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THE CONSTRUCTION AND USES OF FRAMES

J.H. Dinitz and D.R. Stinson

ABSTRACT. We define frames, a generalization of Room designs. Several
constructions for frames are given. Frames can be constructed directly,
by starter methods, and recursively, by means of a Moore construction,
and PBD closure. We apply frames to the construction of Howell designs,
rand Room designs (to improve the lower bounds for the number of pairwise
orthogonal symmetric Latin squares).

1.

Introduction

Let T and U be sets with |T| =t, |U] =u. A tu by tu

array S will be called a t-frame of order u if it enjoys the

following properties:

(1)

(2)

(3)

(4)

Informally, a t-frame of order u is a Room square of side tu "missing

Each cell is either empty or contains an unordered pair of
elements of UXT,

There exist U empty t by t subsquares of S, no two of them
containing any cell in the same row or column. These subsquares
will be denoted Sui. (It will usually be convenient to place

the Sui's on the diagonal of S ),

A row or column of S which meets Sui contains each element of
(U\{ui})XT exactly once, and contains no element of {ui}xT,
Each unordered pair of elements {(ul,tl),(uz,tz)} with ul¢u2,
occurs in a unique cell of S. By counting it follows that no

pair of the type {(u,tl),(u,tz)} occurs in the array.

u disjoint Room subsquares of order t. (A definition of Room square is

given below). The "missing" subsquares need not exist.

2
It is convenient to index the cells of S by elements of (UXT) ,

so that the cells of the rows and columns meeting any Sui are

({ui}XT)X(UxT) and (UXT)X({ui}XT), respectively.

side

An n-dimensional t-frame of .order u is an n-dimensional cube of

tu, which satisfies property 1 above and such that each two-

dimensional projection is a t-frame of order u. Analogous to the two

dimensional case label the cells of such a frame by (UXT)n. For brevity,

we may refer to an n-dimensional t-frame of order u as an (n,t,u)-

frame, and a (2-dimensional) t-frame of order u as a (t,u)-frame.

Frames have already been introduced in the literature, but were

defined less generally than here. 1In [16, 21] a "frame" of order u

refers to a special type of (2,2,u) frame which possesses a "skew"

property describing the distribution of empty cells. Such frames have



EXAMPLE 1.1.

A 3-frame of order 5.

00 0L 02 10 11 12 20 21 22 30 31 32 40 41 42
- 41 40 21]30 32 11
31 12 42|10 20 22
42 22 41|12 31 30
ok 0 32 40 10|20 11 21
o0z 40| 42 20 31 10 32
3011 41 22 21 12
10| %0 42 21 oL 00 31
20 30 32 41 22 02
122 41 40 1 02 32 o1
30 21 31 42 00 20
10|41 20 42 00|02 30
32 31 22 40|21 o1
- 10 41|00 02 31 11
32 12|30 40 42 01
42 11|32 o1 00 ‘ 12
24 1o 30| 40 31 41 2 02
2p| 12 40 01 30 02 10
31 11 42 41 32 00
4| 2L 20 01| 10 12 41
11 42 22| 40 00 02
- 22 02 21| 42 11 10 !
12 20 40| o0 41 o1
32 20|22 o0 11 40 12
10]41 21 02 01 42
. 31 30 11]20 22 o1
21 02 32|00 10 12
" 32 12 31{02 21 20 4
22 30 00|10 o1 11
42 30| 32 10 21 00 22
20l 01 31 12 11 02

been used in recursive constructions for skew Room squares, for example
in [15] and [16].

A Room square of odd order u u, each

is a square array of side
cell of which is either empty or contains an unordered pair of elements
chosen from a set of u+l elements, such that each element occurs
exactly once in each row and column, and each pair of elements occurs
exactly once in the array. A Room n-cube of order u is an n-
dimensional cube, each two-dimensional projection of which is a Room
square. In [10] and [13] the term Room n-design was used instead of

Room n-cube.



Let a Room n-cube be described with symbols U u {»} where
|Ul =u and % U. If the contents of all cells containing « are
removed, one obtains an (n,l,u) frame. Thus frames are a generalization
of Room n-cubes and Room squares.

Room squares have also been generalized in another direction.

_A Howell design H(S,2n) is a square array of side s, each cell of
which is either empty or contains an unordered pair of elements chosen
from a set of size 2n, such that each element occurs exactly once in
“each row and colﬁmn, and no pair of elements occurs in more than cell.
Thus a Room square of order u is an H(u,u+l).

Frames are of use in recursive constructions for Room n-cubes and
Howell designs. We consider several such applications of frames in this
paper.

Given u, it is natural to ask what the largest n = v(u) is so
that there exists a Room n-cube of order u. This question can equiv-
alently be described as asking for the largest number n; either of pair-
wise orthogonal symmetric Latin squares of side wu, or of pairwise
orthogonal l-factorizations of Ku+1' For definitions and proofs of
these equivalences, see [10] and [13].

It is known that Vv(3) = v(5) =1, and v(u) 2 3, if u 1is odd,
7<u<1000, and u# 9. Much better bounds for v can be obtained if u isa prime
power, and the resulting Room n-cubes are also useful in recursive
constructions. We will consider these recursive constructions and derive
a list of lower bounds for v(u), u < 1000, in section 6.

For Howell designs, the general existence question is still open.
Frames are of particular use in considering the family of Howell designs
H(s,s+k), given any fixed k, as s varies. We consider applications of
frames to Howell designs in Section 7.

However, it is important to first construct the frames we shall
need. This is done in Sections 2, 3 and 4.

In Section 5 we consider two dimensional frames in more

detail.

2: Frames and Frame Starters

Just as Room squares and Room n-cubes can be constructed from
starters, see [13,18], frames can be constructed from a generalization
of starters.

Let G be an additive abelian group of order g, and let H be

a subgroup of G of order t, with g-t even. A t-frame starter of



order g/t in G\H (or a (¢,g9/t)-frame starter) is a set of pairs
A= {{si,ti},lsisgéE} satisfying the properties:
(1 {s.} u {t.} = G\H
i i
(2) {£(s,-t.)} = G\H.
i i
A l-frame starter is a starter.
Let A = {{Si’ti}} and B = {{ui,vi}} be two frame starters.

We may assume that ti—si = vi—ui, for 1 < i < EEEE We say that A

and B are orthogonal frame starters if u,-s, = By implies i = j,
and u,-s;, ¢ H for all i. Several frame starters are pairwise
orthogonal if each pair of them is orthogonal. Finally, a frame starter
A= {{si,ti}} is strong if st = sj+tj implies i = j, and

Si+ti £ H for all 1i.

The following is immediate.

LEMMA 2.1. If A = {{si’ti}} 18 a strong frame starter them A and
-4 = {{—si’—ti}} are orthogonal frame starters.

The special frame starter P = {{si,ti}} where s, = —ti for
all i is called the patterned frame starter. It follows that this is
only a starter in G\H if [G| is odd. BAnalogous to the result for
strong starters [13] is the following.

LEMMA 2.2. If there is a strong frame starter in G\H, |G| odd, then
there are 3 pairwise orthogonal frame starters in G\H.

Proof. Let A = {{si,ti}} be a strong frame starter in G\H. By
Lemma 2.1 A and -A are orthogonal frame starters. We show that A
and P, the patterned frame starter, are orthogonal. If {s.,ti} € A

i . 1
then the pair in P with the same difference is {%{si—ti), E%ti—si)} =

1
= {yg - =-—(s,+t.). i i i
{ui,vi}, so u;-s, 2( i l) Since A is strong and ]G| is odd,

- %(Si+ti)7‘- %(Sj+tj) if i # J. Furthermore%%si+tiw H since
si+ti ¢ H. Thus A and P are orthogonal. Similarly -A and P are
orthogonal. [

Anderson and Gross [1l] have considered a more general notion,
"partial starter", of which frame starters are a special case. They
limit their investigation to the case of strong partial starters, and
applications to Howell designs. We will discuss this further in

Section 7.
The connection between orthogonal frame starters and frames is
given by the following theorem. This construction is essentially that

of Anderson and Gross [1l; Theorem 1].



THEOREM 2.3. If there exist n pairwise orthogonal t-frame starters in
G\H with |G| =g and |H| = t, then there exists an (n,t,u)- frame,
where u = g/t.

Proof. We give the proof for n = 2. The general case proceeds in a
similar way.

Let A = {{si,ti}} and B = {{ui,vi}} be two orthogonal frame

i
Now let K = {gl,gz,...,gu} be a set of distisnct representatives

starters, with t,-s, = v,-u, for all i. Let a, = u.-s. = v/-t..
i i i1 i i i i

of the u cosets of H in G. Let ¢:G*KxH be the natural bijection
defined by ¢(g) = (k,h) if and only if g = kh with k € K, h ¢ H.

Define S, a (t,u) frame on KxH as follows. For any i,

1 <ic< —%E, for any 9 € G put the ordered pair {¢(ui+g),¢(vi+g)} in
cell {¢(g),¢(g‘ai)}- [

We have a comment regarding the proof of the above theorem. The
construction is really the same as the standard one for obtaining Room
squares from starters. The bijection ¢ was used in order that the
frame could be constructed on the direct product of two sets (since that
is how we defined frames). We feel that this definition of frame
facilitates the description of the recursive constructions of section 4.
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the identity. Many of the frame starters we construct in the next

Note that if G = G_XG_, and H = {O}XG2, then ¢ may be taken to be

section have this form, so the frame can be constructed very easily from
the starter.

In the next section we give several constructions for frame
starters of odd order. In the remainder of this section we mention a few
limitations to the starter method for frames.

First, notice that if G\H contains an element of order two, then
there is no frame starter in G\H. For, if 29 =0 then g = - g, so
g cannot appear exactly once as a difference.

Our second observation concerns frame starters of orders u = 2
‘or 3 mod 4. This result is a slight generalization of Anderson [3;
Theorems 9 and 10]; the proof is basically a parity argument and goes
through without change.

THEOREM 2.4. Suppose u = 2 or 3 mod 4 and t is odd. Then there does
not exist a 2t-frame starter of order u.

Our next observation concerns strong frame starters of order 5.

THEOREM 2.5. Suppose t <s odd. Then there does not exist a strong

t-frame starter of order 5.



Proof. Suppose there exists a strong t-frame starter A in G\H, G an

abelian group of odd order 5t and H a subgroup of order t.

G/H :!ZS, so we may define the canonical homomorphism ¢ :G+Z

5
{si,ti} € A we say that the pair {si'ti} has type (k,%) e Z

5

Now

TE

X Z_,

where 2 = k+1 or k+2, and {¢(S.),¢(ti)} = {k,2}. Also, say an

i
element g € G has type ¢(g) € ZB.
For i =10,1,2,3,4 and 3j = 1,2, suppose there are aij pairs
k,k+3) . = = = = i
of the type (k,k+3j) Now aOl ao2 a4l a32 0 since no element

f t 0] H i A. =
g o ype (geH) can occur in Also a21 a42

= 0 since these

pairs have sums of type 0. There are t pairs in A with differences

of type # 1, so t = 'Z ail = all 3
i=0

4158 = +
containing elements of type 1, so t aOl a11 12 42

+ a R~ =

a

11

Similarly, there are t pairs containing an element of type 3, so

= + + =
LEByy Yay ¥l VB T Ry T N3

we obtain all =ay 12

+ a_.. Also, there are t pairs

+

= a = a = t/2, a contradiction, since t 1is odd.

Even though, for example, a strong 3-frame starter of order 5

alz.

+ a_ .. From the three above equations

O

does not exist, it is still possible the construct a pair of orthogonal

3-frame starters of order 5.

The following was constructed by hand. These starters generate

the (3,5)-frame of Example 1.1.

EXAMPLE 2.6. Two orthogonal 3-frame starters of order & in1215\{0,5,10}.

difference s, ,t, u,.,v, O, =5=V <t
1 ES 3, = 1 1 1, 1

1 1,2 2,3 1

2 9,11 11,13 2

8 3,6 9,12 6

4 8,12 4,8 11

6 13,4 1,7 3

7 7,14 14,6 7

We conclude this section with a strong 2-frame starter of even

order. We will make use of this example in a later section.

EXAMPLE 2.7. A strong 2-frame starter of order 8 in 216\{0,8L

{11,12}, {4,6}, {2,135}, {1,13}, {5,10}, {3,9}, {7,14}.

3. Some Classes of Frame Starters.

In this section we construct sets of pairwise orthogonal frame

starters.

In order to give a general frame-starter construction, a special

. A s . ,
scheme in the additive group (Zﬁ) must first be defined. We make use



of the canonical identification between elements in (Zz)S and non-

« P S s s 5
negative integers less than 2 written in base 2. The reader is
cautioned that all arithmetic is still in (ZZ)S.

A doubling-scheme in (Z )S, D = (c,D), consists of two lists

C and D each containing 2S+ elements in 022)5. One list
C= (cilosiszs+1-1) is defined by

C,y = i (written base 2) 0 <1i=< 25"l -

Cose1 = ©aq 0<i<25t

ci =i - 2% (written base 2) 2% « i 2S+l -1
The other list D = (di|05i525+1—l) is defined by

di = i (written base 2) 0<ic2®- h

d,, =i (written base 2) i<

=4 %<5

d2i+1 2i

The following is a doubling scheme in (%)

2
5 -

EXAMPLE 3.1.

co = 00 do = 00
cl = 00 dl = 01
c2 = 01 d2 = 10
03 = 01 d3 =11
ey = 00 d4 = 10
c5 = 01 ds = 10
c6 = 10 d6 =11
¢, = 11 d7 =11

An important propery of a doubling scheme is given in the following lemma,
and can be proven using a simple induction argument.
LEMMA 3.2. If C and D are as defined above, then {di-ci|05i323—1} =
= {d,-c.| 2<% 1) = (m,)°.
1 1 2 .
This implies di-ci # dj—cj if 0<1i,j <2 -1 or if

s +1 . i :
2 <14i,j < ZS -1. Also, notice that di—ci = di+ci since the group is

_(zz)s.

For G a multiplicative group of order 4t, define a quarter set
to be a set Q € G such that |Q[ = t and such that there is some a ¢ G
with Q U -Q U aQ u -aQ = G. Call a the multiplier for Q. As an
example, let G = GF(q)*, G = 4t, with multiplicative generator (. Then
Q = {w2n|05nst} is a quarter set, since it is clear that
QU -QUwQ U -uR =G. Thus we have
LEMMA 3.3. If q = 4t+1 <s a prime power then there is a quarter-set
in GF(q)*.



The following theorem will be a useful tool in constructing Howell
designs. It generalizes the result of Anderson [2; Theorem 8] which
requires g = 5. For s =1 this result was shown in [21].

THEOREM 3.4. There exists a strong 23—frame starter of order q = 2 t+l,
q prime power,for all s =1, k=22, t 21,1 odd.

Proof. Let D = (c,D) be a doubling scheme in (Zz)S and let

K = GF(q) XZ?. Let Q be a quarter set in GF(qg)* with multiplier

a # 1. Define

{(x,0,), (ax,d) }, osi<2-1,  2|i
{(=x,c,), (-ax,d) }, osi2®-1,  2fi
{(-ax,c,), (-a"x,d)) }, 2%<i<2%t1, 2|1

2 +
axe), a'x,a) ), 2%sis2®"ha1, o)

XeQ

We will show that S; is a strong (ZS,q) frame starter in K\({O}xz:).

First, note that the number of pairs defined is
2s+1_gi£ _
z.zs—l(q—l) = Zs(q—l) = IGF(q) \OX(Z§)|. We show that no element of K

ZS_l(q—l), so the number of elements of K in these pairs is

occurs in more than one pair. From the definition of @, it is seen
that the only possibilities for duplication are if (x,ci) = (iazz,d_)
x,z € Q, 0 £1i < 2s—1, 2S £3j < 25+l, or if (ax,di) = (ax,c.) for ’
0 <1ic< 25—1, ZS <3 < 2s+l-l. However, by the structure of]the doubling-
scheme neither of these possibilities can occur. Thus every element in
(GF (q) \O)X(Zz)s is in exactly one pair in S_.-
Now, consider the differences between the elements in the pairs
of Sg- Using Lemma 3.2, the set of all differences arising from
pairs of type {(x,ci),(ax,di)} or {(—x,ci),(—ax,di)} is i(a—l)szj.
Thus since *a(a-1)Qut(a-1)Q = GF(q) \0, every element of GF (q) \Oxz;
occurs as a difference of a pair in SJ- By counting, it is seen that
every element in GF(q) \OX(ZZZ)s occurs as a difference of exactly one
pair in Sé- Thus we have shown that Sé is a (25,q)—frame starter.
In order to show that Sé is a strong frame starter, consider
the sums of the pairs in Sé .  The sums of the first coordinates are
x(a+l), -x(a+l), ax(a+l), -ax(a+l), for all x € Q. These are from the
sets (a+l)Q, -(a+l)Q, (a+l)aQ and -(a+l)aQ, respectively, which are
known to partition the group GF(g) \0. No two sums of pairs in S'
with different first coordinate can be the saﬁe. Now consider two pzirs
of the form {(x,ci),(ax,di)} and {(x,cj),(ax,dj)} with the same
first coordinate sum. From the definition of the starter i < 25-1 if

and only if j < 25—1, and therefore by Lemma 3.2, ci+di # cj+dj. Also,



since a # -1, (0,i) is never a sum for any i € (222)5. Thus Sé is a
strong (ZS,q) - frame starter. O

COROLLARY 3.5. There is a (2,28,q) frame for all q = 1 modulo 4

a prime power, and s = 1.

EXAMPLE 3.6. We give a strong 4-frame starter of order 5 in GF(S)xZZXZ
{@,0,0,(2,0,0},{(4,0,0),(3,0,11},{(1,0,1),(2,1,0)},{(4,0,1),(3,1,1)},
{(3,0,00,(1,1,0)},{(2,0,1),(4,1,00},{(3,1,0),(1,1,1) },{(2,1,1),(4,1,1)}.

9

For the next theorem we will define a different quarter set Q.
Let g = 2kt+l be a prime power with t 2 3, t odd, and k 2 2. Let

*
G = GF(q) and C < G be the subgroup of index 2k. Let C

O,Cl,...,C X

0 2 -1

. ¢ k
be the cyclotomic classes of index 2 (cosets of CO) and let

k-1
A= . i = . .
2 Define Q C0 u C2 u u CA—2

For any a € Cn, n odd,
QU -QUap u —aQ = G. Let Qa = E%EQ' for a # 1. Thus both Q and
Q5 are quarter sets with multiplier a. The following theorem enables
one to construct sets of pairwise orthogonal (2,q)-frame starters.
THEOREM 3.7. If q = 2kt+1 18 a prime power with t 2 3 odd and

k > 2, then there exist t pairwise orthogonal (2,q)-frame starters in
(GF(q)%Z ) \(0xZ,).

Proof. Let 0,9, and A be as defined above. Also let D = (c,D) be

a doubling scheme in Z (i.e. ¢, =c, =c, =0, c, =1,

0 1 2 3

2
do = 0, and dl = d2 = d3 = 1). For a fixed n odd, 0 < n < 2k, and

for a € Cn' define S; as in Theorem 3.4. That is:
{(x,0), (ax,0) }

51 = {(-x,0), (-a:,l) L o
{(-ax,0),(-a"x,1)}

{(ax,1), (a’x,1) }

a

As in the proof of Theorem 3.4, for every a € Cn' S; is a 2-frame
starter of order g. It need only be shown that if a,b € Cn' a # b,
then S; is orthogonal to S'.

b
Consider the differences in each pair in S;: (ax,0)-(x,0)

(x(a-1),0) € 9 x {0}, (-ax,1)-(-x,0) € -Q x {1}, (—a2x,l)—(—ax,0) € —aQ x
{1}, and (a2x,l)—(ax,l) € aQ x {0}. Q is a quarter-set with multiplier
a thus these differences partition ((GF(q) \({O})xzz). Also, since

a,b e Cn' aQ = bQ. So if a pair in Sé and a pair in Sg have the

same difference then the two pairs must be of the same type (of the four

possible types) and the differences must be taken in the same direction.

So let



{(x,al),(ax,ai)} €8 {(z,u3),(az,u§)} €s!

{(y,az),(by,aé)} € sy {(W.a4),(bw,a&)} €s)
such that
(ax,ai)—(x,al) = (by,aé)—(y,az) (1)
(az,aé)—(21a3) = (bw,a4)—(w,u4)
We also assume that (x,al) # (z,cx3). (2)

Then from (1)
ax-x = by-y
az-z = bw-w
so (a-1) (x-z) = (b-1) (y-w).
Thus, since a-1 # b-1, either
(i) x-z # y-w and so S; is orthogonal to Sl'a' or
(ii) x-z = y-w = 0.
I1f x=2z, then al#a3 by (2). But since the second coordinate is a function of
the fiJ.jst coordinate, x=2z implies a_  =a

1L 3
orthogonal to SI') for all a,b € Cn' O

a contradiction. Thus S; is

COROLLARY 3.8. If gq = 2kt+1, i8 a prime power with t 2 3 odd, and
k 2 2, then there exists a (t,2,q)-frame.
EXAMPLE 3.9. Let q = 29 = 4.7+1. We have that 2 is a generator of
GF(29) and that C, = {2,3,19,14,21,17,11}. We give 2 of the 7
orthogonal (2,29) frame starters constructed by Theorem 3.6.
s) = {(1,0),(2,00},{(16,0),(3,0)},{(24,0),(19,00},{(7,0),(14,0) }
{(25,0),(2,1)},{(23,0),(17,0)},{(20,0),(11,0)}
{(28,0),(27,1)},{(13,0),(26,1)},{(5,0),(10,1) },{(22,0),(15,1) }
{(4,0),(8,1)},{(6,0),(12,1)},{(9,0),(18,1)}
{(27,0),(25,1)},{(26,0),(23,1)},{(10,0),(20,1)},{(15,0),(1,1)}
{(,0),(16,1)},{(12,0) (24,1) },{(18,0),(7,1) }
{(2,1),4,1)},{@3,1),(,1)},{(9,1),(9,1)},{(14,1),(28,1)}
{(21,1),3,1)},{7,1),(5,1)},{(11,1),(22,1) 1.
= {(15,0),(16,0)},{(8,0),(24,0)},{(22,0),(7,0)},{(18,0),(25,0)}
{127,0),(23,0)},{(26,0),(20,0)}{(10,0) ,(1,0) }
{(@4,0),13,1)},{(21,0),(5,1)},{(17,0),(22,1)},{(11,0),(4,1) }
{(2,0),(6,1)},{(3,0),(9,1)},{(19,0),(28,1) }
{(@3,0),(10,1)},{(5,00,(5,1)},{(22,0),(8,1) },{(4,0),(12,1)}
{(6,0),(18,1)},{(9,0),(27,1)},{(28,0),(26,1)}
{(e6,1),(19,1)},{(24,1),(14,1)},{(7,1),(21,1)},{(25,1),(17,1) }
{(23,1),(11,1)},{(20,1),(2,1)}{(1,1),(3,1) }.

For completeness we list one other class of frame starters.

1
S3



THEOREM 3.10. If q = 2kt+1 is a prime power with t 2 3 odd and k 21
then there exists t pairwise orthogonal 1-frame starters of order q
(and thus a (t,1,q)-frame).

Proof. A l-frame starter is just a starter. The existence of this class

of orthogonal starters was proved in [6]. [

4. Recursive Constructions for frames.

In this section we give two recursive constructions for frames.
‘The first construction is a result on the PBD closure of certain classes
of frames; the second is a general Moore-type construction.

Let Vv be a positive integer, and let K be a set of positive
integers. A pair (X,B), where B is a set of subsets of X, is said
to be a (v,K)-PBD (or pairwiée balanced design) provided 1X| = W,

B ¢ B implies |B|eK, and for any distinct x

X in X, there is a

unique B € B with {xl,xz} c B. Aset A oé pisitive integers is
said to be PBD-closed if v € A whenever there exists a (v,A)-PBD.

In [16]1, it was shown that the orders of 2-frames form a PBD-
closed set. We give a more general result.

THEOREM 4.1. Fd5t=={u|a (d,t,u) frame exists} is PBD-closed.
Proof. Let (X,B) be a(V,Fd,t)—PBD, and let Y be any set of size t.
For any B ¢ B, let TB be a (d,t,|B|)-frame on B x Y.

We will now construct S, a (d,t,v)-frame on X X Y. Consider a
cell C = ((xi,yi),lsisd). If xi = xj for some i,j, 1<£i<j<d, define
S(C) to be empty. Otherwise, let Cy = {xi,lsiSd}. If there is no
B € B such that Cy € B then define S(C) to be empty. Otherwise,
there is exactly one B € B with Co € B. Then define S(C) = TB(C).

It may be checked that S is a (d,t,v)-frame. [J

Before describing our second recursive construction, we need to
define some terms. We will make use of pairwise orthogonal Latin
squares (POLS) and subsquares (sub-POLS). For definitions, see [12].
This construction makes use of frames containing sub-frames. Let B be
an (n,k,v)-frame on symbol set Q x S, and let R < Q, IRI = w. If the
sub-array Bl induced by R X S 1is itself an (n,k,w)-frame (on R X s),

wé say that B, is an (n,k,w)-sub-frame of B.

We notelthat any (n,k,v)-frame contains an (n,k,1l)-sub-frame
(a k x k empty array), and an (n,k,0)-sub-frame. These will be useful
in deriving corollaries to the following construction.
THEOREM 4.2. (A Moore-type construction). Suppose the following exist:

(1) An (n,L,u)-frame.



(2) An (n,k,v)-frame containing an (n,k,w)-sub-frame.

(3) n POLS of order Eﬁ%f&ﬂz

Then an (n,Kk,u(v-w)+w)-frame exists.

Proof. Let A be an (n,%,u)-frame on P x T, and let B be an
(n,k,v)-frame on Q X S with an (n,k,w)-sub-frame Bl on R X S.
Here |T| = &, |P| = u, |s| =k, |Q] = v, |R| =w, and Q < R. We will

describe D, an (n,k,u(v-w)+w)-frame on symbol set ((PXQ\R)UR)XS.

Let Q\R XS = U Xt be an arbitrary partition of Q \ R x §
teT K (v=w)
into %2 disjoint sets X _, each of size ——l%liﬂ
Let 2 be any set of size Ei%fﬂl , and let ¢t : Xt + Z be
bijections, for t e T. Finally, let Ll""'Ln be n POLS of order

k(v-w)

. on symbol set Z, having rows and columns indexed by 2.

We now describe the construction for D.
Pick a cell C. If C e (RxS)", let D(C) = B (C). If
Ce (-(({p}XQ\R)UR)XS)n for some p ¢ P, but C ¢ (RxS)", define

D(C) {(p,ql,sl),(p,qz,sz)} if B(C) = {(ql,sl),(qz,sz)}, and define

D(C)

{(p,q,sl),(r,sz)} if B(C) = {(q,sl),(r,sz)}.

Suppose C is not one of the cells described above. If

Cc ¢ (PXQ\RXS)n, leave it empty.

So, let C = ((Pi:qi,si),lSiSn), p, € P, q; € O\R, s, € s, for

1<i<n. Let C' = ((pi,ti),lSiSn), where (qi,si) € X 1<is<n. 1If

A(C') 1is empty, leave cell C of D empty. If not,lsuppose

A(c') = {(p,t),(p',t")}. If there exist (q,s) € Xt and (q',s') € Xt'
' ' = ¢S <i<n, fi

such that Li(¢t(q,s),¢t,(q ,s')) ¢ti(qi sl) for 1<i<n, define

p(c) = {(p,a,s),(p',q',s')}; otherwise leave D(C) empty.

This completes the description of D. It may be verified that D
is indeed an (n,k,u(v-w)+w) frame. [

For completeness, we state, but do not prove, the following
generalization of Theorem 4.2. This is an "indirect" construction,
special cases of which have appeared in the literature. See, for
example [15]. We will not make use of this more general
construction in this paper.

THEOREM 4.3. Suppose the following exist:
(1) An (n,L,u)-frame.

(2) An (n,k,v)-frame containing an (n,k,w)-subframe.
(3) n POLS of order Eﬁ%fgl- containing (or missing) n POLS of
order kﬁ%fgi- (where O<a<w).

(4) An (n,k,u(w-a)+a)-frame.



Then an (n,k,u(v-a)+a)-frame exists.
Note that Theorem 4.2 follows from Theorem 4.3 by putting a = w.
In the next section we will investigate the existence of two and
three dimensional frames. To close this section we describe a simple
application of Theorem 4.2 in constructing higher dimensional frames.
) The following corollary of Theorem 4.2, is useful.
COROLLARY 4.4. Suppose there exist an (n,%,u)-frame and n POLS of
order kz Then an (n,k,u)-frame exists.

9
Proof. 1In Theorem 4.2, let v =1, w

= 0. Condition (2) is satisfied
trivially, and the result is obtained. [
The following is our result.
THEOREM 4.5. Suppose u = Zk.t+Z 18 a prime power, and suppose there
exist s POLS of order v. Let r = min{s,t}. Then:
(1) There exists an (r,v,u)-frame.
(2) If k > 1, there exists an (r,2v,u)-frame.

Proof. This follows from Corollary 4.4, Theorem 3.10, and Theorem 3.7. 0

5. Two- dimensional frames.

In this section we briefly discuss the existence of two-
dimensional frames. We will limit our investigation to frames of
odd order. Frames of even order will be dealt with in a later paper.

We need some results on Room squares, 2-frames and POLS.

LEMMA 5.1. If v # 2 or 6, then there exist two POLS of order v.

Proof. This was shown by Bose, Shrikhande and Parker in [41. 0O
LEMMA 5.2. If u =1 mod 4, u # 33,57,93,129,0r 133, then there exists a
(2,u)-frame.
Proof. This result was established in [16]. The frames constructed
there were of a special type, having a skew property. The proof
depends heavily on a PBD-closure result similar to Theorem 4.1. 2-frames
of orders 5,9,13 and 17 are given, and then (v,K)-PBDs with
XK = {5,9,13,17} are constructed to establish the result. [J

We first eliminate the exceptions of Lemma 5.2 by constructing

strong 2-frame starters of the required orders. 1In [8], the authors



describe a computer algorithm for finding strong starters in cyclic groups.
An obvious modiciation of this algorithm is made which enables us to find
t-frame starters for t > 1. Since Zu x Z :Z if u is odd, we may

2 2u
describe our 2-frame starters in the cyclic groups #Z_ , for u = 33,57,

93,129, and 133. We remark that the frames arising fizm these strong
starters are not frames as defined in [16], since they lack the skew
property. (A strong starter A = {{si,ti}} is skew if
si+ti # —(sj+tj) for any 1i,j).

Thus we may improve Lemma 5.2.
LEMMA 5.3. If u = 1 mod 4, then there exists a (2,u)-frame.
Proof. Strong (2,u)-frame starters for orders u = 33,51,93,129, and 133
are given in the appendix. O

Our main existence results for two-dimensional frames are given
in the next theorems.
LEMMA 5.4. If u = 1 mod 4, u > 5, then there exists a (t,u)-frame
for any t 2 1.
Proof. If t # 2 or 6, there exist two POLS of order t. Also, a Room
square of order u exists, so Corollary 4.4 yields the result. If
t = 2, Lemma 5. 3 gives the result. Finally, if t = 6, then apply
Corollary 4.4 with n =2, £ =2, k=6. Lemma 5.3 gives a (2,u)-frame,
and two POLS of order 3 exist. 0
LEMMA 5.5. If u = 8 mod 4, u > 3, and t # 2 or 6, then there exists a
(t,u) frame.
Proof. The proof is the first part of the proof of Lemma 5.4. [
LEMMA 5.6. If (t,6) # 1, then there exists a (t,5)-frame.
Proof. Suppose first that t is even. Let t = 2%, u with s 2 1. By
Corollary 3.5 there exists a (25,5)—frame. Since u is odd, there exist
two POLS of order u, and thus there is a (t,5) frame.

Thus, assume t = 3u with u odd. Example 1.1 provides a (3,5)-frame

Since two POLS of order u exist, the result follows. [J
Summarizing the above, and recalling Example 1.1, we obtain the

following result.
THEOREM 5.7. If wu = & 1is odd and there does not exist a t-frame of
order u, then either
(1) u==5 and (t,6) = 1.
(2) t=2o0r 6 and u = 3 mod 4.
It is trivial to see that there are no frames of order 3, so the

]

two classes above are the only unknown cases for frames of odd side.
Tt is known [18] that no (1,5)-frame (i.e. a Room square) exists, but

this is the only one of the exceptions of Theorem 5.7 which is known not
AA



to exist. Note that Theorems 2.3 and 2.4 give negative results regarding
the possibility of constructing these frames by starter methods.
Thus we ask the following two questions: Which (t,u)-frames exist
in the following classes?:
(1) u=5 and (t,6) =1
(2) t =2o0r 6, u= 3 mod 4.
‘Note that a 6-frame could be constructed from a 2-frame if the 2-frame

exists, as in the proof of Lemma 5.4.

6. Frames and Room n-cubes.

In this section we will consider applications of the recursive
construction, Theorem 4.2, to Room n-cubes. Recall that v(u) denotes
the largest n such that a Room n-cube of order u exists. Let vt(u)
denote the largest n such that an (n,t,u)-frame exists. Thus
v(u) = vl(u). Finally, N(v) denotes the largest number of POLS of
order v. We will make use of the following corollaries to Theorem 4.2.
THEOREM 6.1. v (uv) = min{v(u),v(v),N(v)}.

Proof. Put % =k =1 and w =0 in Theorem 4.2. [
THEOREM 6.2. v(u(v-1)+1) 2 min{v(u),v(v),N(v-1)}.

Proof. Put 2 =k =1 and w =1 in Theorem 4.2. [
THEOREM 6.3. Vv(u(v-1)+1) 2 min{\)z () ,v(v) ,N(%) 3.
Proof. Put & =2, k=1, and w =1 in Theorem 4.2. [

We will use the above three theorems to establish a list of lower
bounds for v(u), u odd and under 1000. 1In applying recursive
constructions, it is clearly necessary to have something to start with.
We will make use of the following result established by the first author
in [7].

THEOREM 6.4. v(13) 2 5, v(15) 2 4, v(17) =2 4, v(21) = 4, v(25) = 7,
v(29) = 13, v(37) = 15, v(41l) = 9, v(53) =2 17, v(6l) =2 21, v(l0l) = 31.

For prime powers, recall Theorem 3.10, which states that if
q = 2n.t+l is a prime power, then v(g) 2 t. We also use the following.
THEOREM 6.5. If u =7, or 11 <u < 999 and u 1is odd, then there exists
a strong starter of order wu, and hence v(u) = 3.

Proof. See Stanton and Mullin [20], Dinitz and Stinson [9]. [



We list below in Table 1 lower bounds for v(u), for u odd and
under 1000. For brevity we omit orders u where we are able to improve
the bound of Theorem 6.4, 3.10, or 6.5. We also list the lower bounds
needed for POLS in Table 1. The reader is referred to Brouwer [5] for
further details regarding these lower bounds for POLS.

Obviously, in many cases, either Theorem 6.2 or 6.3 can be
applied. Often, the existence of POLS determines which theorem yields
a better bound. For example, we have 815 = 37(23-1)+1. v(23) = 11,
v(37) 2 15, V2(37) > 9, N(22) 2 3, and N(11) = 10 are the best bounds
known. Thus Theorem 6.3 yields v (815) 2z 9, whereas Theorem 6.2 yields

only Vv(815) = 3. Thus Theorem 6.3 is considerably better in this case.

Table 1

Lower bound
n Construction for wv(u) Theorem Remarks
133 = 11(13-1)+1 5 6.2 v(11)=25,v(13)25,N(12)=5
143 = 11.13 5 6.1 v(11l)=5,v(13)=25,N(13)=5
165 = 15.11 4 6.1 v(11l)25,v(15)24,N(11)210
177 = 11(17-1)+1 4 6.2 v(11)25,v(17)24,N(16) 215
187 = 11.17 4 6.1 v(11)=25,v(17)24,N(17) 216
195 = 15.13 4 6.1 v(13)25,v(15)=24,N(13)>12
205 = 17(13-1)+1 4 6.2 v(17)24,v(13)25,N(12)>5
209 = 11.19 5 6l v(11l)=25,v(19)>5,N(19)>18
221 = 13.17 4 6.1 v(13)25,v(17)=4,N(17) 216
225 = 15.15 4 6.1 v(15)=24,N(15) =4
231 = 201 .k1 4 6.1 v(21)=4,v(11)>5,N(11)=10
247 = 13.19 5 6.1 v(13)25,v(19)29,N(19)>18
253 = 11.23 5 6.1 v(11)25,v(23)=211,N(23)>22
255 = 15.17 4 6.1 v(15)24,v(17)24,N(17)=216
273 = 17(17-1)+1 4 6.2 Vv(17)24,N(16)>15
275 = 11.25 5 6.1 v(11l)25,v(25)>7,N(25)>24
285 = 15.19 4 6.1 v(15)=4,v (19)29,N(19>18
291 = 29(11-1)+1 4 6.3 v2(29)27,v(11)25,N(5)24
297 = 11.27 5 6.1 v(11)25,v(27)>13,N(27)213
299 = 13.23 5 611 v(13)25,v(23)>11,N(23)>22
301 = 25(13-1)+1 5 6.2 v(25)27,v(13)>5,N(12)>5
305 = 19(17-1)+1 4 6.2 v(19)29,v(17)24,N(16)215
315 = 15.21 4 6.1 v(15)24,v(21)24,N(21)>4
319 = 11.29 5 6.1 v(11)25,v(29)213, N(29)228
323 = 17.19 4 6.1 v(17)24,v(19)>9,N(19)>18
325 = 13.25 5 6.1 v(13)25,v(25)>27,N(25)>24
337 = 21(17-1)+1 4 6.2 v(21)24,v(17)24,N(16)=15
341 = 11.31 5 6.3 v(11)25,v (31)>215,N(31)>30
345 = 15.23 4 6.1 v(15)24,v (23)>211,N(23)>22
351 = 13.27 5 6.1 v(13)25,v(27)>13,N(27)>26
357 = 21.17 4 6.1 v(21)24,v(17)>4,N(17)216
369 = 23(17-1)+1 4 6.2 v(23)>211,v(17)>4,N(17)>16
371 = 37(11-1)+1 4 6.3 v2(37)29,v(ll)25,N(5)24
375 = 15.25 4 6.1 v(15)24,v (25)>7 ,N(25)>4

ar



3717
391
399
405
411

437

445 =

465
469

473 =
475 =
481 =

483
493

497 =

507
513

525
527

551
555
565
567
575
583
589
609
611
615
621
629
637

639 =
645 =

649
651
657
667
671
675
681
685

689

697
703
705

713 =
725 =
737 =

753
755

non

= 13.29
= 17.23

21.19
15.27

= 41(11-1)+1
425 =

17.25
19.23
37(31-1)+1
15.31
13(37-1)+L
11.43
19.25
13.37
21.23
41(13-1)+1
31(17-1)+1

= 11(47-1)+1
= 19.27

517 =
519 =

= 21.25
=17.31
531 =

533 =

11.47
37(15-1)+1

53(11-1)+1

13.41
19.29
15.37
47(13-1)+1
21.27
23.25
11.53
19.31
21.29
13.43
15.41
23.27
17.37
53(13-1)+1
29(23-1)+1

15.43
I1.59
21.31
41(17-1)+1
23.29
11.61
25.27
17(41-1)+1
19(37-1)+1
13.53
29(25-1)+1
19.37
15.47
23.31
25.29
11.67
47(17-1)+1
29(27-1)+1

.
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v(13)25,y (29)213,N(29)228
v(17)24,v (23)211,N(23)222
v(21)24,v (19)29,N(19)218
v (15)24,y (27)213,N(27)226
v2(4l)25,v(ll)25,N(5)24

v (17)24,v (25)27,N(25)>24
v (19)29,v (23)211,N(23)222
v (37)215,y (13)25,N(12)=5
v (15)24,y (31)215,N(31)>30
v (13)25,y (37)215,N(36)>4
v(11)25,y (43)221,N(43)>42
v (19)29,y (25)27,N(25)=24
v (13)=5,y (37)215,N(37)>36
v (21)24,y (23)211,N(23)222
v (41)29,v(13)25,N(12)25

v (31)215,v(17)24,N(16)>5
v (11)>5,v(47)223,N(46)>4
v (19)29,v(27)213,N(27)226
v (11)>5,v (47)223,N(47)=46
v2(37)29,v(15)24,N(7)26

v (21)>4,v(25)27,N(25)226
v (17)24,v(31)215,N(31)215
v2(53)213,v(ll)25,N(5)24

v (13)>5,v(41)29,N(41)=40

v (19)29,v(29)213,N(29)228
v (15)>4,v(37)215,N(37)236
v (47)223,y(13)25,N(12)=5

v (21)24,v(27)213,N(27)226
v (23)211,y(25)27,N(25)224
v (11)>5,y(53)217,N(53)=52
v (19)29,v(31)215,N(31)215
v (21)>4,v(29)213,N(29)228
v (13)>5,v(43) 24,N(43)242

v (15)>4,v(41) 29,N(41)=40

v (23)211,v(27) 213, N(27)226
v (17)24,v(37)215,N(37)236
v (53)217,y(13) 25,N(12)25
v2(29)27,v(23)le,N(ll)ZlO

v (15)>4,v(43) 221,N(43)247

v (11) 5,y (43) 221,N(43)>42

v (21)24,y(31) 215,N(31)230

v (41)2>9,v(17) 24,N(16)215

v (23)211,v(29) >213,N(29)228
v (11)>5,vy(61) 221 ,N(61)260
v (25)27,v(27) 213,N(27)226
v (17)24,v(41) 29,N(40)24

v (19)29,v(37) 215,N(36) 24

v (13)2>5,v(53) 217,N(53)252
v 129) >7,v(25) 27,N(12)25

v (19) 29,1 (37) 215,N(37)=15
v (15) 24, y(47) >23,N(47) 246
v (23)211,y(31) 215,N(31) =30
v (25) 27,v(29) 213,N(29) 228

v (11) >5,v(67) 233 ,N(67) 266
v (47) 23, y(17k 4,N(17)216
v2(29)27,v(27)213,N(l3)212



767 =

771
775
777

779 =

781
783

793 =

795
799
803
805

817
837
849
851
855

869
871

875 =
= 15.59

885

889 =
= 11.81

891
893
899
901
903
913
915
921
923
925
943
945
949
955,

963 =
= 11(89-1)+1

969
973
979

985 =
987 =

989

999 =

o

13.59
11:(72-2)+1
25.31
21.37
19.41
11.71
27.29
13.61
15.53
17.47

= 11.73
= 67(13-1)+1
815 =

= 19.43

37(23-1)+1

27.31
53(17-1)+1
23.27

= 61(15-1)+1
861 =

21.41
11.79
13.67
19(47-1)+1

37(25-1)+1

19.47
29.31
17.53
11(83-1)+1
11.83
15.61
23(41-1)+1
13:71
25.37
23.41
59(17-1)+1
13.73
53(19-1)+1
37(27-1)+1

81(13-1)+1
11.89
41(25-1)+1

21.47
23.43
27.37
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v (13)25,v(59)>29,N(59)=58
v (11)25,v (71)235,N(70)26

v (25)27,v (31)215,N(31)=30
v (21)24,v (37)215,N(37)236
v (19)29,v (41)29,N(41)240

v (11)25,v (71)235,N(71)270
v (27)213,v(29)=213,N(29)228
v (13)25,v (61)221,N(61)260
v (15)24,v (53)=17,N(53)252
v (17)=4,v (47)223,N(47)246
v (11)25,v (73)29,N(73)=72

v (67)233,v {13)25,N(12)25
\)2(37)29,\) (23)211,N(11)210

v (19)=9,v (43)>21 ,N(43)242
v (27)=13,v (31)215,N(31)=30
v (53)217,v(17)24, N(16)215
v (23)211,v (37)=215,N(37)236
\)2(61)215,v (15)=4,N(7)26

v (21)>4,v (41)29,N(41)240
v (11)25,v (79)239,N(79)278
v (13)25,v (67)=33,N(67)266
v (19)29,v (47)223,N(46)24
v (15)24,v (59)229,N(59)258
\)2(37)29,\) (25)27,N(12)25

v (11)=5,v (81)>5,N(81)=80

v (19)29,v (47)223,N(47)223
Vv (29)213,v (31)215,N(31)230
v (17)=24,v (53)217,N(53)252
v (11)25,v (83)241,N(82)28

v (11)25,v (83)241,N(83)282
v (15)24,v (61)=221,N(61)=60
v (23)211,v (41)29,N(40)=24

v (13)25,v(71)235,N(71)270
v (25)27,v (37)215,N(37)236
v (23)211,v (41)29,N(41)240
v (59(229,v (17)24,N(16)215
v (13)25,v (73)29,N(73)272
v_(53)213,v(19)29,N(9)28
\)2(37)29,\) (27)=213,N(13)212

v (11)>5,v (89)=211,N(88)27
v (81)=5,v (13)25,N(12)=5

v (11)>5,v (89)211,N(89)=>88
\)2(41)25,\) (25)27,N(12)25

v (21)24,v (47)223,N(47)246
v (23)211,v (43)221,N(43)242
v (27)213,v (37)215, N(37)236



7. Frames and Howell designs.

This section deals with applications of frames to Howell designs.

Suppose X is a set such that |X| = 2n. A Howell design on X
of type H(s,2n) consists of a square array of side s such that (i)
each cell is either empty or contains an unordered pair of elements taken
from X, (ii) each element of X appears exactly once in each row and

‘each column of the array and (iii) every unordered pair appears in at
most one cell of the array. From the definition it is seen that
"existence requires n < s < 2n-1. If Y ¢ X such that |Y| =2n - s
and no pair of elements of Y occur in a cell in the array, then denote
this fact notationally by H*(s,Zn).

For information concerning Howell designs, see [14].

As mentioned in the introduction, a Room square of side 2n-1 is
an H(2n-1,2n). Therefore, it is known that H(2n-1,2n) exist for all
n # 2,3. For Howell designs of even side the design most similar to a
Room square is a H(2n,2n+2). The existence question for designs of
this type has been reduced by Anderson [3] to the following:

(1) Are there designs of type H(6p,6p+2), p prime?

(ii) Are there designs of type H(24,26), H(48,50) and H(54,56)?
We will be able to answer (i) in the affirmative for p = 1(4) and (ii)
in the affirmative for the H(48,50) and H(54,56).

The following theorem gives the connection between frames and
Howell designs. The theorem is similar to a theorem of Anderson and
Gross [1l; Theorem 1] but stated more directly in terms of the frames.
For completeness we give a proof.

THEOREM 7.l. Suppose there exists a (t,n)-frame and an H*(t,t+k).

Then there exists a H*(tn,tn+k).

Proof. Let H be a H*(t,t+k) on the symbols {1’2""’t}u{°°1’°°2""'°°k}'
Denote by Hui the Howell design H with the symbol n (1<n<t)
replaced by the symbol (ui,n) and the symbol wi (1<i<k) unchanged.
Let S be a t-frame of order n. In the empty diagonal square Sui
in S place the Howell design gui. It is easy to check that the
resulting square is indeed an H (tu,tu+k) on the symbol set

U"x T u {°°1’°°2""’°°k} 0 B}

COROLLARY 7.2. If n = 1 mod 4 then there is an H (6n,6n+2), and an
H*(6n,6n+4).

Proof. From Lemma 5.4 there is a (6,n) frame for all n = 1(4). Since

* *
there are H (6,8) and H (6,10), see [14], the result follows from



Theorem 7.1. [
Note that Corollary 7.2 implies the existence of an H(54,56).
Using the strong 2-frame starter of order 8 in Example 2.7 to
construct a (2,8)-frame and a pair of MOLS of side 3 it is possible by
Corollary 4.4 to construct a (6,8)-frame. Again, using the H*(6,8)
and Theorem 7.1 the result that there is an H*(48,50) follows.
) As a final corollary to Theorem 7.1 we have a result which gives
many Howell designs.
COROLLARY 7.3. Suppose 8,t and u are odd, s < t <1000,1u> 7,
1<s<t, 8 # t-2. Then there exists an H*(tu,tu+s).
Proof. 1In [9] it is shown that if s < t < 1000, t odd and 1<s<t
except possibly s = t - 2 then there is an H(t,t+s). For t > 5 odd
and u > 7 odd by Theorem 5.7 there is a (t,u)-frame. Thus, the
result follows by Theorem 7.1.
It has recently come to our attention that Schellenberg and Vanstone
have shown the existence of all the designs H(2n,2n+2) mentioned in (i),

(ii) above. See [19].
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