2 is given in Theorem 1.2.
2

4 3OSTS with v ≡ 3 (mod 6)

This case is similar to the case of v ≡ 1 (mod 6), but unfortunately we will not be able
to find 3OSTS(v) for every value of v ≡ 3 (mod 6), but we will only leave 26 possible
exceptional cases, which is still pretty good. It is convenient now for the remainder of this
section to write v = 6n + 3 and again base our analysis on the values of n. So for the
remainder of this section we assume that v = 6n + 3. From Theorem 1.1 and Proposition
2.7 we have 3OSTS(6n + 3) for the following values of n ≤ 39.

Proposition 4.1 There exists a 3OSTS(6n + 3) for n ∈ {4 . . . , 16, 18 . . . 26, 28, 30, 32, 33,
36, 39}.

We now construct 3OSTS(6n + 3) for several small values of n not covered by any previous
direct construction or by the more general recursive construction that follows.

Proposition 4.2 There exists 3OSTS(6n + 3) for n ∈ {52, 53, 54, 55, 56, 60, 62, 82, 118}.

Proof. All of these designs result from an application of the Wilson Fundamental Construc-
tion followed by filling in the holes, Theorems 1.3 and 1.4.

For n = 52, start with a TD(13, 13) and delete 12 points from a block to form a
{12, 13}−GDD of type 1212131. In this GDD, give all of the points weight two. Since
there exists a 3OGDD of type 212 by Lemma 2.9 and a 3OGDD of type 213 by Lemma 2.8,
this construction produces a 3OGDD of type 2412261. Finally, add one infinite point to this
3OGDD and fill in the groups using 3OSTS(25) and 3OSTS(27) to get the desired 3OSTS
of order 315 = 6× 52 + 3.
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For n = 53 and 55, begin with a TD(8,7) and give weight 6 to every point in the first 7
groups. In the last group give either 4 points weight 2 and 3 points weight 6, or give 1
point weight 2 and 6 points weight 6. Now inflate using 3OGDD’s of types 6721 and 68

(these exist by Theorem 2.15) to obtain 3OGDD’s of types 427261 and 427381. Now fill in
the groups to obtain 3OSTS of order 321 = 6× 53 + 3 and 333 = 6× 55 + 3.

For n = 54, again begin with a TD(8,7) and give weight 6 to every point in the first 7
groups. In the last group give three points weight 2 and four points weight 6. Now inflate
using 3OGDD’s of types 6721 and 68 to obtain a 3OGDD of type 427301. We now fill in the
groups using Theorem 1.4(c). Add three points at infinity and in each the first 7 groups
plus the infinity elements, place a 3OGDD of type 14231 with the hole of size three on the
infinite points. On the last group plus the infinite points put a 3OSTS(33). The result is a
3OSTS of order 327 = 6× 54 + 3.

For n = 56, begin with a TD(13,13) and give weight 2 to every point. Now inflate using a
3OGDD of type 213 (this exists by Theorem 2.15) to obtain a 3OGDD of type 2613. Now
add one infinite point and fill in the groups with 3OSTS(27) to obtain a 3OSTS of order
339 = 6× 56 + 3.

For n = 60, begin with a transversal design TD(11,11) and give each point weight 3. Then
inflate using a 3OGDD of type 311 to obtain a 3OGDD of type 3311. Fill in the groups with
a 3OSTS(33) to obtain a 3OSTS of order 363 = 6× 60 + 3.

For n = 62, begin with a TD(8, 8) and delete one point to form an 8− GDD of type 79.
Now, in all but the last group of this GDD, give the points weight 6. In the last group,
give one point weight 2 and each of the remaining six points weight 6. Now inflate using
the 3OGDD’s of types 6721 and 68 (these exist by Theorem 2.15). This produces a 3OGDD
of type 428381. Finally, add one infinite point to this 3OGDD and fill in the groups with
3OSTS(43) and 3OSTS(39) to get a 3OSTS of order 375 = 6× 62 + 3.

For n = 82, begin with a TD(13,19) and give weight 2 to every point and inflate using a
3OGDD of type 213 to obtain a 3OGDD of type 3813. Fill in each group with a 3OSTS(39)
to obtain a 3OSTS of order 495 = 6× 82 + 3.

Finally, for n = 118 begin with a TD(11,11). Give weight 6 to every point in the first
ten groups and also to seven points in the last group. The remaining four points in the
last group get weight 2. Now inflate using 3OGDD’s of types 61021 and 611 to obtain a
3OGDD of type 6610501. Add a point at infinity and fill in the groups with 3OSTS(67) and
3OSTS(51) to obtain a 3OSTS or order 711 = 6× 118 + 3. 2
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The following is the main recursive construction. It is very similar to Theorem 3.3, except
the upper and lower bounds will not be determined as specifically at first. This is due to
the fact that more small values v ≡ 3 (mod 6) are missing compared to the 1 modulo 6
case. Before stating the construction a definition is needed.

We will need to fill in one of the groups with a 3OSTS(v) with v ≡ 3 (mod 6), however there
will be bounds on how small and large this 3OSTS can be (as a function of g). We let n1 be
the smallest value such that there exists a 3OSTS(6×n1 +3) with n1 ≥ b(g−1)/3c+x = γ
where x = 0, 1, or 2 with x ≡ g − 1 (mod 3) and with n1 ≡ γ (mod 2). And we let n2 be
the largest value such that there exists a 3OSTS(6× n2 + 3) with n2 ≤ g − 1.

Theorem 4.3 Assume there exists a transversal design TD(9, g) and let n1 and n2 be as
defined above. Then there exists 3OSTS(6n + 3) for n = 7g + n1 and for all 7g + n1 + 2 ≤
n ≤ 8g + n2.

Proof: Begin with a transversal design TD(9,g) and give every point in the first 7 groups
weight 6. In group 8 give 3a+1 points weight 2 and the remaining g− 3a− 1 points weight
6. In group 9 give b points weight 6 and the remaining points weight 0. Use Wilson’s
Fundamental Construction (Theorem 1.3) with ingredient 3OGDD’s of types 68, 69, 6721

and 6821 to construct a 3OGDD of type (6g)7(6g−12a−4)1b1. Now, add a point at infinity
and fill in the groups with 3OSTS(6g + 1), 3OSTS(6(g − 2a − 1) + 3) (if it exists), and
3OSTS(6b + 1). This results in a 3OSTS of order v = 6(7g + (g − 2a− 1) + b) + 3.

The range of orders in the resultant 3OSTS by this construction can be shown to be v =
6n + 3 for n = 7g + n1 and for all 7g + n1 + 2 ≤ n ≤ 8g + n2. The proof is analogous to the
proof given in Theorem 3.3. 2

Using the theorem above, the next proposition gives 3OSTS(6n + 3) for many values of n

Proposition 4.4 There exist 3OSTS(6n + 3) for n = 61 and all 63 ≤ n ≤ 1790.

Proof: In the table below we apply Theorem 4.3 for many values of g noting that in each
case there exists a TD(9, g) (and there is a 3OSTS(6g + 1)). In the columns labeled n1 and
n2 we give these values as defined above. Note that there must exist 3OSTS(6n1 + 3) and
3OSTS(6n2 + 3) and that there are bounds given above for the values of n1 and n2.

In the column labeled n range, we give the values from 7g + n1 + 2 to 8g + n2. Where
necessary we also list n = 7g + n1. Thus there exists 3OSTS(6n + 3) for all n in this range.
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g n1 n2 n range
8 5 7 61, 63 – 71
9 4 8 69 – 80
11 4 10 81, 83 – 98
13 4 12 97 – 116
16 5 15 117, 119 – 143
19 6 18 141 – 170
23 8 20 171 – 204
27 10 24 201 – 240
31 10 30 229 – 278
37 12 36 273 – 332
43 14 36 317 – 380
49 16 36 361 – 428
53 18 36 391 – 460
59 20 54 435 – 526
64 21 63 471 – 575
73 24 72 537 – 656
89 30 88 655 – 800
103 36 102 759 – 926
121 54 120 903 – 1088
143 54 142 1057 – 1286
163 56 162 1199 – 1466
199 66 198 1461 – 1790

The only values of n ≥ 63 missing from the list above are n = 82 and 118. These were
covered in Theorem 4.2. 2

We are now in position to close out the spectrum.

Proposition 4.5 There exist 3OSTS(6n + 3) for all n ≥ 1791.

Proof. To finish the proof, now assume that n ≥ 1791 and proceed by induction assuming
that there exists a 3OSTS(6s + 3) for all 63 ≤ s < n.

From Theorem 4.3 we know that there is a 3OSTS(6n + 3), if there exists a TD(9, g), a
3OSTS(6g + 1), a 3OSTS(6n1 + 3) and a 3OSTS(6n2 + 3) and if 7g + n1 ≤ n ≤ 8g + n2.
From Theorem 3.6 there exists a 3OSTS(6g + 1), for all g ≥ 3. Now, remember that n1 is
the smallest value such that there exists a 3OSTS(6×n1 +3) with n1 ≥ b(g−1)/3c+x = γ
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where x = 0, 1, or 2 with x ≡ g − 1 (mod 3) and with n1 ≡ γ (mod 2) and n2 is the largest
value such that there exists a 3OSTS(6×n2 +3) with n2 ≤ g−1. So since n ≤ 8g+n2 < 9g,
then g > n/9. It follows since n ≥ 1791, that g ≥ 200. Without actually picking g at this
point we can still note that whatever g is picked, there exist a 3OSTS(6n1 + 3) and a
3OSTS(6n2 + 3) since g − 1 ≥ n2 > n1 > g/3 ≥ 67. Hence, by the induction hypothesis,
there exists a 3OSTS(6n1+3) and a 3OSTS(6n2+3). It remains only to find an appropriate
value for g.

The bound n ≥ 7g +(g− 1)/3 implies that g ≤ (3n+1)/22, while the bound n ≤ 9g− 1
implies that g > (n + 1)/9. Hence we have a range on the possible values of g, namely that
(n + 1)/9 < g < (3n + 1)/22. Now since n > 1791, this range for possible values of g is at
least (3×1791+1)/22−1792/9 ≥ 52. One can look at the table of lower bounds for MOLS
given in [1] and easily note that from 200 through 2774, there is at least one value of g with
N(g) ≥ 8 in any string of 52 consecutive integers, hence there is a TD(9, g). There exists a
TD(9, g) for all g ≥ 2775 [1]. Hence from the construction and with the existence of all the
ingredients, we have that there exists a 3OSTS(6n + 3). This completes the proof. 2

We now are in position to state our final result with regard to 3OSTS(6n + 3). It follows
immediately from Propositions 4.1, 4.2, 4.4 and 4.5 and Theorem 1.2.

Theorem 4.6 There exists a 3OSTS(6n+3) if and only if n ≥ 3 with the possible exception
of n ∈ {3, 17, 27, 29, 31, 34, 35, 37, 38, 40 . . . 51, 57, 58, 59}.

5 Conclusion

In this paper we have used direct hill-climbing constructions to find 3OSTS’s and 3OGDD’s
of many small orders. We then employed recursive constructions to prove that there exist
three pairwise orthogonal Steiner triple systems, 3OSTS, of order v for all v ≡ 1 (mod 6),
with v ≥ 19 and for all v ≡ 3 (mod 6), with v ≥ 27 except for 24 possible exceptions, the
largest of which has order v = 357. We have little doubt that 3OSTS exist for all v ≥ 27.
We are not willing to conjecture as to whether or not a 3OSTS(21) exists. We believe this
to be a very interesting question.
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