
The Stipulation Polynomial of a UniquelyList-colorable GraphJ. H. DinitzW. J. MartinDepartment of Mathematics & StatisticsUniversity of VermontBurlington, VermontJuly 6, 1994AbstractLet G be a simple graph and let S = (S1; : : : ; Sn) be a set of lists of colors at thevertices of G. G is said to be S list-colorable if there exists a proper coloring of G suchthat each vertex i takes its color from Si. Alon and Tarsi [1] have shown that G is Slist-colorable if and only if its graph polynomialfG(x) :=Yi�j(xi � xj)does not lie in the ideal I generated by the annihilator polynomials gi(x) of the colorsavailable at the vertices.We consider the case where G is uniquely list-colorable and determine the irreduciblefactors of the remainder polynomial (or stipulation polynomial) �fG = fG mod I. Weestablish a bijection between the factors of �fG and the edges of G.1 IntroductionLet G be a simple graph with vertices V = f1; 2; : : : ; ng and edges E. When vertices i andj are joined by an edge, we write i � j. Let C = fc1; c2; : : : cqg be a set of indeterminatescalled colors and for each i, 1 � i � n, let Si � C be a list of colors available at vertex i.The S-list coloring question asks whether there exists a proper (vertex-) coloring ' : V ! Cof G such that, for each i 2 V , '(i) 2 Si. Such a proper coloring is called an S-legal coloringand G is said to be S list-colorable, where S := fS1; : : : ; Sng.List colorings have arisen in several contexts, mainly in situations where one wishesto determine whether or not a given partial coloring of a graph may be completed to aproper coloring. The actual de�nition of a list coloring �rst appeared in Erd�os, Rubin, and1



Taylor [5]. Their motivation was the so-called \Dinitz problem", which is a special type oflist coloring problem (see Janssen [7] and Cipra [3]). A recent paper [6] by H�aggvist andChetwynd gives a history of the general problem (as well as some new results) as does thepaper [8] by Kahn. There has been renewed interest in list colorings due to some powerfulresults obtained recently by N. Alon and M. Tarsi [1]. Indeed, their work has been themotivating factor in the present paper.Let x = (x1; x2; : : : ; xn) be a vector of indeterminates, one for each vertex of G. De�nethe edge di�erence polynomial of GfG(x) := Yi�ji<j (xi � xj):It is easy to see that G is list-colorable (with the given lists S1; : : : ; Sn) if and only if thereexists a vector c = (c(1); c(2); : : : ; c(n)) in S1 � S2 � � � � � Sn satisfying fG(c) 6= 0.Now de�ne the annihilator polynomial gi(x) at vertex i to be the polynomial which iszero precisely when xi 2 Si: gi(x) := Yc2Si(xi � c):De�ne I to be the ideal generated by fgi(x) : 1 � i � ng in Z[x]. For any proper list coloringc of G, we have fG(c) 6= 0 while gi(c) = 0 for 1 � i � n. Extending this, Alon and TarsiproveTheorem 1.1 (Alon and Tarsi, [1, Prop. 2.7]) Either G is S list-colorable or fG 2 I,not both. 2This theorem as it stands is di�cult to use. Perhaps the more important part of theirpaper from the practical viewpoint is the following theorem. (An Eulerian subgraph of adirected graph is a subgraph in which every vertex has in-degree equal to its out-degree.)Theorem 1.2 (Alon and Tarsi, [1, Theorem 1.1]) Let G and S be given. Suppose thereis an orientation D of G such that (i) the out-degree of vertex i in D is less than jSij forall i, and (ii) the number of Eulerian subgraphs of D with an even number of edges is notequal to the number of Eulerian subgraphs of D with an odd number of edges. Then G is Slist-colorable. 2While this theorem has been the focus of several recent papers [4, 7] on list coloring,we prefer to work directly with Theorem 1.1. Our strategy is to consider graphs whichcan be list colored. In these cases, we would like to understand the remainder polynomial�fG = fG mod I. We view the irreducible factors of �fG as stipulations on colorability of G.Several examples may help here. 2



Example 1: Let G be the graph K4 � e with V = f1; 2; 3; 4g and E = f12; 23; 34; 14; 24g.
1

, , }c
2

cc
3 1

, , }{

c
2

c
2

c
1

, , }c

c

c
3 

c
1

, , }{

3 
c

3 
c

3 
c

2
c

2

1

2

3

4

{c
1{c

1
, , } }Suppose the lists at the vertices are S1 = S2 = S4 = fc1; c2; c3g and S3 = fc1g. Then theedge di�erence polynomial isfG(x) = (x1 � x2)(x2 � x3)(x3 � x4)(x1 � x4)(x2 � x4);and the four annihilator polynomials areg1(x) = (x1 � c1)(x1 � c2)(x1 � c3); g2(x) = (x2 � c1)(x2 � c2)(x2 � c3);g3(x) = (x3 � c1); g4(x) = (x4 � c1)(x4 � c2)(x4 � c3):If I is the ideal generated by g1(x); : : : ; g4(x) in Z[x], we can compute �fG = fG mod I to be�fG(x) = �(x1 � c2)(x1 � c3)(x2 � c1)(x4 � c1)(x2 � x4):An evaluation ' : x ! C of this polynomial is non-zero if and only if vertex 1 does not getcolor c2 or c3, neither vertex 2 nor 4 get color c1 and vertices 2 and 4 receive di�erent colors.On the other hand, observe that the evaluation ' is non-zero if and only if '(x) is a properlist-coloring. Note that the condition that a vertex be assigned a color from its list has been\modded out"; i.e., this is to be assumed at this point.In this way, we feel that the irreducible factors of the polynomial �fG correspond tostipulations on the colorings of G. Our task is to decipher the algebraic language in which �fGpresents these conditions to us. In general, these irreducible factors may be quite unwieldy.We will determine �fG completely in the case where G has exactly one S-legal coloring. Inthis case, we say G is uniquely list-colorable. Let us now look at a graph which has a uniqueS-legal coloring. 3



Example 2: Suppose G is again K4 � e as in the previous example. Let S1 := fc1; c2g,S2 := fc1; c3g, S3 := fc2; c3g, and S4 := fc1; c2g.
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,Then fG(x) = (x1 � x2)(x2 � x3)(x3 � x4)(x1 � x4)(x2 � x4);g1(x) = (x1 � c1)(x1 � c2); g2(x) = (x2 � c1)(x2 � c3);g3(x) = (x3 � c2)(x3 � c3); g4(x) = (x4 � c1)(x4 � c2);and �fG(x) = (x1 � c1)(x2 � c1)(x3 � c3)(x4 � c2)(c2 � c3):We describe again how we will \read" this polynomial. It says that vertex 1 cannot becolored c1, vertex 2 cannot be colored c1, vertex 3 cannot be colored c3, and vertex 4 cannotbe colored c2. Thus it gives us the unique list coloring. While the factor c2 � c3 seems togive us no new information, we will see later that \inessential" factors of this sort arise oftenin the case where G is uniquely colorable.Most of the detailed calculations seen here were performed with the aid of the MAPLEcomputer algebra system.2 Algebraic PreliminariesThe following lemma was used in the proof of Theorem 1.1.Lemma 2.1 (Alon and Tarsi, [1, Lemma 2.1]) Let P = P (x) be a polynomial in n vari-ables over the ring of integers Z. Suppose that for 1 � i � n, the degree of P as a polynomialin xi is at most di and let Si � Zbe a set of di + 1 distinct integers. If P (x) = 0 for alln-tuples x 2 S1 � � � � � Sn then P � 0. 2Each of the polynomials gi(x) is univariate and monic. Thus, using the division algorithmfor any �xed 1 � i � n, there is a natural way to write any polynomial P (x) 2 Z[x] as4



P (x) = q(x)gi(x) + r(x) where q(x); r(x) 2 Z[x] and degxi(r) < degxi gi. We can performthis reduction repeatedly on fG(x) to obtainfG(x) = h1(x)g1(x) + h2(x)g2(x) + � � � hn(x)gn(x) + �fG(x):While the polynomials hi are not unique (they may depend on the ordering of the vertices),the remainder polynomial �fG is. For using Lemma 2.1, one can show that �fG is the uniquepolynomial satisfying degxi �fG < degxi gi which is also congruent to fG modulo the ideal I.For the remainder of this paper, we will refer to �fG = fG mod I as the stipulation polynomialof the pair (G;S) or, simply the stipulation polynomial of G.Note that fG is a homogeneous polynomial of degree m = jEj in the variables x1; x2; : : : ;xn. Treating the colors c1; c2; : : : ; cq as indeterminates, each of the annihilator polynomials gican be treated as a homogeneous polynomial in the variables x1; : : : ; xn, and c1; : : : ; cq. Wecan obtain any remainder P (x; c) mod gi(x; c) by repeatedly replacing xjSiji by a homogeneouspolynomial in xi; c1; : : : ; cq of degree jSij having strictly lower degree in the variable xi.Thus, when all such substitutions have been made, and we arrive at �fG, we still have ahomogeneous polynomial of degree m, now in the variables x1; : : : ; xn; c1; : : : ; cq. Moreover,every irreducible factor of �fG is a homogeneous polynomial in these variables. This provesLemma 2.2 If G is a graph with n vertices and [Si = fc1; : : : ; cqg, then the stipulationpolynomial �fG of the pair (G;S) is a homogeneous polynomial of degree m = jE(G)j in thevariables x1; : : : ; xn; c1; : : : ; cq. Moreover, every proper factor of �fG is homogeneous (of lesserdegree) in these variables. 2We shall call an irreducible factor of �fG a k-th order stipulation if it is homogeneous ofdegree k. We shall see below that �rst order stipulations are relatively easy to interpret butthose of larger order can be quite di�cult. In the case where G is uniquely list-colorable, wewill observe in Section 3 that all stipulations are �rst-order.3 The stipulation polynomialIn this section, we completely determine the stipulation polynomial �fG of a graph G whenG is uniquely list-colorable.Our �rst result is essentially obtained by Lagrange interpolation. Let graph G be givenwith a set S = fS1; : : : ; Sng of lists of colors at the vertices of G. For a given vectorc 2 S1 � � � � � Sn, c = (c(1); : : : ; c(n)) say, de�ne ĝi;c(x) = gi(x)=(xi � c(i)) for i = 1; : : : ; n.Theorem 3.1 With G, S given, we have�fG(x) = Xc2S1�����Sn Qni=1 ĝi;c(x)Qni=1 ĝi;c(c) fG(c): (1)5



Proof: It is clear that this polynomial has degree less than jSij in variable xi for each i.Moreover, for any s 2 S1 � � � � � Sn, we have�fG(s) = fG(s) = Qni=1 ĝi;s(s)Qni=1 ĝi;s(s)fG(s) = Xc2S1�����Sn Qni=1 ĝi;c(s)Qni=1 ĝi;c(c)fG(c):So the polynomial given takes on the same values as �fG on the grid S1 � � � � � Sn. UsingLemma 2.1, we conclude that they are equal. 2Now, in the case where G is uniquely S list-colorable, we have fG(c) = 0 for all but onepoint c on the grid S1 � � � � � Sn. Thus, we immediately getCorollary 3.2 Assume G and S are given and that G has a unique S-legal coloring c. Then�fG(x) = Qni=1 ĝi;c(x)Qni=1 ĝi;c(c) fG(c):Theorem 3.1 also gives us some information about linear factors in the general case. Leti be a vertex of G and let c be a color. We say that color c is forbidden at vertex i if c 2 Siand there is no S-legal coloring of G which assigns color c to vertex i. Let Fi � Si be theset of colors which are forbidden at vertex i. Then we haveCorollary 3.3 If Fi is the set of colors forbidden at vertex i, then for each i,gcd( �fG; gi) = Yc2Fi(xi � c):Proof: Clearly, if xi � c divides �fG(x), then any coloring which uses color c at vertex icorresponds to a vector c for which �fG(c) is zero. Thus fG(c) = 0 as well and so the coloringis not proper. Conversely, if no proper list-coloring of G uses color c at vertex i, then thefactor xi � c divides every non-zero summand on the right-hand side of Equation 1. So italso divides the left-hand side. 2Of course it is clear that, when G has many S-legal colorings, the factors of �fG canbecome quite complex. We are interested in �nding and interpreting factors of small degree.In the next section, we report our progress in this direction.4 Essential sets of edgesWe have shown that, when G is uniquely list-colorable, its stipulation polynomial factors intom = jE(G)j linear factors, each either of the form (xi� cj) or (c(i)� c(j)). We call factors ofthe former type essential and factors of the latter type inessential. The original polynomialfG has one linear factor for each edge of G. Thus, the numerology of this situation suggeststhat there could be a set E of edges of G which correspond to the essential factors with theremaining edges playing the part of the inessential factors. When G is uniquely list-colorable,de�ne a subset E � E(G) to be an essential set if the members of E can be oriented so that,6



for each vertex i and for each forbidden color c at vertex i, there is a unique directed edgek ! i in this set E such that c(k) = c. A naive interpretation here is that when vertex k iscolored with color c, this forbids color c at vertex i and this contributes the factor (xi � c)to �f .Example 3: The following graph is uniquely list-colorable. An essential set is indicated inbold.
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4 5Here�f = �(x1 � c1)(x2 � c3)(x3 � c3)(x4 � c1)(x5 � c2)(x6 � c2)(c1 � c3)(c2 � c3)3:In this section, we will show that, whenever G is uniquely list-colorable, such an essentialset exists. However, (i) this set of edges is not always unique, and (ii) the presence of anessential set does not prove that the coloring is unique.Theorem 4.1 Let G be a uniquely list-colorable graph. Then E(G) contains an essentialset.Proof: Let G be as given with lists S = (S1; S2; : : : ; Sn). Let c(i) be the forced color atvertex i and de�ne Fi = Si � c(i). Construct a bipartite graph B with bipartition (X;E)where X = f(i; c) : 1 � i � n; c 2 Figand E = E(G). A node (i; c) 2 X is joined to node e 2 E in B precisely when e is incidentto i in G and the other endpoint of e is forced to take on color c. It is not di�cult to seethat an essential set in G is equivalent to a matching in B which saturates X. (See Example4.) Suppose there is no matching in B which saturates X. By Hall's Theorem (see, e.g., [2]),there must exist a set S � X such that the neighbor set N(S) = [s2SN(s) (where N(s) is theset of neighbors of node s) has strictly smaller cardinality than S. By throwing components7



away if necessary, we may assume that the subgraph M of B induced by S [ N(S) isconnected.Now in B, every element of E has either zero, one, or two neighbors. We claim that everyelement of N(S) has two neighbors in S. Let jN(S)j = k1 + k2 where ki is the number ofvertices whose degree inM is i. The number of edges inM is k1+2k2. SinceM is connected,it contains a spanning tree: sok1 + 2k2 � k1 + k2 + jSj � 1 � 2k1 + 2k2since, under our assumption that there is no matching, jSj > jN(S)j. This forces k1 = 0 asdesired. Thus jN(S)j = k2 = 12 jE(M)j < jSj and, since M is connected, M looks like a treeon S in which each edge has been subdivided once.Let (i; c) be a node in S. Then every node in S at distance 2 from (i; c) in M must be ofthe form (j; c(i)) by construction of B. Extending this, there must be only two colors, c andc0 say, which occur as second coordinates of members of S. Let (i; c) be any node of S. Thenevery neighbor of i in G which is colored c0 must be in S since M contains no nodes e 2 Eof degree one. Therefore, if for each node (i; c) 2 S we recolor vertex i of G with color c, weobtain a second S-legal coloring of the graph G. Yet our hypothesis was that G is uniquelylist-colorable, So this must be impossible. We conclude that the matching we seek exists.This provides us with our essential set. 2Example 4:
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G BWhenever G is uniquely list-colorable and we have an essential set E of edges, we caneasily read o� the stipulation polynomial of G. Given essential set E, we de�ne an edgee = ij to be inessential if it does not belong to E. These edges are then directed arbitrarily.We are now in a position to prove our main theorem.Theorem 4.2 Let G be a uniquely list-colorable graph with coloring c = fc(1); : : : ; c(n)gand with essential set E. Let I := E(G) n E be the set of inessential edges. Then�fG = � Yij2E(xj � c(i)) Yij2I(c(i)� c(j)):8



Proof: By de�nition of an essential set, the right hand side isnYi=1 ĝi(x) Yij2I(c(i)� c(j)):So, using Theorem 3.2, we need only prove thatfG(c)Qni=1 ĝi(c) = Yij2I(c(i)� c(j)):Examining the left-hand side of this equation, this quotient corresponds set-theoretically todeleting an essential set of edges. Thus, the terms of fG(c) which remain correspond preciselyto the terms that arise from the inessential edges, up to multiplication by �1. 2The presence of an essential set is not su�cient to declare a graph uniquely list-colorable.In the following example, there are two colorings and an essential set for each.Example 5:
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3 4 Indeed, uniquely list-colorable graphs are rare. However, even in the case where thegraph has many colorings, empirical evidence suggests that the irreducible factors can still beinterpreted combinatorially. More precisely, we believe that there will always be a functionfrom the edge set of G to the set of irreducible factors of �fG with the property that thepre-image of any irreducible factor induces a connected graph whose stipulation polynomial(perhaps with some colors deleted from the lists) is precisely that factor. A weaker conjectureis that, for each irreducible factor h, the set fi : xi appears in hg induces a connectedsubgraph of G.5 Further results and examplesThe following is an immediate corollary to Theorem 1.2 and Lemma 3.3. The proof isomitted.Corollary 5.1 Suppose G has an orientation D satisfying Theorem 1.2 and having outdegreesequence d = (d1; : : : ; dn). Then there are at most di colors forbidden at vertex i for 1 � i �n. 2 9



Let us say that a color c is allowable at vertex i if there exists a proper list coloring ' ofG with '(i) = c. Suppose that the only stipulations involving xi are of the form xi�c wherec is a color. Then, for any coloring of G which makes �f non-zero, we can change the colorof vertex i to any color allowable there | leaving all other colors the same | and �f willremain non-zero. (This is true since the only way this expression can be made zero simplyby changing xi is by choosing a forbidden color there.) This provesProposition 5.2 Suppose the polynomial �fG(x)Qc2Fi(xi � c)has degree zero in xi and let j be a neighbor of vertex i. Then no color can be allowable at iand also allowable at j. 2We now construct, for each positive integer k a graph with a unique coloring having alllists of size k.In [5], Erd�os et al. construct, for each k, a complete bipartite graph Ek which is notk-choosable. The vertices of Ek correspond to two copies of the k-sets of a set of size 2k� 1.These k-sets are chosen as the lists at the 2�2k�1k � vertices. If k or more colors are utilized onone side of the bipartition, then some vertex on the other side has its entire list forbidden.On the other hand, at least k colors must be used on each side since, for every set of k � 1or fewer colors, there is a vertex whose list contains none of these.To construct a graph with a unique coloring, we proceed as follows. For each j (1 � j �2k � 1), construct a complete bipartite graph as above and modify just one list. Choose avertex, vj, whose list does not contain color cj and replace some element of that list withcolor cj . The bipartite graph is now list-colorable, but color cj must be used at vertex vj.For each of these graphs, we choose a �xed list coloring and join a vertex i to those verticesvj such that color cj is not the color of vertex i. The resulting graph has a unique coloring.It is not di�cult to modify this argument so as to guarantee that the graph obtained isbipartite.References[1] N. Alon and M. Tarsi, \Colorings and orientations of graphs." Combinatorica, 12(2)(1992), 125-134.[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. North-Holland,New York (1976).[3] B. Cipra, \If you're stumped, try something harder." Science, 259, 5 March 1993,p1404. 10



[4] M. N. Ellingham and L. Goddyn, \List edge colourings of some regular multi-graphs." Preprint.[5] P. Erd�os, A. L. Rubin, H. Taylor, \Choosability in graphs." Congr. Numer., 26(1979), 125-157.[6] R. H�aggkvist and A. Chetwynd, \Some upper bounds on the total and list chro-matic numbers of multigraphs." J. Graph Theory, 16(5) (1992), 503-516.[7] J. Janssen, \The Dinitz problem solved for rectangles." Bulletin AMS.[8] J. Kahn, \Recent results on some not-so-recent hypergraph matching and coveringproblems." Proc. 1st Int'l Conference on Extremal Problems for Finite Sets, Visegr�ad,Hungary, June 1991.

11


