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1. Introduction.

Let H be a finite simple graph. A 1— factor (perfect matching) in H is a set of
nonadjacent edges which are incident to every vertex of H. A 1— factorization of H is a
partitioning of the edge set of H into 1-factors. We will restrict our attention to the
graph H = K, so that each 1-factor contains n edges and each 1-factorization contains
2n—1 1-factors. Much research has been done on properties of 1-factorizations of K,,
and for an excellent survey the reader is referred to [9]. In this paper we are particularly

interested in two properties of 1-factorizations: perfect and orthogonal.

Let F be a 1-factorization of K,,. It is clear that the union of any two 1-factors in F
is a 2-factor (the union of cycles). A 1-factorization is called perfect if the union of any
two 1-factors in F is a Hamiltonian circuit. There has recently been renewed interest in
finding perfect 1-factorizations of K,, (see [13],[8]) but there are only two known infinite
classes of these objects. If p is a prime then there is a perfect 1-factorization of K,
called GK,, ;. and a perfect 1-factorization of K,, called GA,,. In this paper we will con-
struct some perfect 1-factorizations of K., which are not isomorphic to GK,,,. For

information on perfect 1-factorizations of K,, the reader is referred to [9},[13],[1],[2].

Given 1-factorizations F and G of K,, we say that F and G are orthogonal if any
two edges which are in the same 1-factor in F are in different 1-factorsin G. If F and G
are orthogonal 1-factorizations of K,, we can construct a 2n—1 by 2n —1 array indexed
by the 1-factors in F and G where the pair {x,y} is placed in row i column j if {x,y} is an
edge in the 1-factors f; and g;. This array is called a Room square of side 2n - 1. Thus
in 2 Room square, each row contains the edges in a 1-factor and all the rows together
comprise a 1-factorization, called the row factorization. The columns do likewise. Noting
these facts, we define a perfect Room Sguare to be a Room square in which both the row
and column factorizations are perfect. Therefore'a perfect Room square is equivalent to a
pair of orthogonal perfect 1-factorizations. For further information concerning Room
squares and orthogonal 1-factorisations the reader is referred to [9],[4],[10],(7].

Continuing with these ideas, the existence of t mutually orthogonal perfect 1-
factorizations of K,, is equivalent to a perfect t-dimensional Room square of side 2n - 1,
termed a perfect Room t-cube of side 2n - 1. We will be interested in finding large sets of
mutually orthogonal perfect 1-factorizations of Kj,. Define P(n) to be the largest t such
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that there exists t mutually orthogonal perfect 1-factorizations of K,. Since there are at
most n - 2 mutually orthogonal 1-factorizations of K, (7], we have that P(n) < n—2 for
all even n = 4. The existence of perfect 1-factorizations of K,, and K, when p is a
prime implies that P(2p) = 1 and P(p+1) = 1. Recently, Alex Rosa [12] discovered con-
structions which imply that P(12) = 2, P(18) = 2 and P(20) = 2. In this paper we will
give further results on P(t) for other values of t < 100.

In the next section we will show how starters can be used to construct mutually
orthogonal perfect 1-factorizations. Section 3 introduces a new invariant of 1-
factorizations which we will use to determine some isomorphism questions. Finally in

Section 4 we discuss P(t) for some small values of t.

2. Constructions Using Starters.

A starter of order g in an additive abelian group G, IGl= g, is set of pairs
A = {{s;,t; }, 1 = i < %(g — 1)} satisfying the properties:

() {s} U {t} = ¢ \ {0},
(ii) {=(s-4)} = G \ {0}

The starter P = {{z,—z} | z €G} is termed the patterned starter. A starter
A = {{8;,t }} is a strong starter if 5;+t;#s;+1; for all i#j, and if 8;+¢;#0 for all 5.

Let A = {{s;,t;}} and B = {{y;,v;}} be two starters in G. We may assume that
t;—8;=v;—u; for all 1 < i < %(g—1). A andB are orthogonal starters if u;—8;#u;—s;
for all §# j, and if u;#s; for all i. It is easily shown that if A is a strong starter, then A4,
—A = {{—#,—t;}} and P are 3 pairwise orthogonal starters.

Given a starter A = {{5;;}, 1 =i =%(g — 1)} it is easy to construct a 1-
factorization Fy of K;.q. Let A'=A U {0,}, then F; = {A'+g1g€G} where

w+g=0, In Figure 1, we give a starter A in the group Z;; and the resulting 1-
factorization of K,,. We define a starter to be a perfect starter if the resulting 1-

factorization is perfect. The following theorem (first proved by Horton [7] without refer-
ence to "perfect') relates orthogonal perfect starters and orthogonal perfect 1-

factorizations.

THEOREM 2.1 If there exist t pairwise orthogonal perfect starters of order n, then
there exist  pasrwise orthogonal perfect 1-factorizations of Ky 4y and thus P(n + 1) = t.



In view of the above theorem, to find lower bounds for P(n) it is convenient to search
for large sets of pairwise orthogonal perfect starters of order n —1. There are two classes
of starters which will give examples of orthogonal perfect starters, these are the so called
Mullin-Nemeth starters [11] and the two-quotient starters [5]. The Mullin-Nemeth star-
ters have orders p=2t+1 and the two-quotient starters have orders p=4t+1 where for
both p is a prime power and ¢ is an odd integer.

Let p=2t+1 be a prime power with ¢ odd. Let G=GF(p)' be the multiplicative
group of the field GF(p). Let R be the set of all quadratic residues in G and let N be the
class of nonresidues. For each a € N the set S,={{z,az} | z€R} is called a
Mullin — Nemeth starter of order p. It is well known that if S, and S, are Mullin-Nemeth
starters of order p and with a # b, then S, and S} are orthogonal starters [11]. Also each
Mullin-Nemeth starter is a strong starter and S_,;=P the patterned starter. We note here
that the known class of perfect 1-factorizations GK, ., is generated from the starter S_,;
when p is a prime.

A 1-factorization is uniform [9] (or semi—regular [1]) if F;UF;=FUF,, for any
four 1-factors Fy, F;, Fy, Fp, i#j, k#¥m. In [1], Anderson proved that the Mullin-
Nemeth starter S, generates a uniform 1-factorizations provided a is primitive element in
GF(p). In fact, it is easy to show that S, generates a uniform 1- factorization for any a
which is a nonresidue in GF(p). We state this in the following theorem (the proof is left
for the interested reader).

THEOREM 2.2 If a is a nonresidue in GF(p)®, then the Mullin-Nemeth starter S,

generates a uniform 1-factorization of Ky

By using this theorem one can easily test whether a given Mullin-Nemeth starter is

perfect. One need only consider the graph generated by S, U S’ +1. If it is a
hamiltonian circuit then S, is perfect, if not then S, is not perfect. The 1-factorizations

given below in Figure 1 are generated by S; and Sy in GF(11). They are both perfect and
are orthogonal to each other. Thus P(12) = 2.
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FIGURE 1

Two orthogonal perfect 1-factorizations of K,

Factorization generated by Sy

{1,7} {3,10} {4,6} {5,2} {9,8} {0,}
{2,8} {4,0} {5,7} {6,3} {10,9} {1,}
{3,9} {5,1} {6,8} {7,4} {0,10} {2,}
{4,10} {6,2} {7,9} {8,5} {1,0} {3,}
{5,0} {7,3} {8,10} {9,6} {2,1} {4,=}
{6,1} {8,4} {9,0} {10,7} {3,2} {5,=}
{7,2} {9,5} {10,1} {0,8} {4,3} {6,}
{8,3} {10,6} {0,2} {1,9} {5,4} {7,»}
{9,4} {0,7} {1,3} {2,10} {6,5} {8,=}
{10,5} {1,8} {2,4} {3,0} {6,5} {9,}
{0,6} {2,9} {3,5} {4,1} {7,6} {10,»}

Factorization generated by S,

{1,8} {3,2} {4,10} {5,7} {9,6} {0,}
{2,9} {4,3} {5,0} {6,8} {10,7} {1,}

. {310} {5,4} {6,1} {7.9} {0,8} {2,0}

{4,0} {6,5} {7,2} {8,10} {1,9} {3,00}
{5,1} {7,6} {8,3} {9,0} {2,10} {4,}
{6,2} {8,7} {9,4} {10,1} {3,0} {5,00}
{7,3} {9,8} {10,5} {0,2} {4,1} {6}
{8,4) {10,9} {0,6} {1,3} {52} {7,}
{9,5} {0,10} {1,7} {2,4} {6,3} {8,00}
{10,6} {1,0} {2,8} {3,5} {7,4} {9,00}
{0,7} {2,1} {3,9} {4,6} {8,5} {10,00}

Using these ideas we can test all the Mullin-Nemeth starters in GF(p) to see which
are perfect. Remembering that orthogonality of these starters is quaranteed, we get the
following lower bounds for P(n), the number of pairwise orthogonal perfect 1-

factorizations of K.

THEOREM 2.3. P(12) = 3, P(20) = 5, P(24) = 9, P(44) = 3, P(48) = 5, P(60) = 5,
P(68) = 7, P(72) = 7, P(80) = 9, and P(84) = 17.

Proof. In the following table we list the prfme p and the Mullin-Nemeth starters
which are perfect and thus generate perfect 1-factorizations of Ky -

Prime Orthogonal perfect starters

11 . Sa Ss, S .

19 Sa, Sa 5100 S13 S1s ,
23 Ss, S7: S100 S11 S140 S160 S200 S215 S22
43 Ss, Sa1y Sa2

47 S100 Sar» S33r Sawr Sas

59 S13) Sa0) Ssor Sser Sss

67 Sg, S110 S11r Sa1» S280 Ses Ses

71 S, 14 S41: Se1» Seer Sesr S10

79 S3, S5 S39» Ssa Sswr Sezs S700 S710 S78
83 Se» S13, S1e Sazs S30r Sazs Sasr Sarr Ssa Ssar S Ssar Seor Seer S730 S740 Sez

32



Another class of starters called two-quotient starters was introduced by Dinitz in [5)-
Let p = 4t+1 be a prime power with t an odd integer. Let Cy C GF(q)' = G be the
unique subgroup of order ¢ (index 4) and let g be a primitive element in G. Let
C0,C1,Cs,Cy be the multiplicative cosets of Cy, where C;=g’C,. Define the set S (agsay)
={{z,80z,},{y,0,¥}| 2€Co°,y €C{'} Where C* = (1/(a; — 1))C; for ¢ = 0,1. Certain
conditions (see [5]) on aq and a, allow S(ag,q,) to be a starter. In this case S(ag,a,) is
termed a two — quotient starter. The following conditions assuring orthogonality are pro-

ven in [5].

LEMMA 24 Let S(ag,a;) and S(bg,b,) be two-quotient starters. Then
S(ag,8,) and S(bg,b,) are orthogonal starters if and only if

bo—ay a;—1 b,—1

bi—a; ag—1 bo—1 ¢Cy, ag#by and a;#b,.

As was the case with Mullin-Nemeth starters we can now generate all of the two-
quotient starters on the computer and test to find which ones are perfect. Then with the
list of perfect two-quotient starters we can check them pairwise for orthogonality and
search for a maximal set of these. It can be checked that these two-quotient starters do
not necessarily generate uniform 1-factorizations, thus the test for perfect is a bit longer

than it was for the Mullin-Nemeth starters. We have the following theorem.
THEOREM 2.5 P(30) = 5, P(38) = 7, P(54) = 8.

Proof. In the following table we list the prime p and the a maximal set of two-
quotient starters which are perfect and pairwise orthogonal. Thus they generate perfect

1-factorizations of K|, ,; which are pairwise orthogonal.

Prime Orthogonal perfect starters

29 S(8,27), S(11,14), S(14,8), S(27,11), 5(28,28).

37 S(2,18), 5(6,22), S(17,23), S(19,35), 5(24,29), 5(31,32), 5(36,36).

53 S(3,51), S(6,52), S(8,30), S(11,29), S(18,26),5(29,11), 5(33,20), 5(52,6).

3. Invariants of 1-factorizations.

The obvious question concerning all of the perfect 1-factorizations generated thus far
is whether or not they are isomorphic. The usual tests for isomorphism of 1-factorizations
utilize the cycle structure of the unions on the 1-factors (see [9]). Obviously, since all of
these 1-factorizations are perfect this method will not be useful to us. We propose a new

invariant called the train of the 1-factorization.
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Trains were first described for Steiner triple systems by White [16]. Recently, Col-
bourn et al [3] and Stinson [14] have also discussed trains as invariants of triple systems.
Our definition of trains in 1-factorizations is very similar to that of trains in triple sys-
tems. Let F={f,f3,....,fa} be a 1-factorization of K, ;. For any two points z,y, define
which(x,y) = f; if {x,y} is an edge in the 1-factor f;. Also, for any point z and any 1-
factor f;, define other(x,f;) = y if {x,y} is an edge in the 1-factor f;. A train is a
directed graph T whose vertices are the ("5 ')Xn subsets of the form {x,y,f} where x,y
are points in K, ., and f is a 1-factor in F. T is regular of outdegree 1; the edge leaving
{x,y,f} is directed to {other(x,f), other(y,f), which(x,y)}. It is obvious that if two 1-

factorizations are isomorphic, then so are their associated trains.

As was done by Stinson, we shorten this invariant by using only the indegree
sequence of the train. That is, to each 1-factorization F we will associate a sequence
to,t1sts,... Where ¢; equals the number of vertices in the train of F with indegree i. We
now can use this invariant to determine whether some of the perfect 1-factorizations dis-

cussed earlier are isomorphic.

In K,, we have found 3 orthogonal perfect 1-factorizations, these are generated by
Sy, Sg = —S7 and Syo. Sy and Sg have indegree sequence 330, 176, 165, 0, 55 while S;q
has sequence 110, 506, 110. Thus we see that Sy is not isomorphic to S;. Displayed
below we give the 1-factorizations and the indegree sequences of their associated trains for

the 1-factorizations of K,q and Ky, given in Theorem 2.3. Again we can see that none of

these 1-factorizations are isomorphic.

Kao
1-factorizations indegree sequence of train
Sz, Slo = —Sz 648, 2242, 684
S3 Si13= —8; 1026, 1900, 513, 171
Sis 342, 2926, 342
Koy
1-factorizations indegree sequence of train
Ss, S14= —3Ss 1265, 3818, 1265
S7, S10= — 57 22717, 2806, 506, 506, 253
Si1y Sa1 = —8n 2530, 2300, 1012, 253, 253
Sl‘! Szo = _315 1771, 3312, 759, 506
Ss2 506, 5336, 506



It is our hope that the indegree lists of trains will provide a useful tool for solving iso-

morphism questions concerning 1-factorizations of K,,.

4. Low orders.

We would just like to take a quick look at the small orders 4, 6, 8 and 10. The only
1-factorization of K is GK 4 and it is obviously perfect. It has no orthogonal mates, thus
P(4) = 1. GK, is perfect in Ky and since there is no pair of orthogonal 1-factorizations of
K4 we have that P(6) = 1.

For K it was shown by Wallis [15] that there is 2 unique perfect 1-factorization up
to isomorphism (again GKg). He also showed that there are no pair of orthogonal perfect
1-factorizations of K and so P(8) = 1. In 1973 Gelling [6] listed all the 1-factorizations
of K,,. He found 396 nonisomorphic ones and only one of these was perfect. In the Gel-
ling listing the perfect one is #396, but it is also clearly GA;. We have run a computer
test and have shown that there are not two copies of GA,, which are orthogonal. Thus
we have that P(10) = 1.

From these results we see that the example given in Section 2 of three pairwise

orthogonal perfect 1-factorizations of K, is the smallest possible case where P(n) > 1.

5. Summary and conclusion.

In this paper we have used starters to construct pairwise orthogonal perfect 1-
factorizations of K,,. We have also introduced a new invariant of 1-factorizations called

the indegree list of a train which can discern nonisomorphic perfect 1-factorizations.

We believe that there may be a new infinite class of perfect 1-factorizations which
arise from either the Mullin-Nemeth starters or the 2-quotient starters. It is our hope
that one can find some set of conditions on a and p which will insure that S, generates a

perfect 1-factorization in K ;.
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