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1 INTRODUCTION AND HISTORY

Let S be a set of n + 1 elements called symbols. A Room square of side n (on
symbol set S) is an n x n array, F, that satisfies the following properties:

1. Every cell of F either is empty or contains an unordered pair of symbols
from S.

2. Each symbol of S occurs once in each row and column of F.
3. Every unordered pair of symbols occurs in precisely one cell of F.
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Figure 1.1 A Room square of side seven.

It is immediate that # must be odd for a Room square of side n to exist. In
Figure 1.1 we present a Room square of side seven.

Room squares were named after T. G. Room who published a paper in
1955 [200] in which he proved that Room squares of sides three and five do
not exist and constructed a Room square of side seven. The history of these
squares, however, goes back much further. In 1850, Kirkman also presented
a Room square of side seven in [128] and used it to solve the well-known
“15 Schoolgirls Problem.” Concerning the Room square, he remarked in that

paper:

It will be found difficult to imitate this arrangement with more than eight things.

Since it took over 120 years for the Room square problem to be solved, we
would concur with Kirkman’s opinion.

Cayley also constructed a Room square of side seven in 1863 in [41]. How-
ell and Whitfield constructed Room squares for use as schedules for duplicate
bridge tournaments at the end of the nineteenth century. Some of these sched-
ules are presented in [35], [93], [105], [167], and [170].

Of course, Cayley and Kirkman were well-known mathematicians. Howell
seems to be a more enigmatic figure. Howell rotations and Howell designs,
which we discuss in Sections 10 and 11, respectively, were named after Howell.
However, Paul Smith makes the following remark in his PhD thesis concerning
Howell [221, p. 12]:

Although every duplicate bridge player knows what a Howell movement is, I
have been unable to identify Edwin C. Howell except in allusions by later writers.
Gruenther states that he was a professor of mathematics at MIT but a search of
the archives at that institution which Professors Rota and Spencer conducted in
response to a question by me turned up no trace of him in any capacity.
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degree in 1883. However, in his varied career, he was never a university pro-
fessor. Whitfield seems to be less well known than Howell among current
researchers in design theory, despite the fact that he anticipated some later
results by over 70 years [221, p. 48]. Other interesting historical information
can be found in the PhD thesis by Paul Smith [221].

One application of Room squares is to the construction of round-robin
tournaments. A Room square of side n can be used to schedule a tourna-
ment with n+ 1 teams. If the rows of the square index the rounds, and the
columns index the locations, then the resulting tournament will have the fol-
lowing properties:

1. Every team plays every other team exactly once during the tournament.
2. Every team plays in exactly one game in each round.
3. Every team plays at every location exactly once.

Several connections exist regarding the Room square of side 7 to other
mathematical structures. An interesting elementary discussion is given in
Chapter 11 of Martin Gardner’s book “Time Travel and Other Mathematical
Bewilderments” [88].

After Room’s 1955 paper, the problem of constructing Room squares at-
tracted the interest of the mathematical community. Some early results can
be found in [22], [23], [38], and [267]. As of 1968, a Room square of order n
was known to exist only for the following values of n: n =2/ —1 (j > 3) [23];
n=11,19,23 [22]; n = 9 [267], and n = 13 [191].

In 1968, Stanton and Mullin introduced the starter-adder technique in [224],
and constructed Room squares of all odd sides n, 7 < n < 47. From that point
on, progress was rapid as several researchers made significant contributions,
notably, Horton, Mullin, Nemeth, Stanton, and Wallis. The spectrum of Room
squares was determined by 1973. In March of that year, W. D. Wallis pre-
sented a Room square of side 257 at the Fourth Southeastern Conference of
Combinatorics, Graph Theory, and Computing at Boca Raton, Florida [254],
[255] (Dillon and Morris independently constructed a Room square of side
257 in [55]). This was the last unknown side. Shortly thereafter, a condensed
existence proof was given by Mullin and Wallis [189], which we record as the
following:

Theorem 1.1. A Room square of side n exists if and only if n is odd and n # 3
or 5.

We present two proofs of this theorem in Section 3.

We refer the interested reader to the paper [189] and to the book by Wallis,
Street, and Wallis [266] for most of the results on Room squares which ap-
peared before 1974. Other early papers include the following: [39], [54], [118],
[155], [171], [180], [183], [188], [220], [226], and [250]. Also, a survey was writ-
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We should mention two recent textbooks on combinatorial designs that con-
tain results on Room squares: Wallis [263] and Anderson [21]. There is also
a survey written by Wallis in the mid-1980s [247]; as of February 1991, this
survey has not been published.

In order to understand some of the generalizations of Room squares, it is
important to mention some of the combinatorial objects that are equivalent
to Room squares. We begin with a graph-theoretic interpretation. Let G be
a graph. A one-factor of G is a set of edges that partition the vertex set of
G (ie., a perfect matching). A one-factorization of G is a set of one-factors
that partition the set of edges of G. Two one-factorizations of G, F and G,
are said to be orthogonal if, for any one-factors f € F and g€ G, f and g
contain at most one common edge. The following theorem proved in [190]
relates orthogonal one-factorizations and Room squares:

Theorem 1.2. The existence of a Room square of side n is equivalent to the
existence of two orthogonal one-factorizations of the complete graph K, 1.

In Figure 1.1, each row of the Room square is a one-factor of K3, and the
union of these one-factors forms a one-factorization. Similarly, the columns
form a one-factorization, and the two one-factorizations are orthogonal, since
any cell of the Room square contains at most one edge (pair of symbols).

We will keep returning to this idea of orthogonality because it is the glue
that bonds all the generalizations of Room squares that we survey. Another
equivalence to Room squares can be phrased in terms of a certain type of
Latin square. A Latin square L is idempotent if L(i,i) =i for all i, and L
is symmetric if L(i,j) = L(j,i) for all i,j. Suppose that L and M are idem-
potent, symmetric Latin squares of the same order. We say that L and M
are orthogonal-symmetric Latin squares if, for any two elements x and y,
there exists at most one ordered pair (i,j) with i < j such that L(i,j) = x and
M@, j)=y.

We note that orthogonal-symmetric Latin squares are not orthogonal Latin
squares, but they are as “orthogonal” as possible, given that they are sym-
metric. The following equivalence was first proved by Bruck [38] in terms of

quasigroups:

Theorem 1.3. The existence of a Room square of side n is equivalent to the
existence of two orthogonal-symmetric Latin squares of order n.

One of the central problems concerning Latin squares is to find as many
pairwise orthogonal Latin squares (of a given order) as possible. This natu-
rally leads us to study the existence of sets of pairwise orthogonal-symmetric
Latin squares. Hence, for any odd integer n > 1, we define v(n) to be the

maximum number of pairwise orthogonal-symmetric Latin squares of order n.
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Pairwise orthogonal-symmetric Latin squares of order n give rise to a higher
dimensional generalization of a Room square called a Room d-cube. A Room
d-cube of side n is a d-dimensional array, each cell of which either is empty or
contains an unordered pair of symbols, such that each two-dimensional pro-
jection is a Room square of side n. The higher dimensional generalizations of
Theorems 1.2 and 1.3 are given in [114]. We should note that, although [114]
was not published until 1981, it was written about ten years earlier.

Theorem 1.4. The existence of the following are equivalent:

1. A Room d-cube of side n.
2. d pairwise orthogonal-symmetric Latin squares of order n.

3. d pairwise orthogonal one-factorizations of K, 4.
4. v(n)>d.

This survey is organized as follows: First, we discuss the tools used to con-
struct Room squares and Room d-cubes. These include starters (Section 2.1)
and frames (Section 3). In Section 2.2, we discuss hill-climbing algorithms
for constructing starters and Room squares. In Section 4, we consider Room
squares with subsquares. In Section 5, we study Room d-cubes with d > 2,
and in Section 6, we investigate nonisomorphic designs. Then we study sev-
eral special types of Room square, such as skew (Section 7), perfect (Section
8), maximum empty subarray (Section 9), and balanced (Section 10). We then
survey generalizations of Room squares. Section 11 deals with Howell designs,
Section 12 discusses orthogonal Steiner triple systems, and Section 13 concerns
orthogonal edge-colorings of graphs. Houses are studied in Section 14, orthog-
onal one-factorization graphs in Section 15, and balanced tournament designs
in Section 16. We conclude with a section on miscellaneous topics and with a
list of open problems.

2 DIRECT CONSTRUCTIONS

2.1. Starters

The most useful technique for the direct construction of Room squares has
been the technique of orthogonal starters (or equivalently, the starter-adder
method). This technique was introduced in the mathematical literature in 1968
by Stanton and Mullin in [224]. However, P. Smith in [221, p. 48] observes that
Whitfield in fact employed the same method in the 1890’s. Let G be an addi-
tive abelian group of odd order g. A starter in G is a set of unordered pairs
S = {{si,ti} : 1<i < (g —1)/2} which satisfies the following two properties:
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Let S ={{s;,t;}:1<i<(g—1)/2} and T = {{w;,v;} : 1<i<(g—1)/2}
be two starters in G. Without loss of generality, we may assume that s; —¢; =
u; — v;, for all i. Then S and T are said to be orthogonal starters if u; —s; =
u;j —sj implies i = j, and if u; # s; forall i.

Example 2.1. Two orthogonal starters in Z; are

S1={{2,3},{4,6},{1,5}},
Sy = {{3’4}7{6:1}’{5’2}}'

These two orthogonal starters were used to generate the Room square of
side 7 presented in Figure 1.1. The first starter appears in the first row of the
square, while the second starter appears in the first column.

The following theorem, due to Horton [114], gives the connection between
orthogonal starters and Room d-cubes.

Theorem 2.1 ([114]). The existence of d pairwise orthogonal starters in an
abelian group of order n implies the existence of a Room d-cube of side n (i.e.,
v(n) > d).

If S = {{s;,t;} : 1<i<(g—1)/2} is a starter, then —§ = {{—s;,—t:} : 1<
i < (g —1)/2} is also a starter. In any abelian group G of odd order, the set of
pairs P = {{x,—x} : x € G} is a starter, called the patterned starter. A starter
S ={{s;,t;} : 1<i < (g—1)/2} is said to be strong if s; +1; = 5j +1; implies
i=j,and s; + ¢ # 0 for any i. Note in Example 2.1 that $; is strong and S; is
patterned.

The following result concerning strong starters is easy to prove:

Theorem 2.2 ([114]). If there exists a strong starter § in an abelian group of
odd order n, then the starters S, —S and P are pairwise orthogonal; hence, there

exists a Room 3-cube of side n (i.e., v(n) > 3).

Strong starters have also found many other applications in the construction
of various types of designs. These include Howell designs [3], [67], Kirkman
squares [208], [240], Kotzig factorizations [48], [115], and hamiltonian path-
balanced tournament designs [116].

If S = {{si,t;} : 1<i<(g—1)/2} is a starter, then a set A = {{ai} : 1<
i < (g —1)/2} is defined to be an adder for S if the elements in A are nonzero
and distinct, and the set S + 4 = {{s; + a;,t; + a;} : 1 <i < (g —1)/2} is again
a starter. If A is an adder for S, then S and S+ A4 are in fact orthogonal
starters. Conversely, if S and T are orthogonal starters, then 7' = § + 4, where
A is an adder for S. Hence, any statement regarding orthogonal starters can
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We note that Whitfield constructed adders for patterned starters in Z,
for n=7,11,13,15,17, and 19. These are presented in the 1897 edition of
Mitchell’s Duplicate Whist [170]. As well, according to Gruenther [105], How-
ell found starters and adders in Z,, for all odd n, 7< n < 29. (These starters
and adders are presented in [221].)

In Example 2.1, the adder {1,2,4} would carry S; into S,. We can also
see from Figure 1.1 how to construct the Room square from the starter and
adder. Think of the rows and columns of the Room square in Figure 1.1 as
being indexed by the elements in Z; so that {co,x} appears in cell (x,x),
0 < x < 6. The pairs in the starter S; will all appear in row 0. More precisely,
the pair {s;,#;} will be placed in cell (0,—a;). Thus, {2,3} is placed in cell
(0,6), {4,6} is placed in cell (0,5), and {1,5} is placed in cell (0,3). Then the
cells in the other rows are filled in by cyclically shifting the first row: The pair
{x+s;,x+1} is placed in cell (x,x—a;),0< x<6.

A starter § = {{s;,t;} : 1 <i < (g —1)/2} is said to be skew if {£(s; + ) :
1<i<(g—1)/2} = G\{0}. Note that a skew starter is strong. A skew starter
gives rise to a special type of Room square called a skew Room square. These
are studied further in Section 7. Similarly, we can define two starters S =
{{si,ti} 1 1<i<(g—1)/2} and T = {{w;,v;} : 1 <i < (g — 1)/2} to be skew-
orthogonal starters if u; —s; = +(uj —s;) implies i = j, and if w; # s; for all
i, where s; —t; = u; — v;, for all i. The adder for two skew-orthogonal starters
is called a skew adder. In Example 2.1, S; is skew and S; and S, are skew-
orthogonal.

Other special types of starters have been studied in the literature. These
include frame starters, A-starters, balanced starters, partitionable starters, and
symmetric starters. Some of these types of starters will be discussed further in
this section and in Section 10.

We now discuss some specific constructions for starters. The most impor-
tant class of strong starters are the Mullin-Nemeth starters, which were dis-
covered in 1969 [175]. Suppose that g is a prime power that can be written
in the form g = 2*¢ + 1, where ¢ > 1 is odd (it is an easy exercise in num-
ber theory to show that the only prime powers that cannot be so written are
the Fermat primes, and 9). Let w be a primitive element in the field GF(g),
and define () to be the multiplicative subgroup of GF(g)\{0} of order z. G
has cosets C; = w'Cy, 0 < i < 2¥ — 1, which are often referred to as cyclotomic
classes. Define A = 28=1, H = |J2;" Gi. Then T = {{x,w?x} : x € H} is the
Mullin-Nemeth starter. Mullin-Nemeth starters have the following properties:

Theorem 2.3 ([175]). Let q be a prime power such that q = 2%t + 1, where
t > 1is odd. Then the Mullin-Nemeth starter is a skew starter (and hence also a
strong starter).

In the case g = 3 (mod 4)(sok =1 and H Co), Horton [114] generallzed
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obtained are all strong starters, and are pairwise orthogonal. We record this
as follows:

Theorem 2.4 ([114]). Let g =3 (mod4) be a prime power. Then any starter T,
(a € @) is a strong starter. Further, T, and T}, are orthogonal if a,be C,a#b.
Hence, v(q) > (g — 1)/2.

In 1979, Dinitz [56] presented a class of starters that generalize both the
Mullin-Nemeth starters and the Horton starters. As before, let g be a prime
power such that g = 2%7 + 1, where ¢ > 1 is odd, and again define the cyclo-
tomic classes C;, 0<i < 2k — 1. Define Cf =(1/(a—1))G, and define A =
2%-1, For each a € Ca, construct a starter S, = {{x,ax} : x € Uftg" C?}. The
following theorem describes the main properties of the Dinitz starters:

Theorem 2.5 ([56]). Let g be a prime power such that q = 2%t + 1, where t > 1
is odd. Then any starter S, (a € Cp) is a strong starter. Further, S, and Sy, are
orthogonal if a,b € Ca, a # b. Hence, v(q) > 1.

Other infinite classes of starters of the same orders have been given by
Gross [101] and Gross and Leonard [102].

In the starter S, defined above, the quotient of the elements in any pair
in the starter is equal to a (or a~!). These starters are thus referred to as
one-quotient starters. A starter in which the quotients of the elements of the
pairs in the starter take one of r possible values (or their inverses) is called
an r-quotient starter. In [59], there is a construction for 2k—1_quotient starters
in GF(q) when g = 2kt + 1 is a prime power and ¢ > 1 is odd. These starters
are discussed further in Section 5.

The Mullin-Nemeth strong starters yield strong starters in any field GF(q)
when ¢ is odd, except for ¢ = 9 and when ¢ is a Fermat prime. In 1974, Chong
and Chan ([43], [42]) gave a construction for strong starters in GF(q) when
g > 5 is a Fermat prime. It was later observed by Dinitz [57] that the Chong-
Chan construction can be modified to provide a strong starter in the ring
Zy62+1- Lins and Schellenberg gave a short proof of the existence of these
starters in [165]. Hence, for all odd prime powers ¢, ¢ # 3, 5, or 9, there exists
an abelian group of order ¢ that admits a strong starter. Finally, we note that
there is no strong starter in GF(3), GF(5), or GF(9).

The following three theorems provide examples of strong starters in groups
not of prime power order:

Theorem 2.6 ([113]). Let G be an abelian group of order relatively prime to 6,
and suppose there is a strong starter in G. Then there is a strong starier in the
direct sum G @ Zs.

Theorem 2.7 ([98]). Let G and H be abelian groups of odd order, where also
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Theorem 2.8 ([102]). Let G be an abelian group of odd order, and let H ‘be
a subgroup of G. Suppose that there exist strong starters in H and in G /H.
Suppose also that there is a permutation w of H such that = + I and 7 — I are
also permutations of H, where I is the identity permutation. Then there is a
strong starter in G.

It is still an open question as to whether there exists a strong starter in
every cyclic group of odd order exceeding 9. The authors certainly do not hes-
itate to conjecture that this is true. It has been shown by computer that there is
a strong starter in every odd order cyclic group Z,, where 7< n <999, n # 9.
This result was proved in [67] using the hill-climbing algorithm described in
[68] (see Section 2.2). More generally, Horton [117] has conjectured that any
abelian group of odd order has a strong starter, with the exceptions of the
groups Zs, Zs, Zy, and Z3 x Z;.

The strongest general existence result for strong starters is the following:

Theorem 2.9 ([117]). Let G be an abelian group of order n where n> 5 and
n is relatively prime to 6. Then there is a strong starter in G.

There are few general nonexistence results regarding starters. Probably the
most interesting is the following result of Wallis and Mullin.

Theorem 2.10 ([265]). Suppose that G is an abelian group of order 3 (mod6)
in which the 3-Sylow subgroup is cyclic. Then there is no skew starter in G.

Theorem 2.10 precludes the existence of a skew starter in Z;s, for example.
However, there do exist two skew-orthogonal starters in Z;s.

Example 2.2 ([181]). Two skew-orthogonal starters in Z;s are

S = {{1,2};{3’5}’{7’10}’{9’13}’{6:11}’{8) 14}7{1274}};
S» = {{11,12},{4,6},{5,8},{13,2},{9,14},{1,7},{3,10} }.

An important generalization of the starter is the frame starter, defined in
[66] (a more general concept, the partial starter, was defined earlier in [13]).
Let G be an additive abelian group of order g, and let H be a subgroup
of order & of G, where g —h is even (i.e., g and i are both even or both
odd). A frame starter in G\H is a set of unordered pairs S = {{s;,4;} : 1 <i <
(g —h)/2} such that the following two properties are satisfied:

L {s; :1<i<(g—-h)/2}u{t :1<i<(g-—h)/2} = G\H.
2. {£(si—1;):1<i<(g—h)/2} =G\H.
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starters, replacing {0} by H and (g —1)/2 by (g —h)/2 in each definition.
Frame starters will be used to generate a generalization of Room squares
called a frame, which we discuss in Section 3.

Example 2.3. A skew frame starter in Zyo\{0,5} is
S1 = {{3,4},{7,9},{1,8},{2,6}}

Several constructions for infinite classes of frame starters are known. We
mention some of them now.

Theorem 2.11 ([241], [66]). If ¢ =1 (mod4) is a prime power and n> 1, then
there is a skew frame starter in (GF(q) x (Z2)") \({0} x (Z2)")-

Theorem 2.12 ([66]). Let g =1 (mod4) be a prime power such that q = 2¢t +
1, where t > 1 is odd. Then there exist t orthogonal frame starters in (GF(q) x

(Z2))\({0} x (Z2)") for all n> 1.

Theorem 2.13 ([13]). If p =1 (mod6) is a prime, p 2 19, then there is a strong
frame starter in (GF(q) x Z3)\({0} x Z3).

The following two theorems provide some nonexistence results for certain
infinite classes of frame starters:

Theorem 2.14 ([66], [7]). Let G be an abelian group of order g, and let H
be a subgroup of G of order h =2 (mod4). If g/h =2 or 3 (mod4), then there
does not exist a frame starter in G\H.

Theorem 2.15 ([66]). Let G be an abelian group of order g, and let H be a
subgroup of G of order h=1 (mod2). If g/h =5, then there does not exist a
strong frame starter in G\H.

2.2. Hill-Climbing Algorithms for Room Squares and Starters

In the study of Room squares and related designs it is often essential to con-
struct “small” examples of the required designs. Often, the smallest cases can
be constructed by hand, but this becomes impossible for subsequent cases.
For larger cases, it is necessary to use a computer. However, the traditional
methods of exhaustive search, such as backtracking algorithms, usually prove
to be infeasible for orders just slightly larger than those which can be done by

hand.
In this section, we present extremely fast and effective computer algorithms
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is an example of what is called a hill-climbing algorithm (or a local search algo-
rithm). For a general discussion of hill-climbing algorithms and their
use in the construction of combinatorial designs, the reader is referred to
[236].

The first algorithm we present is the hill-climbing algorithm for finding one-
factorizations in K. This algorithm was presented by Dinitz and Stinson in
[72]. In order to use a hill-climbing approach, we formulate the problem as an
optimization problem. We represent a one-factorization of K, as a set F of
pairs, each having the form (f;,{x,y}), where 1<i<n—1 and x and y are
distinct vertices of K,,. There will be (1% — n)/2 such pairs and the following
properties will be satisfied:

L. Every edge {x,y} of K, occurs in a unique pair (f;, {x,y}).
2. For every f; and every vertex x, there is a unique pair of the form

(fi {x,¥}).

Define a partial one-factorization of K,, to be a set F of pairs, each of which
has the form (f;,{x,y}), where 1 <i<n—1and x and y are distinct vertices
in K, that satisfies the following properties:

1. Every edge {x,y} of K, occurs in at most one pair (f;,{x,y}).
2. For every f; and every vertex x, there is ar most one pair of the form

(fis {%:¥}).

Let F be a partial one-factorization of K,,. The f;’s are called partial one-
factors. A vertex x is said to be live if there is some f; such that for all vertices
y # x, (fi,{x,y}) ¢ F (i.e., such that x does not occur in the partial one-factor
fi). A partial one-factor f; is live if it does not occur in exactly n/2 pairs in
F (ie., if it is not a [complete] one-factor of K,). We say that x does not
occur in f; if there is no point y such that (f;, {x,y}) € F. Finally, we say that
x and y do not occur together if there is no partial one-factor f; such that
(fi,{x,yHeF.

Define the cost ¢(F) of a partial one-factorization F to be (n? — n)/2 — | F|,
where |F| denotes the number of pairs in F. Clearly, F is a one-factorization
if and only if ¢(F) = 0.

Two heuristics H; and H, will be used in this algorithm.

Heuristic H;

Choose any live point x

Choose any partial one-factor f; such that x does not occur in f;
Choose any point y such that x and y do not occur together

If y does not occur in f;, then

replace F by FU {(fi,{x,y})}

bl el
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Heuristic H,

Choose any live partial one-factor f;
Choose any two points x and y such that x and y do not occur in f;
If x and y do not occur together, then
replace F by FU {(fi,{x,y})}
else there is a pair in F of the form (fj,{x,y}) (j #1)
replace F by F U {(fi, {xy DI (fi {x.y )}

=g ol

Note that if we apply either heuristic H; or H then we obtain a new partial
one-factorization in which the cost either remains the same or decreases by
one. Also observe that both heuristics can always be performed as long as
c(F)#0.

The hill-climbing algorithm for one-factorizations is now given below.

Hill-climbing algorithm to construct a one-factorization of K,

1. While ¢(F) #0, do
2. choose r =1 or 2 at random with equal probability
perform H,

There is no guarantee that this algorithm will terminate in finite time. How-
ever, in practice, in over ten million attempts, it has always found the de-
sired one-factorization. It is also extremely fast. When implemented in C on
a SPARCstation 1, it can construct a one-factorization of Ky in about 0.13
seconds, one of K4 in about 0.67 seconds and one of Kg in about 1.67 sec-
onds.

Since a Room square of side n—1 is equivalent of a pair of orthogonal
one-factorizations of K,, we can use the above algorithm with some small
modifications to make Room squares. We first construct a one-factorization
F; then we construct a one-factorization G which is orthogonal to F. In terms
of the resulting Room square, we first determine the rows (say), and then we
attempt to “sort out” the columns. This algorithm was also first given by Dinitz
and Stinson in [72].

In order to modify the algorithm to construct a one-factorization G orthog-
onal to a given one-factorization F, we will maintain the array R, in which
the rows are indexed by the one-factors of F and the columns are indexed
by the (partial) one-factors of G. At any stage of the algorithm, R(f},&) =
{xy} I (p{xy)) e F and (i {x.y}) € G; and R(fj,g:) is empty, other
wise.

S & : v it IT A IT 4~ ammctvant 2 ac we Adid tn
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orthogonality is never violated. The modified H; we call OHj, and likewise
the modified H, we call OH,.

Heuristic O H;

e el o

Choose any live point x
Choose any partial one-factor g; such that x does not occur in gi
Choose any point y such that x and y do not occur together (in G)
Let fj be the one-factor of F which contains the edge {x,y}
If R(fj,g:) is not empty, then
O H; fails
else if y does not occur in g;, then
replace G by GU (gi, {x,y})
define R(f},gi) = {x,y}
else there is a pair in G of the form (gi,{z,y}) (z # x)
replace G by GU (gi, {x,y)\(gi»{z,»})

define R(fj,gi) = {x,y} ‘

Heuristic O H,

Pl

Choose any live partial one-factor g;
Choose any two points x and y such that x and y do not occur in g;
Let f; be the one-factor of F which contains the edge {x,y}
If R(fj,g:) is not empty, then
O H, fails
else if x and y do not occur together, then
replace G by GU (gi,{x,y})
define R(f;g1) = {x,y)
else there is a pair in G of the form (g, {x,y}) (k # i)
replace G by GU (gi, {x,y D\ (8x, {x,y})
define R(f.ivgi) = {x’y}
define R(fj,g«) to be empty

As we noted earlier, there are times when neither heuristic can be per-
formed. There are also times when succesive uses of these heuristics can lead
to an infinite loop. In order to address these problems we define a thresh-
old function T : Z* — Z*. When the number of iterations of the heuristics
exceeds the value of the threshold, the algorithm is terminated. It can then
be restarted with a different random seed. In practice, the threshold function
T(n) = 100n has proved suitable.

The hill-climbing algorithm for Room squares is as follows. A discussion of
the success rate of this algorithm and timings are given in [72]. It was noted
there that this algorithm succeeds in finding Room squares on average in one
out of every ten tries. Since its run time is very quick, it has proved to be ex-
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Hill-climbing algorithm to construct a Room square of side n —1

Use the hill-climbing algorithm to construct F, a one-factorization of K.,
Number-of-iterations is initialized to be 0

3. While (number-of-iterations < T'(n)) and (c(G) #0), do

choose r =1 or 2 at random with equal probability

perform O H,
increment number of iterations

bt

The hill-climbing algorithm can easily be modified to find objects related
to Room squares. In subsequent sections of this survey we will mention some
of these modifications. In particular, variations of the algorithm have beeen
used to construct Room frames [74], [65] (see Section 3), Room squares with
subsquares [74], [65] (see Section 4), and Howell designs with subdesigns [64]
(see Section 11).

The next algorithm which we will discuss is the hill-climbing algorithm
for finding strong frame starters. This algorithm was originally described for
strong starters in [68], but it is trivial to generalize it to the case of strong
frame starters. (We note that a discussion of this algorithm also appears in
[173], [49], and [236].) We will present the hill-climbing algorithm for strong
frame starters in a quite different manner than the original presentation in
[68]. The original description of the algorithm incorporated extra heuristics
which do not effectively decrease the run time of the algorithm. This version
we give here evolved from that original one but is more efficient, easier to
read, and easier to implement.

Let G be an additive abelian group of order g, and let H be a subgroup of
G of order h, where g — h is even. We define a partial strong frame starter to
be a set of n unordered pairs § = {{s;,#;}, 1<i < n} that satisfies the follow-
ing properties:

1. The s;’s and ¢;’s are distinct elements of G\H.
2. The differences +(s; — #;) are distinct elements of G\H.
3. The sums s; + #; are distinct elements of G\H.

Note that 1< n < (g —h)/2. We will employ similar terminology to that
used for the one-factorization algorithm. Given a partial strong frame starter,
S, an element x € G\H is live if there is no pair of the form {x,y}eS. A
difference d € G\H is live if there is no pair {x,y} € S such that y — x = +d;
and a sum s € G\H is live if there is no pair {x,y} € S such that y +x =s.
Note that no element x € H can be a live element, difference or sum. Define
the cost ¢(S) of a partial strong frame starter S to be (g — h)/2—|S|, where

|S| denotes the number of pairs in S. Clearly, § is a strong frame starter if
” A . 5 b Lncenlasinn [T anAd LI ava Aofinad that will he
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Heuristic H;

Choose any live element x
Choose any live difference d
Let y =x+d orlet y = x —d (with equal probability)
If x + y is a live sum, then
if y is a live element, then

§=SU{{x,y}}
else there exists a pair {u,y} € S

S=SU{{xy}\{{u,y}}

el sl =

Heuristic H,

—_

Choose two live elements x and y
Letd =y—x
3. Ifx+y is alive sum, then
if d is a live difference, then
S=8u{{x,y}}
else there exists a pair {u,v} € Swithv—u =d

§=8u{{xy}\{{x,v}}

N

As in the Room square algorithm, there may be times when neither heuris-
tic can be performed. There are also times when successive uses of these
heuristics may lead to an infinite loop. Again, we define a threshold function
T, which is used as in the previous algorithm.

The hill-climbing algorithm for strong frame starters is now given. In prac-
tice, this algorithm is also extremely fast and effective. It had been observed
that strong starters of orders exceeding 60 are impossible to find in a rea-
sonable amount of time using backtracking algorithms [50]. In contrast, the
hill-climbing algorithm finds strong starters in Zo; in an average of 0.38 sec-
onds, in Zjgp; in an average of 2.62 seconds and in Zjpo1 in an average of
28.1 seconds when implemented in C on a SPARCstation 1. The algorithm
also has been modified to find objects related to strong frame starters includ-
ing orthogonal frame starters and strong starters. Applications include finding
Room cubes of dimension 5 [61] (see Section 5), balanced Room squares [239]
(see Section 10), and A-squares [63] (see Section 13).

Hill-climbing algorithm for a strong frame starter in G\ H

1. Number-of-iterations is initialized to be 0
2. While (number-of-iterations < T(g)) and (c(S) # 0), do
choose r =1 or 2 at random with equal probability
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3 ROOM FRAMES

In this section, we discuss a generalization of Room squares known as Room
frames. These designs are of fundamental importance in recursive construc-
tions for Room squares. Let S be a set, and let {S1,...,5,} be a partition
of S. An {Si,...,S,}-Room frame is an |S| x |S| array, F, indexed by S, that
satisfies the following properties:

1. Every cell of F either is empty or contains an unordered pair of symbols
of S.

2. The subarrays S; x S; are empty, for 1 <i < n (these subarrays are re-
ferred to as holes).

3. Each symbol x ¢ S; occurs once in row (or column) s, for any s € ;.

4. The pairs in F are those {s,¢}, where (s,) € (S x $)\ Ui=1(Si X Si)-

As is usually done in the literature, we will refer to a Room frame simply as
a frame. The type of a frame F is defined to be the multiset {|S;| : 1< z £ n}
We usually use an “exponential” notation to describe types: a type R
denotes u; occurrences of #;, 1 <i <k.

In Figure 3.1, a frame of type 2541 based on symbol set {1,...,9,a,b,c,d, e}

is depicted.
Frames of type 1" and Room squares of side n are equivalent, as follows:

ac 3d 8b | 7e 46 | 59

7b 9d 6e | 4c 8a |35
9c 8e 5b 7d 16 2a
9e ab 6¢c |1d | 57 28
8c | 1le ad |9 23 47

3b 5d 2¢c | 4e la 69
2d | 1b 3e | 5¢ | 49 6a
Se | 4b 1c | 6d 27 38

67 (19|58 24 | 3a
79 |4a | 18 25 | 36

Ta 26 39115 48



Room Frames 153
Theorem 3.1. A frame of type 1" is equivalent to a Room square of side n.

Proof. Suppose that F is a Room square of side 7 on symbol set S. Let oo
be any symbol in S. By a suitable permutation of rows and columns of F , we
can place the cells containing co on the main diagonal (such a Room square
is said to be standardized). Call this standardized square F’. Index the rows
and columns of F' so that {co,x} is the content of cell (x,x) of F, for all
x € S\{oo}. Now delete the pairs from all the cells on the main diagonal of
F', constructing a frame of type 1”.

Conversely, suppose that F is a frame of type 1" on symbol set S, and let
co be any symbol not in S. If we place the pair {oo,x} in cell (x,x), for all
x € §, we obtain a (standardized) Room square of side .

We will first discuss the existence of frames of type 7%, Such frames can
be constructed from orthogonal frame starters in the same way that Room
squares can be constructed from orthogonal starters.

Theorem 3.2 ([66]). Suppose that a pair of orthogonal frame starters in G\H
exist, where |G| = g and |H| = h. Then there exists a frame of type h8/".

The first Room frame constructed in the literature was one of type 2°; it
was presented by Wallis in [258]. We give an example of a frame of type 25
(different from Wallis’ example) in Figure 3.2. This frame was constructed
from the frame starter presented in Example 2.3. Note that the rows and
columns of this frame are indexed by the elements in Zyo. The five holes are
the subarrays indexed by {i,5+ i} x {i,5+1i}, i =0,1,2,3,4, and as such, the
holes have not been drawn as contiguous 2 x 2 subarrays. Clearly, one could
apply a suitable permutation of rows and columns so that the holes would
be contiguous. If this were done, however, the automorphism would be less
apparent.

Next, we describe three recursive constructions for frames. The first of
these employs group-divisible designs. We refer to this construction as the
fundamental frame construction (or FFC).

A group-divisible design (or GDD) is a triple (X,G,.A), that satisfies the
following properties:

1. G is a partition of X into subsets called groups.

2. A is a set of subsets of X (called blocks) such that a group and a block
contain at most one common point.

3. Every pair of points from distinct groups occurs in a unique block.

The group-type (or type) of a GDD (X,G,.A) is the multiset {|G| : G € G}.

..... T e e e T xr
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79|34 (26|18
29 80 | 45| 37

48 | 30 91 | 56

67 (59|41 02
13|78 | 60 | 52
2489|7163
3590 |82 |74
46|01 (93|85
57|12 |04 |96
68 (23 |15]|07

Figure 3.2 A frame of type 25.

Construction 3.3 (Fundamental Frame Construction, [231]). Let (X,G,A) be
a GDD having type T, and let w : X — Z* U {0} (we say that w is a weighting).
Suppose that for every A € A, there is a frame having type {w(x) : x € A}. Then
there is a frame having type {3, ccw(x) : GE€G }.

A pairwise balanced design (or PBD) is a pair (X, A) that satisfies the fol-
lowing properties:

1. Ais a set of subsets of X (called blocks).
2. Every pair of points occurs in a unique block.

(X,A)is a (v,K)-PBD if [X|=v and |A| € K for all A€ A. A set of pos-
itive integers K is said to be PBD-closed if v € K whenever a (v,K)-PBD
exists. We have the following useful corollary of the fundamental frame con-

struction.

Corollary 3.4 ([66]). Let t>1. The set Uy = {u> 4 : there exists a frame of
type t*} is PBD-closed.

Proof. Let (X,A) be a (v,Ur)-PBD. Then (X,{x:x€X},A)isaGDD.
Give every point weight ¢ and apply FFC. O

If T is the type £1£4>...t;* and m is an integer, then mT is defined to be
the type mt“1mt*> ... mi; "+, The following recursive construction is referred

to as the inflation construction. It essentially “blows up” every cell into a pair
of orthogonal Latin squares.

Construction 3.5 (Inflation Construction, [231]). Suppose that there is a
s v . St thecnie wan L D A K Thon thoro
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The third construction is a doubling construction. We need some special in-
gredients, which we now define. Let F be an {S1,...,8,}-frame. We say that F
is skew if for any pair of cells (5,#) and (z,s), where (5,2) € (S x $)\ U/, (S: x
Si), precisely one is filled. As one would expect, the frame arising from a pair
of skew-orthogonal frame starters (or a skew frame starter) is a skew frame.
As an example, we note that the frame in Figure 3.2 is skew.

The second ingredient is a pair of orthogonal partitioned incomplete Latin
squares. Let § be a set, and let {S),...,S,} be a partition of S. Define an
{St,...,8u}-partitioned incomplete Latin square (or PILS) to be an || x S|
array, F, indexed by S, which satisfies the following properties:

1. Every cell of F either is empty or contains a symbol from .
2. The subarrays S; x S; are empty, for 1 <i < n (these are holes).
3. Each symbol s € S; occurs once in row (or column) r, for any r ¢ S;.

Suppose F and G are {S,...,S,}-PILS on symbol set S. We say that F and
G are orthogonal PILS (or OPILS) if for every (s,7) € (S x S)\U'-,(Si x S)),
there is a unique cell (x,y) such that (F(x,y), G(x,y)) = (s,1).

We define the type of PILS in the usual manner. The doubling construction
is as follows:

Construction 3.6 (Doubling Construction, [231]). Suppose that there exists a
skew frame of type T and a pair of OPILS of type T. Then there exists a frame
of type 2T.

We observe that the frame produced by the doubling construction will not
be skew. The following is a useful corollary of the doubling construction:

Corollary 3.7 ([69]). Suppose that there is a skew frame of type 1". Then there
is a frame of type 2".

Proof. OPILS of type 1" are equivalent to a pair of orthogonal Latin
squares having a common transversal. These exist for all positive integers
n#2, 3, or 6 [36]. But a frame of type 1" does not exist if n =2, 3, or 6.

O

We illustrate the doubling construction by presenting a frame of type 27 in
Figure 3.3. This frame was first constructed in [69]. The rows and columns are
indexed 0,1,2,3,4,5,6,a,b,c,d,e, f,g. The holes are indexed by {0,a} x {0,a},
{1,b} x {1,b}, etc.

We now indicate how to use these constructions by sketching the proof of
existence of frames of type 2* given in [69]. First, it is easy to see that there
is no frame of type 22 or 2. Less obvious is the fact that a frame of type 2¢
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62|45 |eg |13 |cd |fb
gc 03 (56| fal24|de
ef |ad 14| 60 | gb |35

bd |50 |ga|cf 36 | 12

51|34 (df |02 |bc|ea

6c|e5ldg|b3|2d | f1
g2 0d [f6|5a|c4|3e
4f | a3 le | g0 | 6b | dS
e6 | 5g | b4 2f | al|Oc
1d | fO|6a |c5 3g [ b2
c3|2e|gl|0b|d6 4a
Sb|d4|3f |a2|1c | e0

Figure 3.3 A frame of type 27.

Define F, = {5,6,...,20,22,23,24,27,28,29,32,33,34, 39}. Recall that U =
{u> 4 :there exists a frame of type 2¢}. Suppose that we can prove that
F, CU,. We know from Corollary 3.4 that U, is PBD-closed. Hanani has
proved in [106] that there is a (v,F,)-PBD for all v>5. Hence, it would
then follow that U, = {v > 5}. So, we have reduced the existence question
for frames of type 2% to the problem of constructing a small number of these
frames.

What can we prove using the tools described thus far? First, {5,9,13,17} C
U, by using strong frame starters constructed in Theorem 2.11 (or, see [182]).
It can also be shown that {8,12,16,20,24,28,32} C U, using strong frame start-
ers constructed in [69] by computer. Now, Theorem 2.14 tells us that we can-
not find a frame starter in Zp,\{0,u} if =2 or 3 (mod4), so the remaining
values must be handled by other methods. Corollary 3.7 will handle the values
u = 17,11,15,19,23,27,29,33, and 39, given skew frames of type 1% for these u.
These skew frames exist by Theorem 2.3 for u = 7,11,19,23,27, and 29. For
u = 15,33, and 39, skew-orthogonal starters in Z, were presented in [181].

It remains to consider the values u = 6,10,14,18,22 and 34. These were
handled by a technique introduced in [69] called orthogonal intransitive frame
starters. We do not describe the construction in detail but present in Figure
3.4 a frame of type 2% constructed by this method. This frame has Zjp in its
automorphism group. The rows and columns are indexed 0,1,2,3,4,5,6,7,8,9,

) [ A N 199 A\ AanA
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Figure 3.4 A frame of type 26.
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In fact, it is proved in [69] that one can always construct by this method a
frame of type 29*1 whenever g = 1 (mod4) is a prime power. So, u = 6,10,
14,18 are done, leaving only u =22 and 34. These were also done by in-

transitive starters.

We summarize known existence results of frames of type 7* in the next two

theorems.

Theorem 3.8 ([69], [65]). There exists a frame of type t* if any of the following

conditions hold:

1. u =4, and t is divisible by 4, 6, or 10.
2. u=>5, and t is divisible by 2, 3, 5, or 7.
3. u>6is even, and t is even.

4. u>"71is odd.

Theorem 3.9 ([69]). There does not exist a frame of type t* if any of the fol-

lowing conditions hold:

1. u=2or3.

2. u=4,and t =2 ([229]
. u=5andt=1.

4. uis even, and t is odd.

).
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Some attention has also been paid to frames with two hole sizes. Many
computational results are presented in [65]. It is also observed there that the
set Uy, = {u :for every 0 < a < u, there exists a frame of type s?t%=*} is PBD-
closed. Then, using PBD constructions, it is shown that u € U, 4 for all u > 48.

The next construction we mention is a filling-in-holes construction. This
produces Room squares from frames. We present a basic version of this con-
struction now; more general versions will be discussed in the Section 4.

Construction 3.10 (Filling-in-Holes Construction). Suppose that there is a
frame of type t}'t3*...1;*%, and let w =0 or 1. For 1<i < k, suppose there is a

Room square of side t; + w. Then there is a Room square of side w + Z{-th,- u;.

The last topic of discussion in this section is two existence proofs for Room
squares. The first uses frames as building blocks, and is based on [74]. This
proof also makes use of the filling-in-holes construction. The only ingredients
we need for the first existence proof are the following:

1. A Room square of side n, for 7< n <59, n odd.
2. A frame of type 2/4%~, for 0 <i <6.
3. A transversal design TD(6, ), for all m such that ged(m,6) = 1.

The Room squares of sides up to 59 all can be constructed by strong
starters, for example, except side 9, that can be obtained from orthogonal
starters. The frames of type 2/45~f were found in [74]. The necessary transver-
sal designs all exist by MacNeish’s theorem [166].

Given these ingredients, we proceed by induction as follows. Let n > 61,
and assume that a Room square of side n' exists for all odd n, 7<n' < n
Find an integer m such that ged(m,6)=1and 2Zm+1<n< 24m + 1. Take
a transversal design TD(6,m), and give every point weight 2 or 4 so that the
sum of the weights of all the points is n— 1. Apply FFC, using the frames of
type 2146~ as input frames. Fill in the holes of the resulting frame with Room
squares, using w = 1 in the filling-in-holes construction. The necessary Room
squares all exist by the induction assumption; thus, we obtain a Room square
of side n. This completes the proof of Room square existence.

We are emphasizing frame techniques because of their applicability to many
other problems involving Room squares, some of which we shall encounter in
other places in this survey. However, the original “condensed” existence proof
for Room squares given by Mullin and Wallis in [189] is already very short and
elegant. We feel it would also be of interest to present a sketch of this proof.

This proof depends on the Mullin-Nemeth strong starters [175] and the
Chong-Chan strong starters [43]. Also required are Room squares of sides 9

and 15. Then two recursive constructions will finish the job. This first of these
v aw . : 1k e st AL Qinmtan and ITartan 7971 that ctatec that
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square of side nyn, (see Section 4). The second is the following powerful
construction of Wallis.

Theorem 3.11 ([252], [254]). If a Room square of side n, exists, ny > n, and n
is odd, then a Room square of side nn; exists.

The Mullin-Wallis existence proof for Room squares is also an inductive
proof. Any odd positive integer v has a prime power factorization v = 3%5% 7%
.... First, suppose that a3 = as = 0. If v is a prime power, then a strong starter
of order v exists (and hence a Room square exists) unless v = 9, but a Room
square of side 9 exists also. If v is not a prime power, then write v = v;v,,
where Room squares of sides v; and v, exist (by induction), and apply the
direct product construction. Next, suppose a3 +as = 1. Then Theorem 3.11
gives a Room square of side v (using n = 3 or 5). Next, suppose that a3 + as =
2. Then v can be written as v = v;v,, where v; = 9, 15, or 25. Since a Room
square of order v; exists, we have one of order v (using the direct product
construction, unless v = vy, in which case we’re already done). Finally, if as +
as > 3, then we can use Theorem 3.11 with n =3 or 5. This completes the
proof.

4 ROOM SQUARES WITH SUBSQUARES

Suppose that F is a Room square of side n on symbol set S. A square s x s
subarray G of F is said to be a Room subsquare of side s if it is itself a Room
square of side s on a subset T C S containing s + 1 symbols. In particular,
any filled cell of a Room square is a Room subsquare of side 1. In view of
Theorem 1.1, no Room square can contain a Room subsquare of side 3 or 5.
However, we can construct Room squares missing subsquares of these sides.
We have the following formal definition:

Let § be a set of n+ 1 symbols, and let T be a subset of S of cardinality
s + 1. An (n,5)-IRS (incomplete Room square) is an n x n square array F that
satisfies the following:

1. Every cell of F either is empty or contains an unordered pair of symbols
of S.

2. There is an empty s x s subarray G of F.
3. Each symbol of S\T occurs once in each row and column of F.

4. Each symbol of T occurs once in each row and column not meeting G,
but not in any row or column meeting G.

5. The pairs in F are precisely those {x,y} where (x,y) € (S x S)\(T x T).
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69 5X |38 47
39 [4X 57|68
67 |8X 3y 04115129
58 (79 4Y [ 03 2X |16
9X 78 06 |5Y 24 13
05 |7X | 89 |6Y 14 23
46 |13X 25! 19 |7Y 08
35 (49 [1X 26 8Y | 07
34 56 17 | 28 0X |9Y
27 |18 09 36|45 |XY

Figure 4.1 An (11,3)-incomplete Room square.

a Room square of side n containing a subsquare of side s. We also observe
that existence of an (n,s)-IRS is equivalent to existence of a Room frame of
type 17— Sl.

In Figure 4.1, we present an (11,3)-IRS that implies the existence of a frame
of type 183l. The symbol set is {0, 1,2,3,4,5,6,7,8,9,X,Y}, and the missing
subsquare on symbols set {0, 1,2,3} is in the upper left corner.

For which ordered pairs (#,5) does there exist an (n,s)-IRS? Of course, n
and s must be odd, and it was shown in [50] that n > 3s + 2 is a necessary con-
dition for existence. In the remainder of this section, we discuss the research
done on this question.

First, we mention some more general filling-in-holes constructions that uti-
lize IRS.

Construction 4.1 (Filling in Holes).

Uk

1. Suppose that there is a frame of type 1.k, and let w 2 1 be odd.
For 1< i < k, suppose that there is a (t; + w,w)-IRS. Then there is a (w +
Z{;l tiuj,w)-IRS.

2. Suppose that there is a frame of type thagdr .k, where w =1, and let
w > 1 be odd. For 1<i <k —1, suppose that there is a (t; + w,w)-IRS.
Then there is a (w + Zf‘;l tiui,w + 1 )-IRS.

If we combine the inflation construction with the filling-in-holes construc-
tions in various ways, we obtain a class of constructions called the product
constructions. The simplest form is the direct product. This result was first

stated by Bruck [38] in 1963, but the construction he gave was incorrect, as
eiend L AMMdlin anmd Namath 11741 A earrect conctrictinon was siven bv
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Construction 4.2 (Direct Product, [222]). Suppose that there exist Room
squares of sides u and v. Then there exists a Room square of side uv that
contains Room subsquares of sides u and v.

Proof. A Room square of side u is equivalent to a frame of type 1%. Ap-
plying the inflation construction, we get a frame of type v*. Then we apply
the filling-in-holes construction with w = Q.

A generalization known as the singular direct product was then given by
Horton, Mullin and Stanton in 1971 [119].

Construction 4.3 (Singular Direct Product, [112], [119]). Suppose that there
is a Room square of side u and a Room square of side v containing a Room
subsquare of side w, where v —w # 6. Then there exists a Room square of side
u(v — w) + w that contains Room subsquares of sides u, v and w.

Proof. A Room square of side u is equivalent to a frame of type 1%. Not-
ing that v —w # 6, we apply the inflation construction, obtaining a frame of
type (v — w)*. Then we apply the filling-in-holes construction. O

A further generalization known as the singular indirect product was discov-
ered by Mullin in 1980 [172]. A transversal design TD(k,n) can be defined
to be a k-GDD of type n*. It is well known that a TD(k,n) exists if and
only if k —2 mutually orthogonal Latin squares of order n exist. However,
Mullin’s construction employs a transversal design with a “hole.” An incom-
plete transversal design TD(k,n)—TD(k,m) is a quadruple (X,Y,G,A) that
satisfies the following properties:

X is a set of cardinality kn.

G ={G;i : 1<i<k} is a partition of X into k groups of size n.
YCX,|Y|=km,and [YNG;|=m,for 1<i<k.

A is a set of n>—m? blocks of size k, each of which intersects each
group in a point.

5. Every pair of points x,y from distinct groups, such that at least one of
x,y is in X'\Y, occurs in a unique block of A.

& Bl =

A TD(k,n) —TD(k,m) can be thought of as a TD(k,n) from which the
blocks of a TD(k,m) have been removed.

Construction 4.4 (Singular Indirect Product, [172]). Suppose that there is a
Room square of side u, and a Room square of side v containing a Room
subsquare of side w. Let 0 < a <w, and suppose that there is an incomplete
transversal design TD(4,v — a)— TD(4,w — a). Finally, suppose that there is a

Rnanm cannvo nf cido 1ulw — a\ L n Thown thoro ovicte n Rnnm cannrvo nf cido



162 Room Squares and Related Designs

a # 3(w — a), then the resulting Room square also contains a Room subsquare
of side v.

Other generalizations of the product constructions are discussed in [172]
and [231].

Other “early” constructions for Room squares containing subsquares were
given by Wallis; see [253], [256], [260]. The first general existence result was
proved by Wallis [259] in 1974. In that paper, it was first proved that for any
odd s > 7, there is a constant n, such that an (n,s)-IRS exists if n is odd,
n> n,. At that time, no specific upper bounds could be placed on the con-
stants ng.

Concrete upper bounds were first given by Stinson in 1981 [232] using
frame techniques. It was shown there that ng < max{s + 644,6s + 9} for any
odd s > 1. (That paper also provided the first known examples of (n,3)-IRS
and (n,5)-IRS.) Further improvements were made in [235], [75], and [74]. The
following theorem summarizes the best known general existence results for
(n,5)-IRS. Since existence of an (1,5)-IRS requires n > 3s + 2, these results
are very close to best possible.

Theorem 4.5.

1. ([74),[65]) For odd s, 3 < s <15, there is an (n,5)-IRS if and only if n >
3s +2is odd.

2. ([74]) For all odd s > 37 and all odd n 2> (7s — 5)/2, there is an (n,s)-IRS.

([74]) For all odd s > 127 and all odd n > 3s + 240, there is an (n,s)-IRS.

4. ([244]) For all odd s > 393, there is an (n,s)-IRS if and only if n > 3s + 2
is odd.

@w

We present in Table 4.1 the upper bounds on 7 for 17 <s <35, updated
from [74].

The results in Theorem 4.5 also utilize the filling-in-holes constructions, but
make use of frames constructed recursively from FFC. In this way one obtains
more flexibility than in the product constructions.

The extremal case of (3s + 2,5)-IRS is especially interesting. In [259], Wallis
conjectured that a (23,7)-IRS does not exist and offered a prize of $10.00 for
a proof or disproof. In fact, no (3s + 2,5)-IRS were known to exist until Dinitz
constructed an (11,3)-IRS on the computer in 1980. This square was first pre-
sented in [231]; we have reproduced it in Figure 4.1. Using the (11,3)-1RS,

TABLE 4.1 Bounds on the existence of Room squares with subsquares

s ns < s ns < s ns < s ns <

17 67 19 69 21 71 23 71
25 95 27 97 29 99 31 101
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Stinson proved in [231] that there exists a (3s + 2,5)-IRS for all s =3 (mod8).
In 1982, Wallis disproved his own conjecture by constructing a (23,7)-IRS in
[262] (we do not know if Wallis paid himself the $10.00). Soon after, Wallis
constructed (3s + 2,5)-IRS for all odd s > 3.

Theorem 4.6 ([261]). For all odd s > 3, there is a (3s + 2,5)-IRS.

In view of Theorems 4.5 (parts 1 and 4) and 4.6, it seems extremely prob-
able that an (n,s)-IRS exists if and only if n and s are odd, n > 3s + 2, with
the single exception (n,s) # (5,1).

Finally, we note that Lindner and Rosa proved in [164] that a partial Room
square can be (finitely) embedded in a Room square, but they gave no con-
crete upper bounds on the size of the square obtained.

5 ROOM d-CUBES OF DIMENSION EXCEEDING TWO

Recall that a Room d-cube of side n is a d-dimensional array, each two-
dimensional projection of which is a Room square of side n. We have also
pointed out that a Room d-cube of side n is equivalent to d pairwise ortho-
gonal-symmetric Latin squares, or POSLS, of order n. The maximum num-
ber of POSLS of order # is denoted v(n). The existence theorem for Room
squares tells us that v(n) > 2 for all odd n > 7.

The first discussion of lower bounds for v(n) was given by Gross, Mullin,
and Wallis in 1973 in [104]. Since then, further results have appeared in [31],
[56], [57], (58], [59, [61], [66], [70], [76], [101], [114], and [117). ‘

Several results concerning v(n) were proved in [104], one of which is the
following:

Theorem 5.1. v(n) — oo as n— oo.

Gross, Mullin, and Wallis also showed that v(q) > 1+ (¢ —1)/(2*~!) when
q = 2%t + 1is a prime power and ¢ is odd. However, this bound was improved
by Dinitz [56] to v(q) > ¢ under the same conditions (as we stated in Theorem
12.5).

1)4 list of lower bounds on v(n) for n < 101 was also presented in [104]. This
list was later updated in [31] and [58]. We present the current world records in
Table 5.1. Finally, we note that a longer list of lower bounds, for n < 999, was
given in [66].

Many of the records in Table 5.1 arise from a special type of starter defined
by Dinitz in [59], which we now describe. Suppose that ¢ = 2% + 1 is an odd
prime power, where ¢ is odd. Let w be a primitive element in GF(g), and
let Co be the (umque) subgroup of G* of order ¢ and index 2%, where G*
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TABLE 5.1 Lower bounds on v(n)

n w(n)> no un)> no un)> GE
1 =o0 27 13 53 17 79 39
3 =1 29 13 55 5 81 5
5 =1 31 15 57 5 83 41
7 =3 33 5 59 29 85 5
9 =4 35 5 61 21 87 5
11 5 37 15 63 5 89 11
13 5 39 5 65 5 91 5
15 4 41 9 67 33 93 5
17 5 43 21 69 5 95 5
19 9 45 5 71 35 97 5
21 5 47 23 73 9 99 5
23 11 49 5 75 5 101 31
25 7 51 3 77 5

A starter S in GF(q) is said to be a A-quotient coset starter (or A-QCS) if
the following property is satisfied: For all pairs {x,y},{x',y'} € S, if x,x' € G
for some i, then y/x = y'/x'.

For any z € GF(q), z # 1, define C7 = (1/(z— 1))C. Given a list of A field
elements from GF(q), say, A = (o,...,aa—1), define S(A) = {{x,aix} : x€
Cf :0<i<A—1}. Note that if S(A4) is a starter, then it is a A-QCS. The
condltlons for S(A) to be a starter were given in [73] and are stated in the
following theorem:

Theorem 5.2. Suppose that q = 2%t + 1 is an odd prime power, where t is odd.
Denote A = 2%, Then S(A) is a A-quotient coset starter in GF(q) if and only
if the following conditions are satisfied:

ai¢ Cp 0<i<A-1

(aj—1)/(ai — 1) & Cj—iymoazes 050, JSA=1, i # ]

(aj —1)/(ajai — aj) ¢ Clj—iymoaze, 054, JSA=1, i #].
(aiaj — a;)/(ai — 1) ¢ C(j—iymodzes 0S5, J S A =1, i # ).
(aiaj — a;)/(aja; — aj) ¢ Clj—iymod2a; 0 < I, j<SA-1i#].

oo W

We remark that the Dinitz starters S, described in Section 2.1 are a special
case of A-QCS, since S, is the A-QCS S(a,a,...,a).

Using A-QCS, the following lower bounds were obtained in [59]. These are
all improvements over the bounds from Theorem 2.5.
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We have mentioned that v(n) >2 for all odd n>7. In fact, Dinitz and
Stinson in 1981 [70] proved that v(n) >3 for all odd n > 7. Then, in 1987,
Dinitz proved the following:

Theorem 5.4 ([61]). v(n)>S for all odd n > 11, except possibly for n = 15.

This result is proved by a combination of direct and recursive methods.
Direct methods were required for most values of n up to 355. The main ob-
servation is that the existence of two strong starters S and T in Z,, such that
S and T are orthogonal and S and —T are orthogonal, implies the existence of
five orthogonal starters, S, —S, T, —7T, and P (the patterned starter). Hence,
a Room 5-cube of side n can then be produced. The necessary starters were
constructed by a suitable modification of the hill-climbing algorithm presented
in Section 2.2 [68].

The main recursive construction for Room d-cubes uses a d-dimensional
generalization of Room frames. In general, we can define a d-dimensional
Room frame of type T' to be a d-dimensional array, each 2-dimensional pro-
jection of which is a Room frame of type 7. If there exist d orthogonal
frame starters in G\H, where |G| =g and |H| = h, then we can obtain a
d-dimensional Room frame of type /48/". Hence, Theorem 2.12 provides us
with infinite classes of d-dimensional Room frames for each d > 2.

The recursive constructions for Room S-cubes used in [61] depended heav-
ily on 5-dimensional Room frames of type 2%, u = 12, 13, 16, 17, 20, and 21.
These were also obtained from orthogonal frame starters found by computer
search.

Most of the lower bounds in Table 5.1 arise from orthogonal starters, via
Theorem 2.5, Theorem 5.3, or Theorem 5.4. The result v(9) =4 is due to
Dinitz and Wallis [76].

The only known general upper bound on v(n) is the trivial bound v(n) <
n—2 [114]. Gross, Mullin, and Wallis conjectured that v(n) < (n—1)/2 for
all n. On the other hand, Luc Teirlinck conjectured that v(n) = n—2 for all
sufficiently large n. This is probably the most interesting open conjecture con-
cerning Room squares and their generalizations.

6 NONISOMORPHIC ROOM SQUARES

Let F; and F, be Room squares of side n on symbol set S. We say that F; and
F, are isomorphic if we can obtain one from the other by any combination
of permuting the rows, permuting the columns and permuting the symbols in
S. We say that F; and F, are equivalent if they are isomorphic, or if F is
isomorphic to the transpose of F;.

More generally, we can define equivalent Room d-cubes of side n. The
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TABLE 6.1 Values IR;(n), n < 10

n d IR4(n) Reference
3 1 1

3 2 0

5 1 1

5 2 0 [200]

7 1 6 [89], [90]
7 2 6 [251], [95], [96]
7 3 1 [266]

7 4 0 [266]

9 1 396 [89], [90]
9 2 257630 [28]

9 3 267 , [27]

9 4 1 [76]

9 5 0 [76]

S, having one factors fi,..., fu. If 7 is a permutation of §, then define 7™ to
be the one-factorization having one-factors fi¥,..., f,, where f" = {{x",y"} :
{x,y} € fi}, 1<i<n Now, let F= {F,...,Fa} and G = {Gy,...,Ga} be two
sets of d pairwise orthogonal one-factorizations of K,+;. We say that F and
G are equivalent if there is some permutation 7 of the vertex set S such that
{FF,...,FF} = {G1,...,Ga}. Note that this definition of equivalent coincides
with the previous definition when d = 2.

Define IRy(n) to be the number of inequivalent sets of d pairwise or-
thogonal one-factorizations of K,+1, on the same vertex set S. When d=
1, IR4(n) just counts the number of inequivalent (or nonisomorphic) one-
factorizations of Ky +1. Also, define NR(7) to be the number of nonisomorphic
Room squares of side 7 on symbol set S. It is obvious that NR(n) < 2IRy(n).

All numbers IR4(7) have been determined for n < 10. These are presented
in Table 6.1.

For n > 10, no exact values of IR4(n) are known. Cameron proved in [40]
that InIR;(n) ~ n?/(2Inn) for sufficiently large odd n. Gross proved some
general lower bounds in [97]. Dinitz and Stinson proved a lower bound on
NR(n) in [71], which we state below in Theorem 6.1. For d > 2, no gen-
eral lower bounds on IR4(n) are known. We conjecture that for any fixed
d, IR4(n) — oo as n — oo.

Theorem 6.1 ([71]). For odd n > 153, NR(n) > 0.19¢:%4",

We can sketch the proof of this theorem. First, construct a large number of
distinct Room squares of a given side n (on a specified symbol set) using the
fundamental frame construction with input frames of types 1° and 183'. Then
divide by the maximum number of (distinct) squares that could be isomorphic
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and s are odd, then

(91Y" 29 (n1)18

NR()> et + 1

Use of Stirling’s formula then yields Theorem 6.1. We note that the constants
in Theorem 6.1 can be improved, but it does not seem possible to prove by
this method a result of the form NR(n) > cynean’, Nevertheless, we conjecture
that NR(n) > cyne” for positive constants ¢; and c;.

Also of interest is the idea of isomorphic starters. Two starters S; and S,
are said to be isomorphic if the one-factorizations they generate are isomor-
phic. Two starters §; and S, in an abelian group G are equivalent if a(S1) = S,
for some permutation a which is an automorphism of the group G. (In the
case G = Z,, a must have the form «(i) = mi (modn) for some m relatively
prime to n.) Clearly, equivalent starters are isomorphic, but the converse need
not hold. The following results have been proved concerning equivalent and
isomorphic strong starters:

Theorem 6.2 ([129], [196], [193]). Suppose that Sy and S, are isomorphic
strong starters in the group Z,. Then S and S, are equivalent if n satisfies
one of the following conditions:

1. nis an odd prime.
2. n = pq, where p and q are odd primes, p < q and q # 1 (mod p).

Theorem 6.3 ([196]). If p > S is an odd prime and n > 2, then there exist two
strong starters in the group Z,» that are isomorphic but not equivalent.

Theorem 6.4 ([196]). If p and q are odd primes, 5 < p < q and q =1 (mod p),
then there exist two strong starters in the group Zpq that are isomorphic but not
equivalent.

Finally, we mention an enumeration of distinct and inequivalent strong
starters in small cyclic groups that was done by computer in [129]. We present
these results in Table 6.2 on the following page.

7 SKEW ROOM SQUARES

In this section, we discuss skew Room squares. Let F be a Room square that
has been standardized. We say that F is skew if, given any pair of cells located
symmetrically with respect to the main diagonal, precisely one is empty. More
generally, skew frames were defined in Section 3, and it is easily seen that a
skew Room square of side 7 is equivalent to a skew frame of type 1”.
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TABLE 6.2 Enumeration of strong starters in cyclic groups
n Distinct strong starters in Z, Inequivalent strong starters in Z,
7 1 1
9 0 0
11 4 2
13 4 2
15 32 4
17 224 14
19 800 52
21 6600 555
23 27554 1267
25 158680 7934
27 1249650 69425

by Beaman and Wallis [29] in 1975 after a lengthy computer search. (It is in

fact unique up to isomorphism.)

Skew Room squares were investigated by several researchers, mainly Mullin,
Wallis, and Stinson. Wallis first proved in [257] that a skew Room square of
side n exists for all odd n > ngy, where ng is some positive integer. Then the
spectrum of skew Room squares was studied in the following papers, among
others: [19], [30], [185], [186], and [227]. The spectrum was finally determined
by 1981, when the “last” side was produced, namely, side 69, in [231]. A short
existence proof was then given by Stinson [230]; a summary of this proof is

presented in [233].

Theorem 7.1 ([233]). There is a skew Room square of side n if and only n is
odd and n # 3 or 5.

ool 49 | 37| 28 56
89 |c02 57|34 16
58 (003 69 | 24 17

36 | 78 |oo4 19 25
79 12 |oco5( 38 46
45 06| 18 | 39 | 27

26159113 o7 48

67| 14 29 |co8| 35

23 15 | 68 | 47 09
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As with Room squares, the proof is a combination of direct methods (based
on skew starters and skew-orthogonal starters) and recursive constructions (us-
ing skew frames, in particular, those of types 4%, 421, 45, and 446!).

Other than type 1%, the only class of skew frames of type 1* to be investi-
gated are those of type 2“. The following existence result is proved in [238]
and [163]:

Theorem 7.2 ([238], [163]). Let u> S5, u # 6,22,23,24,26,27,28,30,34, or 38.
Then there is a skew Room frame of type 2".

There is a generalization of skew Room squares that bears mentioning,
namely, the idea of complementary Room squares [265]. Two standardized
Room squares of order n, F and F', are said to be complementary if every
off-diagonal cell is empty in precisely one of F and F'. More generally, let
F and F' be {S;,...,S,}-frames. We say that F and F' are complementary if
every cell (s,2) € (S x S)\ Ui, (Si x S;) is filled in precisely one of F and F'.
We observe that if F is a skew frame, and F? is obtained by transposing F,
then F and F7T are complementary. However, there are cases where a pair
of complementary frames are known to exist, whereas a skew frame is not
known to exist. One example is type 26 [141].

One type of three-dimensional generalization of skew Room squares has
been studied by Lamken and Vanstone in [147]. They study three-dimensional
frames with the property that one two-dimensional projection is skew and the
other two two-dimensional projections are complementary. Several construc-
tions are given for these objects.

We will now discuss several applications of skew Room squares and skew
frames to the construction of other designs. We have already seen one ap-
plication of skew frames, namely, in the doubling construction of Section 3.
We remark that in the doubling construction, as well as in some of the other
constructions we are about to describe, the construction will also work with
complementary frames.

Skew Room squares were first introduced by Wallis in [249] and [248] as an
ingredient in certain doubling constructions for Room squares. In those pa-
pers, he proved that the existence of a skew Room square of side n implies
the existence of a Room square of side 21+ 1 [249] and a Room square of
side 2n —1 [248] (neither of the resulting Room squares will be skew). Even
though the spectrum of Room squares was subsequently determined by other
methods, skew Room squares were studied extensively, mainly for their intrin-
sic interest. However, skew Room squares have since had numerous, surpris-
ing applications to the construction of various other types of combinatorial
designs, and have become an important tool in diverse areas of design theory.
We will survey some of these applications now.

Skew Room squares appear implicitly in a 1970 construction by Mullin
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Chan-Dinitz skew starter in Z, implies the existence of a self-orthogonal Latin
square of order g.
The next application (chronologically) after [177] is the result of Giles [92].

Theorem 7.3 ([92]). If there exists a skew Room square of side s, then there is
a balanced incomplete block design with parameters (s, (),2s —2,4,6).

Proof. Construct a skew frame F of type 1° from the skew Room square.
Then, for every filled cell (x,y) of F, construct a block {x,y}UF(x,y). Itisa
simple verification that every pair of symbols occurs in six such blocks. O

Next, there are several applications to problems of nesting of Steiner triple
systems [156], [160], nesting group-divisible designs [157] and partial Steiner
triple systems [195], nesting cycle systems [161], [163], construction of almost
resolvable cycle systems [109], construction of decompositions of K, and 2K,
into wheels [47], and construction of BIBDs with block size four admitting a
blocking set [110]. Constructions of this type are surveyed in [198] and [199];
see also [162]. These constructions all have a similar flavor; we state one of
them without proof as an example. This is a construction for nested cycle
systems. An m-cycle system of order n is a partition of the edges of Ky into
cycles of length m. An m-cycle system can be nested if it is possible to assign
a point x to every cycle C, such that the set of all edges xy (y € C) also form
an edge-partition of K.

Theorem 7.4 ([163]). Let m>3 be odd, and suppose that there is a skew
Room frame of type ok Then there is an m-cycle system of order 2¥m + 1 that
can be nested.

Skew Room squares and frames have also been very useful in the con-
struction of partitioned balanced tournament designs (or, equivalently, maxi-
mum empty subarray Room squares). These are discussed further in Section
9. Lamken and Vanstone gave several constructions for these objects utilizing
skew Room squares in [141] and [145].

We also note that Horton employed skew starters in a construction for
hamiltonian path balanced tournament designs presented in [116]; see Sec-
tion 16. Finally, encryption methods using skew Room squares are discussed
in [209].

8 PERFECT ROOM SQUARES

A one-factorization F of Ko, is called perfect if the union of any two one-
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two known infinite families of P1Fs. If p is prime, then there is a P1F of K p+1
and a P1F of K3,. There are currently only 18 other values of n for which a
P1F of K3, is known to exist [217]. The smallest unsettled case is whether a
P1F of K5, exists.

Since a Room square of side # is equivalent to a one-factorization of K, 41,
this suggests the following definition. A perfect Room square is one in which
both the row and column one-factorizations of K +1 are perfect. More gener-
ally, we define vp(n) to be the maximum number of orthogonal P1Fs of K, 1.
In particular, vp(n) > 1 if and only if a P1F of K, exists.

In 1973, Anderson [2] constructed a Room square of side 15 such that one
of the two one-factorizations obtained from it was perfect. However, the first
perfect Room square was discovered in 1987 by Rosa (see [62]), who found a
perfect Room square of side 11 (hence vp(11) > 2). The two orthogonal P1Fs
are those generated from the Dinitz starters S7 and Sg in GF(11).

Several other examples of orthogonal P1Fs generated from Dinitz starters
have been found. We record these results in the following theorem:

Theorem 8.1 ([62]). vp(11) >3, vp(19) > 5, vp(23) > 9, vp(43) > 3, vp(47) >
5, vp(59) > 5, vp(67) > 17, vp(71) > 7, vp(79) > 9, and vp(83) > 17.

Using 2-QCS (as described in Section 5), the following lower bounds were
also found.

Theorem 8.2 ([62]). vp(29)> 5, vp(37) > 7, and vp(53) > 8.

Finally, we mention one other lower bound which has not appeared in the
literature. In [73], 24 different 2-QCS in GF(125) are presented, each of which
generates a P1F of Kjg. In fact, there exists a subset of 9 of these 24 P1Fs,
any two of which are orthogonal. Hence, we have

Theorem 8.3. vp(125) > 9.

Proof.  Construct GF(125) from the polynomial x3 + x? + 2, which is irre-
ducible over Zs, and use x as the primitive element. The starters are S(xg,x‘u),
S(x18’ x38)’ S(XB, x91), S(x34,x58), S(x42, x78)’ S(x46,x42), S(x“,x“), S(x81,x79),
and S(x%, x8).

Finally, we mention a generalization that has not received significant study
to date. A one-factorization F of Ky, is said to be uniform if for any
one-factors f1, f2,f3,fs € F, where fi # f, and f3 # fi, we have that fiUf,
= f3U f4. (Hence, a P1F is uniform.) Then define a uniform Room square to
be one in which both the row and column one-factorizations are uniform.
We observe that a Mullin-Nemeth starter will generate a uniform Room
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9 MAXIMUM EMPTY SUBARRAY ROOM SQUARES

Suppose that a Room square of side 2n+ 1 has an s x s subarray of empty
cells; then s < n. If s = n, then we say that the Room square is a maximum
empty subarray Room square, which we abbreviate to MESRS. We present an
MESRS of side 9 in Figure 9.1.

Maximum empty subarray Room squares were first studied by Stinson [237].
It was shown there that there is no MESRS of side 7, but that MESRS of sides
9 and 11 exist. As well, two recursive constructions for MESRS were also
described. The square of side 9 in Figure 9.1 was taken from [237]. In fact,
there are precisely two nonisomorphic examples of MESRS of side 9 [216].

The problem was further investigated by Lamken and Vanstone [141], [145],
[144] and by Lamken [134]. We summarize the existence results of these four
papers in the following theorem:

Theorem 9.1 ([141], [145], [144], [134]). Let n> 9 be odd, n # 17, 21,29,51,53,
67, or 87. Then there is an MESRS of side n.

MESRS are equivalent to several other types of arrays. The following equiv-
alences were observed in [237] and [144]:

Theorem 9.2 ([237), [144]). An MESRS of side 2n—1 is equivalent to any of
the following arrays:

1. A partitioned balanced tournament design PBTD(n).
2. A pair of almost disjoint Howell designs H (n,2n)
3. A partitionable house of side 2n.

We note that balanced tournament designs will be discussed in Section 16,
Howell designs in Section 11, and houses in Section 14.

37 28|59 |4X | 16
56 1X(47129 |38
2X 67|18 (35|49
48 3912617 |5X
19 |45 |13X | 68|27

12 |8X | 57 | 69 | 34
46|13 | 89 |7X | 25
58|79 (14|23 |6X
9X |24 36|15|78
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Finally, we mention that an application of MESRS to the construction of
semiframes is given by Rees [197].

10 BALANCED HOWELL ROTATIONS

As was noted in the introduction to this chapter, Room squares can be used
for the construction of round-robin tournaments. Round-robin duplicate bridge
tournaments with fixed partnerships are often conducted using Howell rota-
tions [93]. In a duplicate bridge tournament, every board has a north-south
direction and an east-west direction. Partnership i is said to compete with
partnership j on a particular board if they play that board in the same direc-
tion (in different rounds, of course). The scoring of the tournament is based
on competing partnerships. Hence, it is desirable to have all pairs of teams
compete equally often. This motivates the following definition:

Suppose that there are 2n teams. A tournament satisfying the following
conditions is called a complete balanced Howell rotation for 2n teams, or a
CBHR(2n).

1. Every board is played by at most one pair of teams (one in each direc-
tion) in each round.

- Every team plays every other team exactly once during the tournament.
. Every team plays exactly one board in each round.
. Every team plays each board exactly once.

i A W N

- Every team competes equally often against any other team.

Parker and Mood first brought these schedules to the attention of mathe-
maticians in a 1955 paper [194]. Schellenberg gave a formulation of CBHR(2n)
in terms of Room squares in [210], [211]. Suppose we start with a Room
square of side 2n — 1, and replace every unordered pair {x,y} by one of the
two ordered pairs (x,y) or (y,x). The resulting array is called an ordered
Room square. From each row of the ordered Room square construct a pair
of complementary blocks—one block consisting of the elements that occur as
the first coordinate of an ordered pair in that row, and one block consisting
of the elements that occur as the second coordinate. It is possible that the
resulting set of 2(2n — 1) blocks comprise a balanced incomplete block design
having parameters (2n,2(2n—1),2n—1,n,n—1). If so, the (ordered) Room
square is said to be a balanced Room square and is denoted BRS(2n). If we let
rows, columns, and symbols of a BRS(2n) correspond, respectively, to boards,
rounds, and teams in a round-robin tournament, we obtain the following:

Theorem 10.1 ([210], [211]). The existence of a complete balanced Howell ro-
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Figure 1.1 provides an example of a balanced Room square of side 7, if the
pairs in each cell are ordered as given there.

In [194], it is shown that a necessary condition for the existence of a
CBHR(2n) is that 2 =0 (mod4). In that paper, CBHR(8), CBHR(12), and
CBHR(16) were constructed. The necessary condition was reproved in [34] by
showing that existence of a CBHR(2r) implies the existence of a Hadamard
matrix of order 2n.

Let G be an abelian group of order 2n — 1. Suppose we replace every pair
{x,y} in a starter in G by one of the two possible ordered pairs (x,y) or
(y,x). Write the resulting ordered starter as S = {(si,t) : 1<i <n—1}. De-
fine Ay = {s; : 1<i<n-—1} and Ay ={t; :1<i<n-1}, and for j=12,
define AA; to be the multiset {£(x—y): x,y € Aj, x #y}. If the multiset
union AA; UAA, contains every nonzero element of G equally often, then
A; and A, are said to be a pair of supplementary difference sets, and the (or-
dered) starter is said to be balanced. If A; and A, are developed through G,
then a (21,2(2n—1),2n—1,n,n— 1)-BIBD is constructed. Thus, the existence
of a balanced starter and adder in G implies the existence of BRS(2#). In
[34], it was shown that a balanced starter and adder exists in GF(g) whenever
g =3 (mod4) is a prime power; hence, we have the following result:

Theorem 10.2 ([34]). A BRS(q + 1) exists for all prime powers q =3 (mod 4).

In [210], [211], Schellenberg gave a composition theorem for BRS which
constructs BRS(4n) from BRS(2n) under certain conditions. In particular, if
2n—1 is a prime power congruent to 3 (mod4), then a BRS(4n) exists.

Theorem 103 ([210], [211]). A BRS(2q + 2) exists for all prime powers q =
3 (mod4).

Schellenberg’s construction was modified by Hwang, Kang, and Yu [127]
to give sufficient conditions for existence of a BRS(4n) in terms of a special
type of skew balanced starter of order 2n. Let S = {(s;,4;) : 1 <i<n—1} be
a skew balanced starter in an abelian group G of order 2n — 1. We say that §
is symmetric if {s; : 1<i < n—1}={t:1<i<n-1}

Example 10.1. A symmetric skew balanced starter in Zj3 is

{(2,49),(6,12),(5,10),(8,9),(11,1),(7,3)}-

In [127], it is shown that the existence of a symmetric skew balanced starter
(or, SSBS) in an abelian group of order 2n—1 implies the existence of a

BRS(4n). Since then, symmetric skew balanced starters have been studied in
B OEESR TAER S R & AR ~ 1981 in
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due to Du and Hwang [81]:

Theorem 10.4 ([81]). There exists a symmetric skew balanced starter in GF (@)
Jor all prime powers g =2%t+1, a>2, t>3, t odd. Hence, a BRS(2q +2)
exists for all such q.

Du and Hwang proceed as follows: Suppose that ¢ = 2%¢+ 1 is an odd
prime power, where ¢ is odd and a > 2. Let w be a primitive element in
GF(q), and let G be the (unique) subgroup of G* of order ¢ and index
2%, where G* denotes the multiplicative group GF(q)\{0}. Denote the co-
sets of Cp by G (0<i<2*-1), where C, =w'Cy, and denote A =221,
Suppose that u,v € C;, where j is odd, and suppose that (u+1)(v+1) and
(u—1)(v — 1) are both quadratic nonresidues. Then

{(ux,x) : XECzUC4U"'UCA}U{(’Ux,X) 4 XECA+2UCA+4U"'UC2A}

can be shown to be an SSBS in GF(q). Jacobi sums are then used to prove
the existence of such « and v, provided ¢ # 1. The existence of SSBS in GF(q)
remains unresolved when ¢ is a Fermat prime.

Two other papers that discuss CBHR are [122] and [124]; however, note
that [122] contains an error ([9]). Another special type of starter that has ap-
plications to the construction of CBHR are the partitionable starters; see [125]
and [77], for example.

Several researchers have also investigated geometric constructions for bal-
anced Room squares. In 1982, Anderson [9] gave a simple construction for
BRS(2") for all odd n> 3 involving a hyperplane and a pencil of lines in the
projective space PG(n — 1,2). Fuji-Hara and Vanstone [84] give the following
construction for BRS using affine geometries. A skew class in the affine ge-
ometry AG(n,2) is a set of lines, no two parallel, that partitions the 2" points.
A skew resolution is a set of skew classes that partitions the set of lines in
the geometry. It is shown in [84] that the existence of a skew resolution in
AG(n,2) implies the existence of a BRS(2"). They also exhibit a skew res-
olution of AG(4,2). Using a modification of the hill-climbing algorithm for
strong starters [68], skew resolutions are found in [239] for AG(6,2), AG(8,2),
and AG(14,2). Then, applying recursive constructions from [85], it is shown
in [239] that there is a skew resolution in AG(m,2) if m = n(2' — 1), where
n=4,6,8or14,and i >2; orif m = (n—1)(2' = 1)+ 1, where n =4, 6, 8 or
14, and i > 2. As a result of these constructions, we have the following:

Theorem 10.5. There exists a BRS(2") if n is odd, or if n is even and 4 <
n<18.

Summarizing Theorems 10.2-10.5, BRS(#) exist for all n =0 (mod4) such
that 8 < n < 100, with the two possible exceptions n = 36 and n = 92.
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We have noted that a CBHR(2n) exists only if n is even. In the case 2n =
2 (mod4), it is possible to construct tournaments that satisfy all the properties
of a CBHR, except that every team opposes every other team exactly twice.
This motivates the following definition: A CBHRx(2n) is a tournament that
satisfies properties 1, 3, 4, and 5 of a CBHR(2r), as well as the following
property 2':

2'. Bvery team plays every other team exactly A times during the tourna-
ment.

We can also interpret a CBHR(21) as a balanced Room square BRS,)(2n),
where we include the parameter A to indicate that every pair of symbols occurs
in precisely A cells.

So, if 2n = 2 (mod4), it is of interest to construct BRS,(2n). The following
theorem of Hwang gives in infinite class of such BRS.

Theorem 10.6 ([121]). There exists a BRSz(q + 1) for all prime powers q =
1 (mod4).

This result was reproved in [18] using the language of starters, adders, and
supplementary difference families. In [18], the authors also give a construc-
tion for some BRS;(2n) that can be decomposed into two Room squares of
side 21 — 1. Moreover, the first examples of BRS;(2n) were obtained when
2n =2 (mod4) and 2n — 1 is not a prime power. In particular, BRS;(2n) were
found for 2n = 22,34,66, and 70. The construction employs strong starters sat-
isfying some additional properties, which were found by a modification of the
hill-climbing algorithm.

At present, there are only five orders 2n = 2 (mod4) less than 100 for which
existence of a BRS,(2n) is unknown; these are for 2n = 46,58,78,86, and 94.

We also note that a weaker version of CBHR, namely, balanced Howell
rotations, have also recieved considerable study [107], [123], [78], [80]. These
schedules drop the notion of “round” and hence do not correspond to Room
squares. For a survey of CBHR and related designs in the context of round
robin schedules, see Hwang [126].

11 HOWELL DESIGNS

Let S be a set of 2n elements called symbols. A Howell Design H(s,2n) (on
symbol set S) is an s x 5 array, F, that satisfies the following properties:

1. Every cell of F either is empty or contains an unordered pair of symbols
from S.

= PR o~ st mmal waser and anlhmn Af B



Howell Designs 177

a0 13 | 2b
23 | al | 0b
3b | a2 |01
1b | 02 a3

Figure 11.1 An H(4,6).

Note that a trivial necessary condition for the existence of an H(s,2n) is
that s + 1 < 2n < 2s. Also, an H(2n — 1,2n) is just a Room square of side 2n —
1. We present an H(4,6) in Figure 11.1.

It is easy to see that two orthogonal one-factorizations of G, an s-regular
graph on 2n vertices, give rise to an H(s,2n), and conversely, the existence of
an H(s,2n) implies the existence of a pair of orthogonal one-factorizations of
some s-regular graph on 2n vertices, G, which we call the underlying graph of
the Howell design.

Howell designs were defined by Hung and Mendelsohn in 1974 in [120].
However, some particular Howell designs were constructed earlier for use in
bridge tournaments. For example, an H(9,12) is presented in Beynon’s 1943
book [35, p. 22]. Howell designs have been extensively studied since Hung
and Mendelsohn’s paper. See, for example, the following papers: [4], [S], [6],
[8], [10], [12], [14], [15], [16], [67], [137], and [206]. The existence of Howell
designs has been completely determined in [20] and [234] as follows:

Theorem 11.1 ([20], [234]). Let s and n be positive integers, where n is even,
and s +1 < 2n < 2s. Then there exists an H(s,2n) if and only if (s,2n) # (2,4),
(3,4),(5,6), or (5,8).

We note that a proof of nonexistence of H(2,4) is trivial. The ordered pairs
(3,4) and (5,6) correspond to (nonexistent) Room squares of sides 3 and 3.
The nonexistence of an H(5,8) is much more difficult to establish; a reason-
ably short proof is given in [207].

The existence proof uses a variety of direct and recursive constuctions. One
special type of Howell design that is very useful in recursive constructions is
the *-design. An H*(s,2n) can be defined as an H(s,2n) whose underlying
graph contains an independent set of size 2n—s (which is the maximum pos-
sible). Hung and Mendelsohn [120] gave a starter-adder construction for x-
designs, and proved that all designs H*(n + k,2n) exist for 0 <k <10, with
the exceptions of H(2,4), H(3,4), H(5,6), and H(5,8) (which do not exist,
as noted above), and with the possible exceptions corresponding to k =1,
n even.
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Howell n-starter in G is a set
S={{spt;}:1<i<s—n}U{{si}:s—-n+1<i<n}
that satisfies the following two properties:

1. {s;:1<i<n}u{s:1<i<s—n}=G\{0}.
2. (Si——t,')%:t(sj'—tj) if i # j.

If S is a Howell n-starter, then a set 4 = {{a;} : 1 <i < n} is defined to
be an adder for S if the elements in A are nonzero and distinct, and the set

S+A={{si+a,ti+a;}:1<i<s—n}U{{s; +a;} is—n+1<i<n}

is again a Howell n-starter. If 4 is an adder for S, then an H*(s,2n) exists
[120]. In the case where the group G is cyclic, the resulting Howell design will
be termed cyclic.

In 1977, Anderson [3] discovered a method that often permits the construc-
tion of many different cyclic H(s,2n) (for a given odd value of s) by altering
a particular strong starter in Zs. He used this construction to show that an
H(s,2n) exists for s odd, 3<s <51, s +1<2n< 25, n # s — 1, with the single
exception of H(5,6). In 1980, Dinitz and Stinson used the hill-climbing algo-
rithm for strong starters in conjunction with Anderson’s technique to extend
the result to all odd s < 1000 [67]. Anderson was also able to prove several
general results using the same construction. For example, he proved in a 1981
paper with Leonard [17] that an H(p,2n) exists if p=35 (mod8) is a prime,
p>5,p+1<2n<2p,andn# p-—1

All the results in the previous paragraph omitted the class of designs H(n +
1,2n), n even. (In fact, a cyclic H(n + 1,2n) does not exist if n is even [120].)
The existence of this class of designs was completed in 1981 by Schellenberg,
Stinson, Vanstone, and Yates [213]. Another class that was studied at about the
same time was the class of designs H(2m,2m + 2); Schellenberg and Vanstone
[215] proved that these designs exist, provided m > 1.

Shortly thereafter, several new recursive constructions were developed that
lead to the completion of the spectrum of Howell designs of odd side in 1982
by Stinson [234]. Then the spectrum of Howell designs of even side was de-
termined in 1984 by Anderson, Schellenberg, and Stinson [20]. The proof uses
similar recursive constructions but also depends heavily on direct construc-
tions for H*(2¢,2n) and H*(44,2n) for ¢ an odd prime power, q #3,5,0r9.
We should also note that the existence proof for designs of even side can be
somewhat simplified by a subsequent direct construction of Schellenberg [212]
for designs H*(6¢,2#), ¢ an odd prime power, g # 3,5, or 9.

Even though existence of Howell designs is completely determined, exis-
e o€ . Anilicin wncmnian smvacaload Wa nate that an H*(A 12) dnec nnt
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of order 6), but Hung and Mendelsohn constructed an H(6,12). This is the
only known case where an H(s,2n) exists but an H*(s,2#x) does not exist.

A more difficult question is to ask which graphs are the underlying graphs
of Howell designs. Of course, the underlying graph of an H(2n — 1,2n) is the
complete graph K3,. The underlying graph of an H(2m,2m + 2) is the cocktail
party graph K, +» — f, where f is a one-factor. Also, an H(s,2s) with under-
lying graph K s is equivalent to a pair of mutually orthogonal Latin squares of
order 5. Existence or nonexistence of Howell designs with specified underlying
graphs has been determined for all graphs on at most 10 vertices [207], [218],
but the general problem seems hopeless at present.

We can also consider questions involving higher-dimensional designs. Gen-
eralizing to higher dimensions, we define a d-dimensional Howell design
Hy(s,2n) to be a d-dimensional array which satisfies property 1, such that
each two-dimensional projection is an H(s,2n). We refer to an Hj(s,2n) as a
Howell cube. Clearly, an Hy(s,2n) is equivalent to d mutually orthogonal one-
factorizations of the underlying graph. Let v(s,2n) denote the maximum value
of d such that an Hy(s,2n) exists.

Very little is known concerning upper bounds for v(s,2n). It is very easy to
see that v(s,2n) < s — 1. This bound can be attained with equality for under-
lying graphs K when s is a prime power (since v(s,2s) is at least as large
as the maximum number of mutually orthogonal Latin squares of order s, and
s —1 MOLS of order s exist if 5 is a prime power). However, it seems unlikely
that this bound can be met with equality if s > n. There is a conjectured up-
per bound, namely, v(s,2n) < n— 1 [207]. Note that this conjectured bound is
stronger than the bound s — 1 if s > 1, and if s < n, then v(s,2n) < 1, anyway.
The two bounds agree if s = n. Also, there are infinitely many cases where
v(s,2n) > n—1, as follows:

Theorem 11.2. The following graphs on 2n vertices have at least n — 1 orthog-
onal one-factorizations:

1. Ky, if 2n—1=3 (mod4) is a prime power, or 2n = 10.

2. Ky, if nis a prime power.
3. Ka, minus a one-factor, if 2n =2/ +2, j > 2.

Proof. Result 1 follows from Theorem 2.4 and the fact that v(9) = 4 (Table
5.1). The one-factorizations of the graphs in result 2 are equivalent to mutually
orthogonal Latin squares, so this result is well-known. The result 3 is proved
in [142]. O

Values for v(s,2n), 2n < 10, are as follows:

2l AN — 2 AN — /K AN — R QN — 1
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TABLE 11.1 Values NH,(s,2n), 2n < 10

s 2n d NH,(s,2n) Reference
2 4 1 1

3 6 1 2

3 6 2 1

4 6 1 1

4 6 2 1

4 8 1 16 [207]
4 8 2 1 [207]
4 8 3 1 [207]
5 8 1 19 [207]
5 8 2 0 [120], [207]
6 8 1 13 [207]
6 8 2 3 [207]
5 10 1 3472 [207]
5 10 2 6 [207]
S 10 3 1

5 10 4 1

6 10 1 13277 [207]
6 10 2 18 [207]
7 10 1 14241 [207]
7 10 2 901 [207]
8 10 1 3192 [218]
8 10 2 18220 [218]
8 10 3 3 [218]
8 10 4 1 [218]

v(4,8) = v(7,8) = 3.
v(5,10) = v(8,10) = v(9,10) = 4.

Note that these values do not violate the conjectured upper bound.

It is also of interest to consider nonisomorphic Howell designs. Let IR4(G)
denote the number of inequivalent sets of d pairwise orthogonal one-factori-
zations of a graph G. Also, let NHg(s,2n) denote the number of nonisomor-
phic d-dimensional Howell designs H,(s,2n). Evidently, NHy(s,2n) =
36 IR4(G), where the sum is taken over all s-regular graphs G on 2n ver-
tices. The nonisomorphic one-factorizations and (d-dimensional) Howell de-
signs have been enumerated (for all &) for all graphs on at most 10 vertices
[207], [218]. Values of NH,(s,2n), 2n < 10, s < 2n—2, are presented in Table
11.1 (the values NHy(2n — 1,2n) = IR4(K3,) were already tabulated in Table
6.1).

An enumeration of one-factorizations and Howell designs for several inter-

esting graphs on 12 and 14 vertices has been done in [219]. In particular, we
LA mnmtine dhna avintannan Af a Tawall mcha /A 1) Ane tn Rriclell 1271



Howell Designs 181

the only known case where v(s,2s) exceeds the maximum number of mutually
orthogonal Latin squares of order s. Also, a Howell cube H3(7,12) is shown
in [219].

We should also mention that Colbourn and Colbourn prove in [45] that the
problem of determining the isomorphism of two Howell designs H(s,2#n) can
be decided in time O(nCUosM),

Other special types of Howell designs that have received study are sx-
designs, skew designs, complementary designs, and *-complementary designs.
We briefly discuss ++-designs and skew designs now. An H**(s,2n) is an
H(s,2n) that satisfies the following two additional properties:

1. The H(s,2n) contains an empty (s — n) x (s — n) subarray.

2. There exists a transversal of the remaining n rows and # columns that
forms a one-factor of the symbol set.

It is not difficult to see that an H**(2n — 1,2n) is an MESRS of side 2n — 1,
and conversely. Other *+-designs proved useful in the existence proofs in [234]
and [20].

An H(2m,2m + 2), say, H, is said to be skew if there exist two symbols a, b,
where {a,b} is not an edge of the underlying graph, such that the following
properties are satisfied:

1. Denote the 2m cells of H that contain a by T,, and denote the 2m cells
of H that contain b by 7. Then T, UT}, consists of the 2m cells on the
diagonal of H (e.g., D), and 2m other cells which form a transversal of
cells (e.g., D') of H, such that D' is symmetric with respect to D (i.e., a
cell (i,j) € D' if and only if cell (j,i) € D').

2. Given any cell (i,j) ¢ D UD', precisely one of cell (i, ) and cell (j,i) is
empty.

Note that the H(4,6) in Figure 11.1 is skew. The following result on skew
Howell designs was proved by Lamken and Vanstone [152]:

Theorem 11.3 ([152]). There exists a skew H(2m,2m + 2) for all m > 2, with
the exception m = 3, and with the possible exceptions m =5 and 9.

We defined subsquares of Room squares in Section 4. In an analogous fash-
ion, we can define sub-Howell designs of Howell designs: If a subarray of an
H(s,2n) is itself an H(z,2m), then we say that the subarray is a sub-Howell
design. Howell designs containing sub-Howell designs were studied by Zhu
[271] and by Dinitz and Lamken [64]. In [64], it is shown that there is an
H(2s — 2,2s) containing a sub-H(4,6) for all s > 8. Other results can be found
in [64] as well.

TrTr 1 1 = T 1 1 1 1 B LS
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Howell movement. The movement is said to be complete if s = 2n —1 (i.e., the
Howell design is a Room square); otherwise, it is incomplete. For the pur-
poses of bridge tournaments, it is desirable that the cyclic Howell design have
the property that the £ filled cells in any row be adjacent. Such a design is de-
fined to be compact. In terms of the starter-adder construction, it is equivalent
to require that the adders used are precisely the elements —i, where 0 <i <
n—1.

The first constructions for compact cyclic Howell movements seem to be
due to Sam Gold [221, p. 127]. He constructed several specific designs that
are widely used in practice today. Some general existence and nonexistence
results for compact Howell movements are discussed in [221]. We summarize
these as follows:

Theorem 11.4 ([221], [51]). If there exists a compact cyclic Room square of
side 2n — 1, then n is odd.

Theorem 11.5 ([221]). Suppose that 0 <t < 3 and n > 2t + 1. Then there exists
a compact cyclic H(n +t,2n).

12 ORTHOGONAL STEINER TRIPLE SYSTEMS

A Steiner triple system of order n, or STS(n), can be defined to be a (1,3, 1)-
BIBD. The necessary and sufficient conditions for the existence of an STS(n)
is that n = 1,3 (mod6). Two STS(n) on the same point set, say, (X,A) and
(X,B), are said to be orthogonal provided the following properties are satis-
fied:

1. ANB=0.
2. If {u,v,w} and {x,y,w} € A, and {u,v,s} and {x,y,t} € B, then s # 1.

Example 12.1. 'Two orthogonal Steiner triple systems of order 7 are

A = {{1’2’3}’ {1’4’5}’ {1’ 6’7}’{2’4’6}’{2’577}’{3’4’7}’ {3’5’6}}5
B ={{1,2,7},{1,3,4},{1,5,6},{2,3,6},{2,4,5},{3,5,7},{4,6,7}}.

Orthogonal STS(n) will be denoted by OSTS(n). OSTS(n) can be used
to construct a Room square of order n (or, equivalently, a pair of orthogonal
one-factorizations of order »n + 1). Indeed, OSTS(n) were originally introduced
in 1968 by O’Shaughnessy [191] (see also [192]) as a method of constructing
Room squares. A Room square is obtained from OSTS(n) as follows. Let oo

be a symbol not in X. We construct an array with rows and columns indexed
her V' Tiret mlana fan vl in call (v ¥ far all v 2 ¥ Then for everv nair
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OSTS(n) are known to exist if n =1 (mod6) is a prime power [176]. Also,
the set OSTS = {n :there exists an OSTS(n)} is PBD-closed [153]. Define P; ¢
to be the set of prime powers congruent to 1 (mod6). In [184] it was proved
that there is an (n, P16)-PBD (and hence n € OSTS) if n =1 (mod6) and n >
1927. There remained 31 values of 7 =1 (mod6) less than 1927 for which an
(n, P16)-PBD was not constructed. OSTS were constructed for two of these 31
values in [243], and the following theorem results.

Theorem 12.1 ([184], [243]). If n=1 (mod6), n > 7, and n # 55,115,145,205,
235, 265, 295, 319, 355, 391, 415, 445, 451,493,649, 655,667,697, 745,781, 799, 805,
1243,1255,1315,1585,1795,1819, or 1921, then there exist a pair of orthogonal
Steiner triple systems of order n.

Less is known regarding OSTS(#n) for n =3 (mod6). First, there do not ex-
ist OSTS(9) [178]. The only small examples of OSTS(n) (i.e. n < 100) known
to exist are n =15 [91] and n = 27 [201].

Using recursive constructions, the following result was proved in [243]:

Theorem 12.2 ([243]). For any n > 27363, n =3 (mod®6), there exist a pair of
orthogonal Steiner triple systems of order n. Further, a pair of orthogonal Steiner
triple systems of order n exist for all n = 3(mod6), 3 < n < 27363, with at most
918 possible exceptions.

Gibbons has enumerated the existence of non-isomorphic OSTS(#) for n <
15 in [91]. For n =7 and n = 13, there is a unique example (up to isomor-
phism). We have already mentioned that there is no OSTS(9). In the case
n = 15, Gibbons showed that there are precisely 19 nonisomorphic OSTS(15).
Some other papers that studied OSTS are [159], [169], [179] and [187].

Finally we mention a few interesting results that have been obtained regard-
ing sets of d mutually orthogonal STS(%), d > 2 (of course, a set of d mutually
orthogonal STS(#) can be used to construct a Room d-cube of side n). Sets
of mutually orthogonal STS(n) were first studied by Gross in [99], [100]. In
[99], he found six orthogonal STS(31). In [100], the following general results
are proved:

Theorem 12.3 ([100]). For all prime powers q =7 (mod12), g > 174, there
exist four mutually orthogonal STS(q).

Theorem 12.4 ([100]). For any positive integer d, there exists a positive integer
Z(d), such that there exist d mutually orthogonal STS(v) if v > Z(d) and v =
1 (mod6).

Several other small examples of sets of mutually orthogonal STS are given
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Finally, Zhu showed in [270] that there are three mutually orthogonal
STS(2" — 1) if ged(n,6) = 1. He also found six mutually orthogonal STS(127).

13 ORTHOGONAL EDGE-COLORINGS OF GRAPHS

Let G be a graph, let k be a positive integer, and let C be a set of k elements
called colors. A proper k-edge-coloring of G is an assignment of one color
(chosen from C) to each edge of G, so that no two edges having the same
color are incident with a common vertex. Henceforth, we will refer to a proper
k-edge-coloring simply as a k-coloring. Note that a one-factorization of a k-
regular graph induces a k-coloring of that graph. Orthogonal colorings are
studied in the survey by Alspach, Heinrich, and Liu [1].

Suppose that f is a k-coloring of a graph G using colors in C and g is a k'-
coloring using colors in C’' (we can regard f and g as functions f : E(G) — C
and g : E(G) — C', where E(G) denotes the edge set of G). We say that f
and g are orthogonal colorings if, for any edges e,e’' € E(G), (f(e),g(e)) =
(f(e"),g(e") implies that e = ¢’ (i.e., if two edges receive the same colors in
one of the two colorings, then they receive different colors in the other color-
ing). Orthogonal colorings generalize the idea of orthogonal one-factorizations.

Just as we can construct a Room square of side »# from a pair of orthogonal
one-factorizations of K,+1, and a Howell design H(s,2n) from a pair of or-
thogonal one-factorizations of some s-regular graph on 2n vertices, so too can
we construct a rectangular array from a pair of orthogonal colorings. If C and
C' are the color sets of the two colorings, then the dimensions of this array
will be |C| x |C’|. Each edge of the underlying graph G will appear in one cell
of the array, and conversely, each cell of the array will either be empty or con-
tain an edge of G. Further, each point occurs in at most one cell of any row or
column. In the case where the underlying graph G is r-regular and both color
classes have k colors, the resulting array is called a V-square and is denoted
V(k,r;v). Note that a V(n,n;n + 1) is equivalent to a Room square of side n,
and more generally, a V(s,s;2n) is equivalent to a Howell design H(s,2n).

As an example, we present a V(4,3;10) in Figure 13.1. The underlying graph
is the Petersen graph.

Orthogonal colorings were introduced in [25], and several interesting results
are proved there. In the following theorem, A denotes the maximum degree
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of a vertex in a graph G, and x' denotes the edge-chromatic number:

Theorem 13.1 ([25], [1]). If k1 and k, are integers such that ky > ', ko >
2(ky + A —2), and kiky > v, then G has a pair of orthogonal colorings using
k1 and k; colors, respectively.

A particularly interesting subset of V-squares are those where every cell is
filled, namely, when vr = 2k2. Such V-squares are called crowded. Necessary
and sufficient conditions for the existence of crowded V-squares were deter-
mined in [26].

Theorem 13.2 ([26]). A crowded V-square V(k,r;2k?/r) exists if and only if
one of the following two conditions are satisfied:

1. r = sm?, where s is odd and square-free, and (k,r) = (s(m? + mn),sm?)
for some n > 0.

2. r =2sm?, where s is odd and square-free, and (k,r) = (s(2m? + mn),
2sm?) for some n> 0; and (k,r) # (2,2).

Another generalization of orthogonal one-factorizations of K, is to start
with a multigraph instead of a graph. If we start with the multigraph AK}, 41,
we obtain a generalization of a Room square called a A-square and denoted
AS(n,A), which satisfies the following properties:

1. Every cell either is empty or contains an unordered pair of symbols from
S (where |S| = n+1).
2. Each symbol of S occurs once in each row and column.

3. If two pairs of symbols occur in two cells of any given row (column),
then they do not occur in any two cells of any column (row).

A AS(n, ) will have An rows and columns, since that quantity is the degree
of the multigraph AK, ;. Clearly, a AS(n,1) is equivalent to a Room square
of side n.

There has recently been some interest in the construction of one-factori-
zations of AK, +1 having the property that it is impossible to partition the set of
one-factors into one-factorizations of A1 K, +1 and A2K,,+1, where A1 + Az = A.
Such one-factorizations are called indecomposable, and they have been studied
in [46] and [24]. Obviously, if we place A copies of a Room square of side 7 on
the diagonal of a square array of side An, we obtain a AS(n,A). If we do this,
however, then both the row and column one-factorizations have the property
that they can be partitioned into A one-factorizations of K, +1, and hence are
highly decomposable.

This dlscussmn suggests the problem of finding orthogonal mdecomposable
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Theorem 13.3 ([63]). For all odd n > 11, there exists a pair of orthogonal sim-
ple indecomposable one-factorizations of 2K, +1.

Another generalization of a Room square is called a Kirkman square. A
Kirkman square KSy(n + 1,p,)) is a square array of side An/p that satisfies
the following properties:

1. Every cell either is empty or contains an unordered pair of symbols from
S (where |S| =n+1).

2. Each symbol of S occurs exactly p times in each row and column.

3. Every unordered pair of symbols occurs in exactly A cells of the array.

We observe that if condition 3 of the definition of A-square is deleted, then
we get a Kirkman square KS;(n + 1,1, A).

The spectrum of KS;(n + 1,1, A) has been completely determined in [140],
[139], [143], and [264] as follows.

Theorem 13.4 ([140], [139], [143], [264]). A KSa(n+ 1,p,A) exists if and only
if \n=0 (mod ), p(n + 1) is even, A > p?/2, n+ 1> 2X/(2A — p?), and (n,p, \)
# (3,1,1) or (5,1,1).

In [136], Lamken proved the existence of KSy(n+1,1,A) that cannot be
decomposed into two squares KSy(n+ 1,1,A1) and KSz(n+1,1,A2) (where
A+ Ay =), forall odd n >3 and all A > 2.

14 HOUSES

Of course, a Room square of even side does not exist. The following approxi-
mation is called a house (note that these were not named after T. G. House).
Let n be even, let S be a set of n elements called symbols, and let f be a
one-factor of S. A house of side n (on symbol set S) is an n x n array, H, that
satisfies the following properties:

1. Every cell of H either is empty or contains an unordered pair of symbols
from S.
2. Each symbol of S occurs once in each row and column of H.

3. Every unordered pair of symbols occurs in precisely one cell of H, except
for the pairs in f, each of which occurs in precisely two cells of H.

4. Each of the first two rows of H contains the pairs in f.
5. Every column of H contains one pair from f.

In Figure 14.1, we present a house of side 6. This array was first displayed in
[228], although it was not called a house there.
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12 34 56
12 34 56
35 16 24
46 15 (23
45 26 13
36|25 14

Figure 14.1 A house of side six.

son and Wallis investigated the existence of houses in general and determined
their spectrum.

Theorem 14.1 ([242]). There exists a house of side n for all even n > 6.

In [242], some other applications of houses to the construction of Room
squares with subsquares are given. One of the constructions for houses given
in [242] is a starter-adder type construction. It was shown in [242] that a house
of side 2(q + 1) could be obtained by this method if g =1 (mod4) is a prime
power. Anderson [11] proves a similar result when ¢ =3 (mod4) is a prime
power, g > 7.

A house H of side 2n having repeated one-factor f is called partitionable
if it contains two disjoint n x n subarrays, each of which is a Howell design
H(n,2n) containing f as a row. Lamken and Vanstone observe in [144] that
the existence of a partitionable house of side 2n is equivalent to the existence
of a maximum empty subarray Room square of side 2n — 1 (Section 9).

15 ORTHOGONAL ONE-FACTORIZATION GRAPHS

If H is a graph and Fi,...,F, are one-factorizations of H, then we can de-
fine a graph with vertex set Fj,...,F,, in which 7 F; is an edge if F; and
F; are orthogonal one-factorizations. This graph is called an orthogonal one-
factorization graph, or OOFG, with underlying graph H. If G is any (finite)
graph, then we say that G is realizable as an OOFG with underlying graph H
if there is an OOFG with underlying graph A which is isomorphic to G.

When the underlying graph is the complete bipartitie graph K, ,, an OOFG
is referred to as an orthogonal Latin square graph, or OLSG(n), since the
existence of a pair of orthogonal one-factorizations of K, is equivalent to
the existence of a pair of orthogonal Latin squares of order n. OSLG were
investigated by Lindner, Mendelsohn, Mendelsohn, and Wolk in a 1979 paper
[158]. In that paper, they proved the following theorem:
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Further results on OLSG have been obtained by Bennett [32], Bennett and
Mendelsohn [33], and Fu [82], [83]. Given a Latin square L, one can obtain six
Latin squares by interchanging the roles of rows, columns, and symbols. These
six squares are called the conjugates of L. In [33], it is shown for all n > 43 that
the 6-cycle can be realized as an OLSG whose vertices are the six conjugates
of some Latin square of order n. In [32], it is shown for all n > 2207 that K
can be realized as an OLSG whose vertices are the six conjugates of some
Latin square of order n.

Dinitz investigated the case of OOFG where the underlying graph is the
complete graph. He proved a result analogous to Theorem 15.1.

Theorem 15.2 ([60]). For any finite simple graph G, there exists an integer ng
such that G is realizable as an OOFG with underlying graph K, for all n > n.

For a finite simple graph G, define the spectrum of G to be Spec(G) = {n :
G is realizable as an OOFG with underlying graph K, }. Clearly, the existence
of a Room d-cube of side n implies that n + 1 € Spec(Ky). From the results
of Section 5 on Room d-cubes we have the following:

Theorem 15.3. Spec(Kz) = {n > 8,n even}; Spec(K3) = {n > 8,n even};
Spec(K4) = {n > 10,n even}; and {n > 12,n even, n # 16} C Spec(Ks) C {n >
12,n even}.

The spectra for some other graphs is also determined in [60]. We can im-
prove the result given in [60] for Spec(Cs), where Cs denotes the cycle of
length 6.

Theorem 15.4. If n > 24 and n is even, then n € Spec(Cs).

Proof. If n> 24, then there exist a pair of orthogonal one-factorizations
of K, that contains a pair of orthogonal sub-one-factorizations of Kg (Theo-
rem 4.5). Delete all edges from the sub-one-factorizations of Kg, and call the
remaining partial one-factorizations F and G. Let A, B, and C be three or-
thogonal one-factorizations of Kg. Define FU A, FUB, F UC, GUA, GUB,
and GUC in the obvious way. These six one-factorizations realize Cs. O

We summarize the remaining spectra discussed in [60] in the next theorem.
Note that P; denotes the path with i vertices.

Theorem 15.5 ([60]).

1. Spec(Ps3) = {n > 8,n even}.
2. Ifi=4o0r5,n>24and nis even, then n € Spec(P;).
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16 BALANCED TOURNAMENT DESIGNS

Let S be a set of 2n elements called symbols. A balanced tournament design
of order n (on symbol set S) is an nx (2n—1) array, F, that satisfies the
following properties:

1. Every cell of F contains an unordered pair of symbols from S.

2. Each symbol of S occurs once in each column of F.

3. Each symbol of S occurs once or twice in each row of F.

4. Every unordered pair of symbols occurs in precisely one cell of F.

In the following, we present a balanced tournament design of order 3.

16 35 23 45 24
25 46 14 13 36
34 12 56 26 15

A balanced tournament design of order n will be denoted BTD(n). Intu-
itively, a BTD(n) is formed by finding a one-factorization of K,, that is or-
thogonal to a “near two-factorization” of K,,. Gelling and Odeh introduced
balanced tournament designs in 1973 in [90]. Haselgrove and Leech estab-
lished existence for n=0,1 (mod3) in [108]. The spectrum was completed by
Schellenberg, van Rees, and Vanstone [214] in 1977. They proved the follow-
ing:

Theorem 16.1 ([214]). There exists a balanced tournament design of order n if
and only if n is a positive integer, n # 2.

We note that there is a unique BTD(3) up to isomorphism. Corriveau enu-
merated the nonisomorphic BTD(4)s in [52], [53]; there are precisely 47. He
also showed for each of the 396 nonisomorphic one-factorizations of Kj that
there is a BTD(5) having the given one-factorization as the columns of the
BTD.

Since 1977, there has been considerable interest in BTDs satisfying certain
extra conditions. Many of these special types of BTDs are discussed in the
survey by Lamken and Vanstone [149]. These include factored BTDs [138],
factor balanced BTDs, partitioned BTDs, and hamiltonian BTDs. We briefly
discuss partitioned BTDs and hamiltonian BTDs now.

A BTD(n) is said to be partitioned if the 2n — 1 columns can be partitioned
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16 20 31 42 53 64 05
25 36 40 51 62 03 14
34 45 56 60 01 12 23

Figure 16.1 An odd balanced tournament design of order 3.

design H(n,2n), as is the n x n array formed by the columns in AU C. It was
shown in [237] that the existence of a partitioned BTD(n) is equivalent to the
existence of a MESRS of side 2n — 1.

In any row of a BTD(n), every symbol occurs in two cells, except for two
symbols that each occur in only one cell. Hence, it is conceivable that the
graph formed by the pairs of symbols occuring in the cells of a given row
could be a path of length 21 — 1, that is, a hamiltonian path. A BTD(#) is said
to be a hamiltonian path BTD(n) if this is true for every row of the array. In
[116], Horton proves that a hamiltonian path BTD(#) exists if there is a skew
starter in Z,. Hence, there is a hamiltonian path BTD(n) if » is not divisible
by 2, 3, or 5.

We next define a class of designs closely related to BTDs. Let S be a set
of 2n + 1 symbols. An odd balanced tournament design of order n (on symbol
set §), or OBTD(n), is an nx (2n+ 1) array, F, that satisfies the following

properties:

1. Every cell of F contains an unordered pair of symbols from S.

2. Each symbol of § occurs at most once in each column of F.

3. Each symbol of S occurs twice in each row of F.

4. Every unordered pair of symbols occurs in precisely one cell of F.

It is easy to construct an OBTD(n) for any n > 1 using a patterned starter
in Zpn+1; the method of construction should be evident from the example
given in Figure 16.1.

Analogous to hamiltonian path BTDs, we might consider OBTDs in
which every row gives rise to a hamiltonian cycle; such an OBTD(n) is called
a Kotzig factorization of order 2n + 1. These designs were studied first by
Colbourn and Mendelsohn [48]. The spectrum was determined by Horton
[115], where it was shown that a Kotzig factorization of order 2n + 1 exists if
n>1.

Finally, we should also mention that several applications of BTDs and
OBTDs to the construction of resolvable (v,3,2)-BIBDs are given in [150].
BTDs and OBTDs having resolutions that are orthogonal (for a suitable defi-
nition of orthogonal) can be used to produce (v,3,2)-BIBDs having orthogonal
resolutions (for more information, see [133], [146], [148], and [151]). More-
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17

TABLE 17.1 Other generalizations of Room squares

Generalization Reference
Generalized Room square of the first kind [202]
Generalized Room square of the second kind [111]
Generalized Howell design [204]
Multidimensional Room design [203]
Generalized Euler square [205]
Kirkman square and Kirkman cube [246]
Strong Kirkman cube [245]
Uniform multidimensional generalized Room design [205]
Room rectangle [130]
Steiner tableau [131]
Generalized balanced tournament design [135]
Weak Room square and weak Room cube [94]

OTHER GENERALIZATIONS

Various other generalizations of Room squares have been studied in the lit-
erature. Most of these generalizations involve arrays where the cells contain
t-subsets, £ > 2. We do not discuss any of these generalizations in this survey,

but we do give a list of the various types of arrays and references in Table
17.1.

18

OPEN PROBLEMS

In this section, we present a list of open problems, indicating in each case the
relevant section.

1.

(Section 2.1) Show that any abelian group of odd order admits a strong
starter, with the exceptions of the groups Zs, Zs, Zy, and Z3 x Z3.

. (Section 2.1) Prove that there exists a skew starter in Z,, for all »n such that

ged(n,6) =1 (note that such a starter does not exist if n =0 (mod3), by
Theorem 2.10).

. (Section 2.1) Prove that there exists a strong frame starter in Z,\{0,n}

for all n=0,1 (mod4) (note that such a starter does not exist if n=
2,3 (mod4), by Theorem 2.14).

4. (Section 3) Prove that there exists a frame of type ¢° for all 7 > 1.

5. (Section 3) Prove that there exists a frame of type ¢* for all even ¢ > 2.

. (Section 4) Prove that if s > 7 is odd, and n > 3s +2 is odd, then there

exists a Room square of side » containing a subsquare of side s. In par-
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A

10.
11.

12.
13.
14.
15.

16.

17.
18.
19.

20.

21.
22.

23.

24.
25.
26.

27.

Room Squares and Related Designs

(Section 4) Prove that a partial Room square of side s can be embedded
in a Room square of side at most f(s), where f is some fixed polynomial.

(Section 5) Prove or disprove that v(n) < (n—1)/2 for all odd n.

. (Section 5) Prove or disprove that v(11) = 5 and that v(15) = 4.

(Section 5) Improve the lower bounds on v(n), n < 100.

(Section 5) If g = 2°¢ + 1 is a prime power, where ¢ > 1 is odd, prove that
v(q) >t (i.e., improve Theorem 2.5).

(Section 6) Prove that NR(n) > cyne"” for positive constants ¢; and c;.
(Section 6) Prove an exponential lower bound on IR3(n).
(Section 6) Find more examples of strong starters that are not equivalent.

(Section 7) Determine necessary and sufficient conditions for the exis-
tence of a skew frame of type t* (¢ >1). In the case ¢ =2, prove that
there exists a skew frame of type 2* for all u > 5. In particular, prove that
a skew frame of type 2¢ exists.

(Section 8) Prove that there exists a perfect Room square of side g, for
every odd prime power g > 11. In particular, find a perfect Room square

of side 13.
(Section 8) Find new classes of uniform Room squares.
(Section 8) Improve the lower bounds on vp(1), n < 100.

(Section 9) Complete the spectrum of maximum empty subarray Room
squares.

(Section 10) Show that a skew symmetric balanced starter exists in Z,,, for
n a Fermat prime.

(Section 10) Find BRS(36) and BRS(92).

(Section 10) Find more recursive constructions for balanced Room
squares.

(Section 10) Prove that there is a skew resolution in AG(m,2) for all even
m > 4.

(Section 10) Find examples of BRS)(2r), A > 2.
(Section 11) Determine the spectrum of *-designs.
(Section 11) Prove or disprove that v(s,2n) <n—1.

(Section 11) Find an example of an H,-1(s,2n), where s # n,2n—1 or
2n—2.
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29. (Section 12) Find more small examples of OSTS(n) for n =3 (mod6). In
particular, find an OSTS(21).

30. (Section 12) Find more constructions for sets of # OSTS, ¢ > 3.

31. (Section 13) Find classes of (simple, indecomposable) orthogonal one-
factorizations of AK,,, A > 2.

32. (Section 15) Determine Spec(C,) and Spec(P,) for more values of n.

We now discuss the progress on the ten problems that were posed by W. D.
Wallis in the 1972 monograph on Room squares [266]. Most of these questions
are now solved. A short answer to each question is supplied here along with a
reference to the relevent sections of this survey where more details are given.

1. Is there a Room square of side 257? If so is there a skew one? There are
Room squares and skew Room squares for all odd orders »n > 7 (Sections
1, 3, and 7).

2. Suppose that there is a Room square of side r with a subsquare of side n.
Is is necessarily true that r > 3n + 2; however the best result is r = 4n + 1.
Is it possible that 3n+2 <r <4n+ 1?2 Is there a stronger bound than r >
3n +2? The necessary condition is indeed r > 3n + 2. This condition is
necessary and sufficient if n = 7,9,11,13, or 15, or if n > 393 (Section 4).

3. Is there an abelian group of order 3n with a strong starter for some n prime
fo 3?7 A strong starter exists in every cyclic group of odd order n for 11 <

n < 999. It is still unknown in general which groups admit a strong starter
(Section 2.1).

4. Find infinite families of adders for patterned starters in groups that are not
of prime power order. This is the equivalent to asking for an infinite family
of strong starters in groups that are not of prime power order. Direct
constructions for strong starters of prime power orders can be used with
multiplication theorems to obtain strong starters in groups that are not of
prime power order (Section 2.1).

5. Are there skew Room squares of sides 9, 15, or 217 Are there sides for which
skew squares (or embedded squares) do not exist? Skew Room squares exist
for all odd orders n > 7 (Section 7).

6. Is there a theorem of the form “if there exist n pairwise orthogonal Latin
squares of side r then there is a skew Room square of side r”? Is there such
a theorem if “skew” is deleted? We doubt that there is any direct connection
between Room squares and sets of orthogonal Latin squares.

7. One could ask: “Find out something about isomorphism.” More specifically,
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the number of nonisomorphic Room squares of order #, then it is known
that NR(n) — oo as n — oo (Section 6).

8. Is there a Room square that has a complement but is not isomorphic 1o an
embedded square? To a skew square? Are there infinite families of them? To
our knowledge, this problem has not been studied.

9. Find examples of starters and adders in nonabelian groups. Not much work
has been done on this problem, and as far as we know, there are only two
papers on this topic: [103] and [154] (Section 2.1).

What is the maximum number of pairwise orthogonal symmetric Latin
squares of order 97 The maximum number of pairwise orthogonal symmet-
ric Latin squares of order 9 is four. For every odd n > 11 (except possi-
bly n = 15), there are at least five pairwise orthogonal symmetric Latin
squares of order n (Section 5).

10
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