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Abstract

We study proper edge cdlorings of graphs. Two calorings are arthogonal if any
two edges which receive the same calor in one caloring receive different
calors in the other caloring. Let G be a graph which admits a pair of
orthogonal calorings using n and m colors. We derive some necessary and some
sufficient conditions on G, n and m. A relatonship with certain combinatorial
designs is discussed, in particular Room squares, Howell designs and arthogonal
Latin squares are special cases of orthogonal cdlorings. Some open problems
are presented.

1. Introduction

As usual in [9], whose notation and terminalogy we generally faollow, a
graph G contains no loops or multiple edges, is finite and undirected, and has p
vertices and q edges. An edge cdloring of a graph is a partitioning of the
edges into color classes such that no two edges in the same calor class are
adjcent. For brevity, a caloring of G means an edge caloring below. Observe
that two codlorings a‘u:e distinct if there exists a pair of edges which receives
the same color in one caloring yet receives different calors in the other
caloring. We say two cdlorings are orthogonal if every pair of edges which
receives the same calor in one of the colorings receives different calors in the
cther caloring. Equivalently, note that two calorings are arthogonal if and only
if every pair of calors (one from the first caloring and one from the second

caloring) determines at most one edge. As an example we give two arthogonal
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4—calorings of the Petersen graph P in Figure L1. Note that edges 05, 16, 38
and 49 all receive calor b in coloring (a) and receive cdlors a, B, y and §

respectively in (b).

(a) (b)
Orthogonal calorings of P
Figure 11
a b c d
a 05 69 34
B 23 16 58 79
Y 57 38 04 12
s 01 49 27 68

Tabular presentation of the orthogonal calorings of the preceding figure.
Figure 1.2
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We immediately present another way to record a pair of orthogonal
calorings. Let A be a kl X k2 rectangular array, where the rows of A are
indexed by the k) calors of one caloring and the calumns by the k2 cdlors in the
second caloring. Place edge e in cell (i,7) if and only if e receives cdlor i in the
first caloring and calor j in the second. Thus every edge is in some cell. Note
that since each cadloring is proper, no vertex will appear twice in a row or
calumn (partially row and column latin). Also note that since the calorings are
arthogonal, each cell is either empty or assigned a unique edge.

We formalize the above discussion.

Proposition 11. The existence of two orthogonal calorings of a graph G
using kla.nd k2 cadlors is equivalent to the existence of a k_L X k2 array V which
satisfies the properties

i. each cell of V is empty or contains an edge of G,
ii. each edge in G is in exactly one cell of V,

iii. each vertex of G occurs at most once in any row or calumn of V. B

Figure 1.2 displays the 4 x 4 square constructed by use of Proposition 11
from the two arthogonal cdlorings of the Petersen graph given in Figure LL

Using Propesition L1, we note that orthogonal calorings of certain types
of graphs correspond to interesting types of combinatoral designs.  Far
example, a pair of orthogonal n-cdlorings of Kn,n carresponds to a pair of
orthogonal Latin squares of side n. By reversing the described construction, we
see that these calorings exist for all n £2,6. Similardy, a pair of orthogonal
(2n-1) calorings of Kon yields a Room square of side 2n-L. These are also known
to exist for all 2n - 1 > 7, see [11] Recently, necessary and sufficient

conditions for the existence of a Howell design H(s,2n) (where n <s < 2n-1) were
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proven, see [1]. m our terminadlogy, this implies (with four exceptional cases)
the existence of an s-regular graph on 2n vertices, which admits a pair of
crthogonal s—calorings for every n < s < 2n-l.  We will discuss Latin squares,
Room squares and Howell designs in Section 5. A

Owr purpose is to prove several existence results |for orthogonal calorings
of graphs. In some cases graphs satisfying certain parameter sets are
constructed, in other cases we treat the graph as given. Section 2 examines
orthogonal calorings using different numbers of colors, ie., calorings where the
corresponding arrays are rectangular. Section 3 concentrates on orthogonal
calorings using the same number of cdlors, i.e., the arrays are square. Section
4 examines some higher dimensional analogues using three or more calorings.
Section 5 gives small examples. We conclude in Section 6 with some interesting

variations and open problems.

2. Rectangles

Suppose that we are given a graph G and integers K and kz. In this
section we prove some necessary and some sufficient conditions for G to admit
a pair of orthogonal calorings using kl and k2 calors.

Two necessary conditions come to mind immediately. First, G must have
an edge caloring in each of the desired number of calors. Since the calorings
are to be proper, we require kl’ k2 > A, the maximum degree. Recall that %',
the chromatic index, is the minimum number of caolors needed to edge calor G.
By the theorem of Vising X' = A or A + 1 A graphis said to be in class 1 or
class 2, respectively. So slightly strengthening our earlier observation, we
actually need k;, k2 >%'. For the second observation, recall that in a pair of

arthogonal calorings each pair of calors determines at most one edge. Thus we
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arthogonal colorings each pair of colors determines at most one edge. Thus we
need k k2 >aq.

It is interesting to examine which necessary condition is stronger for a
given graph. For purpcses of discussion, suppose that G is an r-regular dlass 1
graph and suppcse that k, _>_k_L=°X' =r. In this case, if r > p/2, then each of
the kl calor classes contains strictly fewer than kl edges, i.e. k2 > X' implies
that k) k, > g. If, on the other hand, r < p/2, then each of the l&color classes
contains more than k.l. edges, ie., k.Lkz >q l.mpl'l.es that k2 > %X'. In particular,

if r is small in relation to p, then k., exceeds kl by a large amount. In the third

2
case,it‘r:p/z,_thenkz=l&ifandonlyifk1k2=q.

We now turn our attention to some sufficient conditions on G, kl’ and k2
which give the desired calorings. A coloring is called balanced if the number of
edgés in calor dlass i differs from that in calor class j by at most 1 for any i
and j. The following theorem is an easy éonsequence of that of Falkman and

Falkerson [7].
Theorem 21 There exists a balanced k caloring of G for all k > X'. 1

We will use the colorng given by Theorem 21 for the first of our two
calorings. We now begin our construction of the second of our two calorings.

The fallowing is an easy corallary of P. Hall's Theorem (see [8]).

Lemma 2.2 Let H be a bipartite graph with vertex set Vlu V2 and set

P, = |Vi| and n = min {pl’ pz}. Suppose that deg (vl) + deg (vz) > n for all

v,V ,v, €V

1€V, eV, Then H has a matching of size n. 1
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Theorem 2.3 If k),k, are integers with k, > 2k (4A-1), k; > X", and
k1k2 > q, then G has a pair of orthogonal cdlorings using kl and k2 calors

respectively.

Proof. By Theorem 2.since k; > X' we can find a balanced coloring of

2
edges. We will construct an orthogonal caloring by successively caloring the

G using }i calors, say al,...,akl. Since q < k_LkZ each class a; has at most k

edges in calor class a; fori = l’""k_L'
Suppose those edges of G in calor classes apyeensdy 1 have already been

assigned a calor in the second caloring, and let V, be the set of edges in calor

dl
class a;- Let V2 be the set of cdlors in the second caloring, say bl""’bk . We
2
form a bipartite graph H on the vertexsetvlu V2 by joining e € Vlto bj € Vzif

and only if e is not adjacent (in G) to an edge which has already received calor
bj. Observe that a proper assignment of calors to the edges in Vl is just a
matching in H of size lVl|. To find this matching we will use Lemma 2.2 (note
that ]Vll < k2 = !VZD. Lete € V. To bound degH(eJ we note that e is adjacen
in G to at most 2(A-1) other edges. Thus there are at least k, - 2(A-1) calor
available for e, i.e., deg, (e) > k2 - 2(A-D. Next, let bj € V,. There are at mos
k1 - 1 edges in calor class bj. Each of these are incident with at most 2(A-1
edges in vy Thus at least |Vl| - (kl 1) 2 (A -1 of the edges of Vl can receive
cdlor by e, degy (ij > lvl-0g D2 -

Thus

degy, () + degy (0) > by - 208 ] + [Ivy] - 6 0 2 (& -0}
= lvll *+ k, - 2k (A -D.

Since by hypothesis k, > 2 k; (A1), Lemma 2.2 gives the desired matching. I

The most interesting case in graph calorings is to calor r-reqular graphs
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in r colors. We state the fallowing corallary of Theorem 2.3.

Cordllary 2.4 Every dlass 1 r-regular graph on 2n vertices has a pair of
arthogonal calorings using r and n calors respectively, provided that

n > 2r (x-1). [}
We believe that the bound in Cardllary 2.4 can be considerably improved.
3. Squares

We now examine orthogonal colorings which use the same number of
calors. We first establish a result which holds for any graph G. Let % (G)

denote the minimum k such that G has a pair of orthogonal k-calorings.

Theorem 31 For any graph G,

Valzxe) <2 (-0 + Val

Proof. Set k = %(j(G). The lower bound follows immediately from the
observation that each pair of calors determines at most one edge, so k2 >q.

The upper bound is not much harder. Suppose that we have 2 sets of
2(A-D + NE 1 calors available (one for the first caloring and one for the second).
We will calor the edges of G one by one. We need to show that when cdloring
the i'th edge e, there exists a pair of calors (one from each cdloring) such that
no edge adjpcent to e has received either of these calors, and this pair of
calors has not been previously assigned to an edge. There are at most 2 (A-1)
edges adjcent to e. Thus there are at least f\/?;"] calors available in each

caloring which have not been assigned to an edge adjcent to e. Hence we get
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at least f\/E]Z pairs of such cdlors. Since at most g-1 edges have been
previously assigned a pair of calors, we can find an 'unused' pair of cdlors in

this set. Thus we can calor the i'th edge, and the upper bound is proven. 1

Tt should be clear from the proof of (3.1) that the upper bound is probably
far from tight, i.e., that ‘xz'(G) is usually much closer to the lower bound. The
authors know of only a few graphs in which the lower bound is not equal to
‘)(2', namely K2,2’ K6,6’ K, x Kj, K, x K, K, x K, among those with A < p/2,
and K¢ and Kg for those with A > p/2. Note that in the former case the
cardinality of the edge set in each graph is a perfect square. Also, a pair of
orthogonal 9—co]oﬁngs of K2 X K9 can be constructed from a skew Room
Square of side 9, so the apparent sequence K2 X K2n ") of these exceptions does
not generalize. A characterization of graphs with ‘XZ'(G) not equal to the
lower bound would be interesting, but is expected to be extremely difficult.

We now turn our attention to orthogonal calorings in which the graph is
not fixed beforehand. We choose in this case to study only regular graphs.
'Deﬁne a V-square, V(k, r, v), as an r-reqular graph on v vertices together with
a pair of arthogonal k-calorings. Which triples (k, r, v) are the parameters of a
V-square? Recall that under the correspondence with arrays given in
Proposition 11, we obtain a k x k array, each cell empty or filled with an
unordered pair such that each symbal occurs r times and no symbal occurs twice
in a row or column. Figure L2 is thus a V(4,3,10) whose underlying graph is the
Petersen graph.

Some necessary conditions are immediate. We first note that k > r. Also,
at least one of v, r must be even. Finally, a simple counting argument shows
that k2 > rv/2 =q. A tdple (k;r,v) satisfying these three necessary conditions
will be called a legal triple. We conjecture that, with only a few small
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exceptions, every legal triple is the parameter set for a V-square, i.e., these
necessary conditions are sufficient.

An interesting special case of this conjecture is the external case, when
2 k2 = rv. We say such a square is crowded. Note that every cell in a crowded
array is filled, i.e., every pair of colors is assigned to some edge. The
existance of crowded V-squares was shown in [2] where the fallowing theorem

was proven.

Theorem 3.2 There exists a V(k,r,v) for all triples with k > r and

22 - vr except for a V(2,2,4).
As further evidence towards our conjecture we offer:

Theorem 3.3 Let (k,xr,v) be a legal triple with k > 4r (r-1). Then there

exists a V(k,r,v).

Proof. Break the k x k array into r x k rectangles and one k x k
rectangle as shown in Figure 31, where r < kl < 2r. We will fill in each
rectangle with suitable edges on diskint graphs. For the r x k rectangles we
note that it is easy to find a class 1 r-reqular graph on 2k vertices, for since
k > 2r(r1) the rectangles exist by Carallary 2.4. Note that each of these
rectangles has no empty cells. We now proceed to fill in the k1 x k rectangle.
Let a=k>- rv/2 = the number of empty cells in the array. We may assume

a < rk, since if ¢ > rk we may leave one r x k rectangle completely empty.
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Figure 31

Set v = 2 (}&k - @)/r. Since ki = k (mod r) and 2(k2 - a) £ 0 (mod ), v is an
integer. Marever, v and r are not both odd. Let G be any r-regular graph on
v) vertices. We have X'(@G)<r+1lx k. Also, k < 2r which implies that

2k (1) < 4r (r-D) < k (the last inequality fallows by hypothesis). The desired

rectangle now exists by Theorem 2.3. |

Cordllary 3.4 For each fixed r the necessary conditions are sufficient

except for at most finitely many triples.
Proof. If k > 4r(r-l), the desired V-square exists by Theorem 3.3. For

each fixed k < 4r(4-1) there are only finitely many values for v with

2k2 -v >0, the V-squares may or may not exist for these values. |

4. Sets of Orthogonal Cdlorings

Here we will discuss sets of pairwise orthogonal edge calorings of a graph
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G. An edge coloring is trivial if all edges receive different calors. Clearly a
trdvial edge calorng is arthogonal to any cother edge caloring. A natural
question to ask is, given a graph G, what is the maximum number of pairwise
arthogonal nontrivial edge colorings of G? In general this number is hard to
determine although we will conjecture a lower bound. To motivate the general

conjecture we will prove the next statement.

Theorem 41 Let G be an r-regular graph on 2n vertices. If Cl’cz""’cN
is a largest possible set of pairwise orthogonal nontrivial edge colorings of G

with C, using r calors, then N > n-L

1
Proof. . Since this set is maximal and pairwise orthogonal, each pair of
nonadjcent edges must receive the same cdlor in exactly one of the colorings
C; G has (n; )-2n @ pairs of nonadmcent edges. Let a(Ci) be the
number of pairs of edges in G which receives the same cadlor in caloring Ci.

Thus a(Cl) =r (2) and we have

N N
(P-2m@=)alc)=x()+) alcy.
i=1 i=2

Ifi> 2 then C; can have at most r edges in any one calor class since Ci
is orthogonal to C. Let r; be the number of calors in caloring Cyr and let s,,
r:
i
1<j<r be the number of edges in calor class j. Thus a(Ci) = Ej-l Sj) )
L31= : o 3

where Sj < r and . sj = nr. It fallows that c(Ci] <n (;) for 2 < i <N. Thus
= -1

we have

N
(P-2QerG+) nG<rC)+@DnE).

This simplifies to N > n-L 1
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We give two examples where this bound is tight. The first is Kn,n where
nis a prime power. There exist n-l orthogonal l-factorizations (n—calorings) of
Kn, n corresponding to the n-1 mutually arthogonal Latin squares of side n which
exist since n is a prime power. Note that in this case r = n = %', and each
caloring has exactly n cdlors. .

The second example is C,_, the cycle with 2n edges. Here of course

2n’
X! (C2n) = 2 = the first caloring C, is the unique 2 caloring of Cope If the
edges are labeled €2 €rrensCop 1o then define n-2 more calorings C2""’Cn—1 by
Ci(ezj) =3, Ci(ezj 5 2i-l) =jfor 0.<j<n-2 2<ic<nl Itis easy tocheck
that C;, .C2""’Cn-1 are n-1 orthogonal nontrivial edge calorings of Con wiFh c
using two calors.

Theorem 4. and these examples lead to our conjecture.

Conjecture 4.2 If G is r regular on 2n vertices and if Cl‘"’CN is a
largest set of orthogonal nontrivial cdlorings, then N > n-L

Large sets of pairwise arthogonal calorings of G, where each caloring
uses exactly X'(G) calors, have been studied extensively when G = K nor
i

G = Kn' When G = Kn,n’ any t orthogonal cdlorings enclosing n colors
correspond to t mutually arthogonal Latin squares of arder n (see Brouwer [5]).
When G = K, any t arthogonal calorings of G each using n-1 cdlors correspond
to a t-dimensional Room square of order n. (See for example Dinitz [6]).

Another application of sets of orthogonal colorings is in the area of
message authentication. Brickell [4] defines an arthogonal multi-array,

2

oMA (k,n,zl,...,rk) to be an array A = (aij) with n® rows and k columns

satisfying:
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i 2y is an I, - subset of the set ﬂ,z,...,nrj}, and
ii. Given integers j and 32 with 1 < 31 < j2 < k and integers spS, with

1§si§m:jland 1<s inrj , there exists exactly one row i such that

2="3

s € aijl and s, € ai.z.
It is then proven that the existence of an OM A(k,n,rl,...,rk) implies the
existence of a doubly perfect Cartesian authentication system with k messages
and probability of failure of the system equaling 1/n. It is easy to show that
the existence of k orthogonal edge cdlorings of any n-reqular graph on 2n
vertices with each caloring using exactly n colors implies the existence of an
OMA (k +1, n, 1,1],...,1,2). As a nice example, Brickell constructs an
OMA (4,6,1,1,1,2) by finding three orthogonal calorings of a 6 regular graph on 12
vertices. Incidentally, the graph is the dodecahedron together with edges
joilﬁng the palrs of antipodal vertices.

Another area for further study is in sequences of pairwise orthogonal
calorings of a graph. Let |Ci| denote the number of colors in caloring Ci‘ We
say that Cl’ C2,..., Ch form a greedy sequence of colorings provided that:

i. No C; is tdvial,

ii. The number of cdlors used in C; is X (G),

iii. Forl < £ < n, C_ uses the minimum number of cdlors possible for C, to

t
be arthogonal to colorings using |Cyl, IC,|,...,IC, ;| colors.
Let M(G) be the number of calorings in a maximal greedy sequence of calorings.
Theorem 4. proves that if G is r-regular on n vertices and X'(G) = r, then
M(G) > n-L
We have worked out the greedy sequence of calorings for some small

graphs. We present our results without proofs in the fallowing table.
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Graph M(G) Cpp CorensC ()
C2n n-1 2, n, N, N,...,0
Cg 3 3, 3,-4
c, 4 3,3,4,6
Cq 5 335,58
K 4 5, 6, 6, 8

5. Some Small Examples

We have noted that some design theoretic objects (arthogonal Latin
squares, Howell designs, Room squares) can be regarded as orthogonal edge
calorings of certain graphs. For each of these objects the spectrum of existent
arders is known. In this section we will construct the "closest" approximations
to the nonexistent orders.

L Orthogonal Latin squares

As observed before, a pair of orthogonal Latin squares, OLS, of order n is
equivalent to a pair of arthogonal edge calorings of Kn,n where each caloring
uses n calors. It is well known that OLS exist for all orders n except n= 2 or
n = 6. Thus by Proposition 11 we cannot place the edges of K2’2 ina2x2
array where the rows correspond to one caloring and. the calumns correspond to
the other. The best that can be done is two orthogonal calorings of K2,2 using
three calors each. Similarly, there exist two orthogonal calorings of K6,6
where one calor uses six calors and the other uses seven (G.H.J. Van Rees,
private communication). These calorings are exhibited by use of Proposition L1

in the following figure.
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oL 12 | 63 45 26 | 34 51
10 46 | 35 6 | 3 52 21
K, 5 in 16 53 | 62 i | 5 42
a 3 x 3 array 54 3% | A 62 | 43 | 15

K6’6ma6x7array

Orthogonal calorings of two complete bigraphs.

Figure 5.1

II. Room squares
A Room 'square of order 2n-l is equivalent to two arthogonal colorings of

Kon where each cdloring uses exactly 2n-1 calors. It is known that Room

squares exist for all peositive odd orders 2n-1 # 3,5. Thus it is impossible to put

K,ina3x3amay ar K_ina5 x5 array. Below we give K, in a 5 x 4 array

4 6 4
and Ksina6x5anay.

12 12 34 56
13 54 16 23
14 23 36 52 14

34 3 24

24 26 15

53 46

Orthogonal colorings of two complete graphs.

Figure 5.2

The graph K, . for n > 4 has two arthogonal calorings each using 2n-1
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calors. These calorings can be obtained by deleting a symbdl from the Room
square resulting from arthogonal calorings of Kope This is best possible since
Kona has (2n-1) (n-1) edges and at most n-1 edges can receive the same color in

any caloring. Below we give K ina3x3arrayandK5ina6x5army.

3
12 12 35
3 3 25

23 14 23

34 15
24

45
Figure 5.3

Orthogonal calorings of two additional complete graphs.

II. Howell Designs

A Howell design H(s,2n) is equivalent to two orthogonal calorings of an
s-regular graph G on 2n vertices with the property that each cdloring uses
exactly s calors.

Howell designs are thus a generalization of both Room squares (G = Kzn)
and arthogonal Latin squares (G = Kn,n)' The orders for which Room squares do
not exist are also orders for which Howell designs do not exist. Also, the
Howell design H(2,4) does not exist. It is known [ that there is exactly one
other order, H(5,8), for which a Howell design does not exist. Thus it is
impossible to find two orthogonal 5-calorings of any 5-regular graph on eight
vertices. In Figure 5.4 we exhibit two orthogonal colorings of such a graph

where one caloring uses five calors (rows) and the other uses six (columns).
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37 48 15 26

16 25 47 38

46 35 28 17

27 18 36 45

Figure 5.4

6. Conclusion

We have introduced the topic of orthogonal edge colorings of a graph and
explored some necessary and some sufficient conditions. We take this
opportunity to offer several varations on this theme.

First, there is nothing special about the rale of edge calorings in the

1
set. We say Tl’l.iS orthogonal to m if any two elements which lie in the same

definition of orthogonality. In particular, let w, and m, be two partitions of a

part in ™ lie in different parts in Ty Two orthogonal edge colorings are thus

Just two orthogonal partitionings of the edge set into independent sets of edges.
Many other examples of orthogonal partitions of a graph have been

studied. A balanced tournament design (4] isa pair of orthogonal partitions of

the edges of Ko with the first partition consisting of a (2n-1) edge caloring of
Kon and the second partition consistingl of exactly n parts where each part is a

graph G with degG(v) =lor 2 foral v e V(G). A Kotzig factorization [o] is a

pair of orthogonal partitions of the edge of the graph K with the first

2n+l
partiion being a Hamiltonian decomposidion and the second a near
one-factorization. It has been noted that Room squares and Howell designs are
examples of orthogonal partitions of a graph. It fallows that most of the

generalizations of these objects can also be considered in this manner. See
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Rosa (2] for many examples of generalized Room squares.

Of course, the underlying graph can be a hypergraph. An example which
has been studied is that of a Kirkman square EL4:| Here the edges of the
underlying hypergraph correspond to the blocks in a resalvable (v,k,l) design,
and each partition of the edges consists of (v-1)/k-1) parts where each part is a
set of v/k independent edges.

Some specific small graphs have been studied extensively. In [3] a list of

all sets of three orthogonal l-factorizations of K,, iS given. Recently, Rosa

10
and Stnson [13] list all pairs of orthogonal l-factorizations of every regular

graph on fewer than 12 vertices.

Ac}mowledgerﬁent We would like to thank John Van Rees for many of the small

examples given in Section 5.
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