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Abstract.
A Steiner triple system has a bicoloring with m color classes if

the points are partitioned into m subsets and the three points in
every block are contained in exactly two of the color classes. In
this paper we generalize the direct product theorem for bicolored
Steiner triple systems given in [3] to a singular direct product
theorem of the form v → 3(v − 1) + 1. Our construction uses
a generalization of the “forbidden latin squares” introduced in
[3]. We also consider possible singular direct products of the form
v → 3(v − w) + w.

1991 Mathematics Subject Classification: 05B07

1. Introduction and Background

Throughout this paper we use notation consistent with that found in [2]. Let
D = (V,B) be a (v, k, λ)-design. A coloring of D is a mapping ϕ : V → C.
The elements of C are colors; if |C| = m, we have an m-coloring of D. For
each c ∈ C, the set ϕ−1(c) = {x : ϕ(x) = c} is a color class. For an extensive
survey of results on coloring designs, the reader is referred to [8]. Here we
consider a special class of colorings termed bicolorings. While a bicoloring is
defined for any design, we examine only bicolorings of Steiner triple systems.

A coloring ϕ of D is a bicoloring if for all B ∈ B, | ϕ(B) |= 2, where
ϕ(B) = ∪v∈Bϕ(v). This definition implies that in a triple system every triple
has two elements in one color class and one in another class, i.e., there are no
monochromatic triples nor are there any triples receiving three colors.

An m-bicoloring is a bicoloring with m color classes, and a design ad-
mitting an m-bicoloring is m-bicolorable. A design is m-bichromatic if it is
m-bicolorable but not (m− 1)-bicolorable.
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Example 1.1. A 3-bicolorable STS(13). First, construct an STS(13) by
developing the base blocks {1, 3, 9}, {2, 5, 6} mod 13. The color classes are
{0, 1}, {2, 6, 8, 10, 11}, {3, 4, 5, 7, 9, 12}. ut

In the context of strict colorings of hypergraphs defined recently by Voloshin
[10], a bicoloring of an STS is a strict coloring of an STS in which all triples
are both edges and also co-edges. In [4, 5], Milazzo and Tuza discuss several
properties of strict colorings of Steiner triple systems. A second related topic
is studied recently by Milici, Rosa, Voloshin [6]. In this paper the authors let S
be a set of “color patterns” and define a coloring of type S as a coloring where
every block has color pattern from S. They mainly study (v, 4, 1)-designs in
that paper.

We summarize earlier results on bicolored Steiner triple systems. An easy
counting argument [7] establishes that there exist no nontrivial 2-colorable
STS (or 2-colorable triple systems of any index λ for v > 4), and hence no
2-bichromatic triple systems. In [4, 5], Milazzo and Tuza discuss several prop-
erties of bicolorings of Steiner triple systems. In particular they prove that
there is an infinite family of unbicolorable Steiner triple systems. They also
prove a bound on the maximum number of colors in a bicolored Steiner triple
system. Precisely, they prove that if there exists a t-bicolorable STS(v) with
v ≤ 2k − 1, then t ≤ k. They also characterize those designs attaining this
bound.

In [3] the authors concentrate on 3-bicoloring Steiner triple systems. In
that paper, the following general necessary conditions are proven:

Proposition 1.2. Let (X,A) be an m−bicolorable triple system TS(v, λ) and
assume that the m color classes have sizes c1, c2, . . . , cm. Then

1.
∑m

i=1

(
ci

2

)
=
(
v
2

)
/3.

2. There do not exist ci and cj, i 6= j, with ci = cj = 2 (no matter what
the size of the other color classes are).

3. At most one of numbers c1, c2, . . . , cm can be odd.

4. Let v ≡ 1, 3 (mod 6). If there exists an m-bicolorable STS(v) with m-
split
(c1, . . . , ck, d1, . . . , dm−k) (with 0 < k < m), then the inequality
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holds, where

`(x) =


x/2 if x ≡ 0, 2 (mod 6)
0 if x ≡ 1, 3 (mod 6)

(x + 2)/2 if x ≡ 4 (mod 6)
4 if x ≡ 5 (mod 6)

5. If there exists a 3-bicolorable STS(v), then any prime p dividing v with
p ≡ 5 (mod 6) must have an even power in the prime factorization of
v.

Also in [3] is the following direct product theorem for 3-bicolorable STS.

Theorem 1.3. If there exists a 3-bicolorable STS(u) and a 3-bicolorable STS(v),
then there exists a 3-bicolorable STS(uv).

In the remainder of this paper we will be concerned with modifying this
construction to obtain a singular direct product theorem for 3-bicolorable STS.
We are still unable to prove the following conjecture from [3], yet we also believe
it to be true.

Conjecture 1.4. For every v ≡ 1, 3 (mod 6), satisfying the condition (5) in
Proposition 1.2 and for all 3-splits (a, b, c) for v satisfying conditions (1) and
(2) of Proposition 1.2, there exists a 3-bicolorable STS(v) with color classes of
sizes a, b, and c.

The following theorem from [3] gives the current state of knowledge con-
cerning the existence of 3-bicolorable STS(v).

Theorem 1.5. Let v ≡ 1, 3 (mod 6) and assume that in the prime factor-
ization of v no prime congruent to 5 (mod 6) appears with an odd exponent.
Further assume that all prime factors p congruent to 1 (mod 6) are less than
1000 and that all prime factors p congruent to 5 (mod 6) satisfy p2 < 1000.
Then there exists a 3-bicolorable STS(v).

2. Forbidden Latin Squares

Underlying the singular direct product theorem is a special type of latin square
termed a forbidden latin square. A special class of these latin squares was used
in the proof of Theorem 1.3, but a more general definition is needed for the
singular direct product.
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Suppose n = a + b + c = x + y + z. Let A,B and C be disjoint sets of sizes
a, b and c, respectively; and let X, Y and Z be disjoint sets of sizes x, y and
z, respectively. A latin square with rows and columns indexed by A ∪ B ∪ C
and symbols in the set X ∪ Y ∪ Z is called (a, b, c;x, y, z)−forbidden if in cell
(r, g) we find symbol s satisfying:

r in A and g in A implies s not in X
r in A and g in B implies s not in Z
r in A and g in C implies s not in Y
r in B and g in A implies s not in Z
r in B and g in B implies s not in Y
r in B and g in C implies s not in X
r in C and g in A implies s not in Y
r in C and g in B implies s not in X
r in C and g in C implies s not in Z.

The following gives the general picture of an (a, b, c;x, y, z)−forbidden latin
square. The notation ∼ X denotes that the symbols in this region of the
latin square contain no elements from the set X. ∼ Y and ∼ Z are defined
analogously. Each region is indexed by the elements in A,B and C and this
is also indicated.

A B C

A ∼ X ∼ Z ∼ Y

B ∼ Z ∼ Y ∼ X

C ∼ Y ∼ X ∼ Z

We note that forbidden latin squares were defined in [3]. The (a, b, c)-
forbidden latin square from that paper are (a, b, c; c, a, b)-forbidden latin square
in this more general definition.
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Example 2.1. A (5, 5, 2; 6, 1, 5)-FLS. In this example, X = {1, 2, 3, 4, 5, 6},
Y = {x} and Z = {a, b, c, d, e}.

a c e b d 2 x 6 3 1 4 5
e b d a c 1 3 x 2 4 5 6
d a c e b 5 1 4 x 3 6 2
c e b d a 4 6 1 5 x 2 3
b d a c e x 5 2 1 6 3 4
2 x 6 3 1 a 4 e b 5 c d
1 3 x 2 4 6 b 5 a c d e
5 1 4 x 3 d 2 c 6 b e a
4 6 1 5 x c e 3 d 2 a b
x 5 2 1 6 3 d a 4 e b c
3 4 5 6 2 b c d e a x 1
6 2 3 4 5 e a b c d 1 x

ut

In the next theorem we give some necessary conditions for the existence of
forbidden latin squares.

Theorem 2.2. The following are necessary conditions for existence of an
(a, b, c;x, y, z)-FLS:

max{x, y, z} ≤ min{a + b, a + c, b + c} (1)
max{a, b, c} ≤ min{a + b, a + c, b + c, x + y, x + z, y + z} (2)
ax + by + cz = ab + bc + ca. (3)

Proof. (1) and (2): Let r ∈ B. Each symbol s ∈ X occurs in a different cell in
row r. Also, no symbol occurs in cell (r, g) for any g ∈ C. Hence, x ≤ a + b.
The other inequalities can be proven in a similar manner.

(3): Given an (a, b, c;x, y, z)-FLS, construct a set of (a + b + c)2 (ordered)
triples in the obvious way. This set of triples forms a transversal design, in
which the groups are G1 = A ∪B ∪C, G2 = A ∪B ∪C and G3 = X ∪ Y ∪Z.
This transversal design is in fact bicolored using three colors, where the color
classes are of size 2a+x, 2b+y and 2c+z. This means that each triple contains
exactly one “pure pair”. The number of triples, (a+ b+ c)2, is therefore equal
to the number of pure pairs, namely, a2 + b2 + c2 +2(ax+ by + cz). The result
follows from algebraic simplification.

These necessary conditions are, in general, quite restrictive, but we note
that in the case of the (a, b, c; c, a, b)-forbidden latin squares from [3], that
condition (1) alone was shown to be necessary and sufficient. (Note that, in
this case, condition (3) is vacuously true and condition (2) is equivalent to
condition (1).)
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We next construct an infinite class of forbidden latin squares that will be
needed in the singular direct product construction in Section 3.

Theorem 2.3. Suppose there is a latin square of order a−1 having b disjoint
transversals, then there exists an (a− 1, a− 1, b; a, b− 1, a− 1)-FLS.

Proof. Let X be a set of size a where ∞ ∈ X, let Y be a set of size b− 1, and
let Z be a set of size a−1 with X, Y and Z mutually disjoint. Let L be a latin
square of order a − 1 on symbol set X\{∞}, having b disjoint transversals,
denoted T1, . . . , Tb. Let LZ be an isomorphic copy of L on symbol set Z.

Next, define L′ to be the square obtained from L by replacing the transver-
sals T1, . . . , Tb with symbols from Y ∪ {∞}, respectively. Similarly, define L′

Z

to be the square obtained from LZ by replacing the transversals T1, . . . , Tb

from LZ with the corresponding transversals T1, . . . , Tb from L.
Now define M to be the a−1 by b rectangle whose columns are the transver-

sals T1, . . . , Tb from L; and define MZ to be the a − 1 by b rectangle whose
columns are the transversals T1, . . . , Tb from LZ . Similarly, define N to be
the b by a − 1 rectangle whose rows are the transversals T1, . . . , Tb from L;
and define NZ to be the b by a− 1 rectangle whose rows are the transversals
T1, . . . , Tb from LZ . Finally, let L′′ be a latin square of order b on symbol set
Y ∪ {∞}.

We construct the desired FLS, as follows:

LZ L′ M
L′ L′

Z MZ

N NZ L′′

It is straightforward to check that the square constructed above is indeed
latin and that it satisfies the forbidden properties.

Corollary 2.4. An (a − 1, a − 1, b; a, b − 1, a − 1)-FLS exists for all positive
integers a > b.

Proof. By Theorem 2.3 the required forbidden latin square exists if there exists
a latin square of side a − 1 having b disjoint transversals. Such a square
can be constructed if there exists a pair of orthogonal latin squares of side
a − 1. Hence if a − 1 6= 2 or 6, the result follows. Since there exists a pair
of incomplete latin squares of side 6 missing a hole of side 2, there exists a
latin square of side 6 having 4 (or fewer) disjoint transversals. So for all pairs
(a, b) 6∈ {(3, 1), (3, 2), (7, 5), (7, 6)} with a > b the result follows. For these
remaining ordered pairs (a, b), (a− 1, a− 1, b; a, b− 1, a− 1)-FLS can be found
on the web page at the following URL:

http://www.emba.uvm.edu/~Dinitz/forbiddenLS.html
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It is not necessary that a > b for an (a− 1, a− 1, b; a, b− 1, a− 1)-FLS to
exist. In the next example we describe a construction of such a square when
a = 6 and b = 10.

Example 2.5. A (5, 5, 10; 6, 9, 5)-FLS.
Define X = {x1, . . . , x5,∞}, Y = {y1, . . . , y9} and Z = {z1, . . . , z5}. Let U

be a latin square of order five on symbol set X\{∞}; let V1 be a latin square
of order five on symbol set {y1, . . . , y5}; let V2 be a latin square of order five
on symbol set {y6, . . . , y9}∪ {∞}; and let W be a latin square of order five on
symbol set {z1, . . . , z5}. Then the following array is the desired FLS:

V1 V2 W U
V2 U V1 W
W V1 U V2

U W V2 V1

ut

We can adapt Stinson’s hill climbing algorithm for Steiner triple systems
[9] to find latin squares. One merely lets the triples be of the form (r, c, s)
where the symbol s occurs in row r and column c and requires that every
pair of row-column, row-symbol and column-symbol occurs exactly once. The
algorithm can then be further modified to search for forbidden latin squares.
We have done this and found (a−1, a−1, b; a, b−1, a−1)-FLS for many pairs
(a, b) with a ≤ b ≤ 2a− 2. (Note that Theorem 2.2 implies that b ≤ 2a− 2 if
an (a− 1, a− 1, b; a, b− 1, a− 1)-FLS exists.)

Using a hill-climbing algorithm, we have found (a−1, a−1, b; a, b−1, a−1)-
FLS for a = 4, 5, 6 and 7 for all a ≤ b ≤ 2a − 2. These squares are available
from the above-mentioned web page.

3. The Singular Direct Product

We are now in a position to prove our main result, a v → 3(v− 1)+1 singular
direct product theorem.

Theorem 3.1. (Singular Direct Product) Suppose there is a 3-bicolorable STS(v)
with split (a, a− 1, b), and an (a− 1, a− 1, b; a, b− 1, a− 1)-FLS. Then there
exists a 3-bicolorable STS(3v − 2) with split (3a− 2, 2b + a− 1, 2a + b− 2).
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Proof. Define sets Vij of elements with i, j ∈ {0, 1, 2}, so that Vij has a−1, a−
1, b elements for j = 0, 1, 2 respectively, when 0 ≤ i ≤ 1; and a, b − 1, a − 1
elements for j = 0, 1, 2 respectively, when i = 2. The union of Vij for 0 ≤ i ≤ 2
then has 3a− 2, 2a + b− 3 and 2b + a− 1 elements for j = 0, 1, 2, respectively.
Let ∞ be a new point.

For i = 0, . . . , 2, place on the union of Vij for j = 0, 1, 2 with {∞} an
(a, a − 1, b)−bicolored STS(v) in which the color classes are Vi0, Vi1 ∪ {∞}
and Vi2. Now form an (a − 1, a − 1, b; a, b − 1, a − 1)-FLS. Use the latin
square to construct triples in the obvious way (i.e., form the transversal design
from the latin square and align the row, column, and symbol classes on the
corresponding Vfj ’s, Vgj ’s and Vhj ’s).

The result is a bicolorable STS(3v−2) whose color classes have the specified
sizes.

Corollary 3.2. Suppose there is a 3-bicolorable STS(v) with split (a, a−1, b),
where a > b. Then there is a 3-bicolorable STS(3v− 2) with split (3a− 2, 2b +
a− 1, 2a + b− 2).

Proof. This follows immediately from the singular direct product theorem
above and Corollary 2.4.

Theorem 3.4 below will show that it is necessary that a > b in order for
there to exist a 3-bicolorable STS(v) with split (a, a−1, b). Hence the condition
that a > b in the above corollary is not needed.

One may ask whether there exists a singular direct product theorem of the
form v → 3(v − 1) + 1 which does not require that the original 3-bicolorable
STS(v) has color split (a, a − 1, b). The answer to this is no, as exhibited in
the next proposition.

Proposition 3.3. In any singular direct product theorem of the form v →
3(v−1)+1 it is necessary that the original 3-bicolorable STS(v) has color split
(a, a− 1, b) for some a and b.

Proof. Consider a hypothetical v → 3(v−1)+1 construction in which we use,
WLOG, an (a, b−1, c; b, c−1, a)-FLS. Note that this implies that the point ∞
again ends up in the second color class and that the original STS(v) has color
split (a, b, c). Theorem 2.2 (3) implies that

a(b− 1) + c(b− 1) + ac = ab + (b− 1)(c− 1) + ac.

This simplifies to yield b − 1 = a, which is isomorphic to the construction
presented above.

Since our main ingredient in the singular direct product theorem (other
than the forbidden latin square) is a 3-bicolorable STS(v) with split (a, a−1, b),
it is reasonable to determine the values of a and b for which this can exist.
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Theorem 3.4. A 3-bicolorable STS(v) with split (a, a − 1, b) can exist only
for the following parameters:

a = 3t2 + 2t + 1 and b = 3t2 − t

or

a = 3t2 + 4t + 2 and b = 3t2 + t

where t is any integer.

Proof. From Proposition 1.2 (a) it follows that

3
((

a

2

)
+
(

a− 1
2

)
+
(

b

2

))
=
(

2a + b− 1
2

)
.

This simplifies to give

(a− b)2 = 3a− 2.

Then a − b = 3t + 1 or 3t + 2 for an integer t. Solving for a and b gives the
result.

4. The v → 3(v − u) + u Construction

The next theorem gives a general v → 3(v − w) + w construction. Let D =
(X,A) be a 3-bicolorable Steiner triple system of order v with split (a, b, c)
which contains a subsystem (Y,B) of order w (so Y ⊂ X, |Y | = w and B ⊂ A).
Let A,B, and C be the color classes of D and assume that |A ∩ Y | = i,
|B ∩ Y | = j and |C ∩ Y | = k. Then D is said to have color split (a, b, c; i, j, k).

Theorem 4.1. Suppose there is a 3-bicolorable STS(v) with a sub STS(w)
which has color split (a, b, c; i, j, k) and a 3-bicolorable STS(v) with a sub
STS(w) which has color split (a, b, c; j, k, i). Suppose further that there exists
an (a− i, b− j, c− k; c− i, a− j, b− k)-FLS. Then there exists a 3-bicolorable
STS(3(v − w) + w) with split (2a + c− 2i, 2b + a− 2j, 2c + b− 2k).

Proof. Define disjoint sets Vpq of elements with p, q ∈ {0, 1, 2}, so that Vpq has
a− i, b− j, c− k elements for q = 0, 1, 2 respectively, when p = 0 or p = 1; and
c− i, a− j, b− k elements for q = 0, 1, 2 respectively, when p = 2. The union
of Vpq for 0 ≤ p ≤ 2 then has 2a + c− 3i, 2b + a− 3j and 2c + b− 3k elements
for q = 0, 1, 2, respectively. Further, define three more disjoint sets I, J and
K with |I| = i, |J | = j and |K| = k.

For p = 0 and p = 1, place on Vp0 ∪ Vp1 ∪ Vp2 ∪ I ∪ J ∪ K an STS(v)
containing a sub-STS(w) (where the subsystem is on the points I ∪ J ∪ K)
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with color split (a, b, c; i, j, k) in which the color classes are Vp0 ∪ I, Vp1 ∪ J
and Vp2 ∪K. Next, delete all blocks in the subsystem from both designs. For
p = 3, place on the union of Vp0∪Vp1∪Vp2∪ I ∪J ∪K an STS(v) containing a
sub-STS(w) (the subsystem is again on the points I ∪ J ∪K) with color split
(c, a, b; i, j, k) in which the color classes are Vp0 ∪ I, Vp1 ∪ J and Vp2 ∪K. But
this time do not delete any blocks in the subsystem.

Now form an (a − i, b − j, c − k; c − i, a − j, b − k)-FLS. Use the latin
square to construct triples in the obvious way (i.e., form the transversal design
from the latin square and align the row, column, and symbol classes on the
corresponding V0q’s, V1q’s and V2q’s).

The result is a bicolorable STS(3(v−w) + w) whose color classes have the
specified sizes.

Obviously, there will be many conditions on the parameters necessary for
this construction to be used. We will not go into those here. We will, however
note that the next case for w, after the w = 1 case considered in the previous
section, is of course w = 3. When w = 3, the only possible color split is
(0, 1, 2). We now restate the above theorem in the case w = 3.

Corollary 4.2. Suppose there is a 3-bicolorable STS(v) with split (a, b, c),
and an (a, b − 1, c − 2; c, a − 1, b − 2)-FLS. Then there exists a 3-bicolorable
STS(3v − 6) with split (2a + c, 2b + a− 2, 2c + b− 4).

A necessary condition for the existence of a (a, b−1, c−2; c, a−1, b−2)-FLS
required above is 2a + 3 = b + c. (This follows from condition (3) of Theorem
2.2.) The first parameter situation where all the necessary conditions are
satisfied is when a = 12, b = 10 and c = 17. This would require the existence
of a 3-bicolorable STS(39) with split (12, 10, 17), and a (12, 9, 15; 17, 11, 8)-FLS.
The 3-bicolorable STS(39) with color split (12, 10, 17) was found to exist in [3],
and using the modified hill-climbing algorithm we found a (12, 9, 15; 17, 11, 8)-
FLS. (This latin square can also be obtained from the previously mentioned
web page). Hence, in this particular parameter situation, the singular direct
product can be used.

We believe that there are many other cases where this construction can be
used; however we have not searched for others at this time.

5. Conclusion and Open Problems

The problem of bicolorable Steiner triple systems remains open, of course. We
have shown in that the direct product construction from [3] can be modified to
a singular direct product construction. The singular direct product construc-
tion depends on the existence of a generalized form of forbidden latin square,
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which is an interesting open problem in its own right. In particular, we ask
if the necessary conditions from Theorem 2.2 are sufficient for existence of an
(a, b, c;x, y, z)-FLS.

An obvious further generalization of forbidden latin squares is to specify
possibly different partitions associated with rows, columns and symbols, i.e.,
an (a, b, c;u, v, w;x, y, z)-FLS. Necessary conditions analogous to those of The-
orem 2.2 could easily be written down, and one could perhaps formulate more
general versions of the singular direct product construction that would use
these more general forbidden squares.
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