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Abstract

Marco Buratti has conjectured that given p a prime and a mul-

tiset S containing p − 1 non-zero elements from Zp, there exists a

Hamiltonian path in Kp where the multiset of edge lengths is S. In

this paper we completely solve this conjecture when S contains at

most two distinct values.

1 Introduction

Given a graph G, a Hamiltonian Path in G is a path that visits every
vertex exactly once. In a given graph, a Hamiltonian path may or may
not exist, however, it is well known in that complete graphs Hamiltonian
paths always exist. Let p be a prime and let Kp be the complete graph
on p vertices. When the vertices of Kp are labeled with the elements of
the cyclic group Zp one can define the length of an edge xy to be x − y

or y − x, whichever is less than p−1

2
. Extending this definition slightly we

say that an edge with length k ≤ p−1

2
also has length p − k (there will

be no ambiguity when this is used in context). The reader is referred to
[4] for further definitions and graph theoretic background and to [1] for an
extensive survey of Hamiltonian graphs. In 2007, Marco Buratti made the
following conjecture.

Conjecture 1 (Buratti) Given p a prime and a multiset S containing p−1
non-zero elements from Zp, there exists a Hamiltonian path H in Kp where
the multiset of edge lengths in H is S.

From the above, it is clear that Buratti’s conjecture is equivalent to
the following: Given p a prime and a multiset S containing p − 1 non-zero

1



elements between 1 and p−1

2
, there exists a Hamiltonian path H in Kp

where the multiset of edge lengths in H is S. We first consider the two
extremal cases, namely when |S| = 1 and when |S| = p − 1

When |S| = 1 all edges have the same length k. The path 0, k, 2k, 3k, . . . ,

(p − 1)k (with all terms reduced modulo p) is a Hamiltonian path with all
edge lengths k. Note that since k and p are relatively prime, all vertices in
this path are distinct.

Now assume that |S| = p−1 and hence S = {1, 2, . . . , p−1}. The follow-
ing is a Hamiltonian path with the prescribed lengths: 0, 1,−1, 2,−2,3,−3, . . .,
p−1

2
,−p−1

2
(again all terms are reduced modulo p). It is easy to check that

the sequence of edge lengths starts with 1 and increases by 1 for each
edge added, giving an edge of length d for all non-zero elements d ∈ Zp.
Note that the edge lengths of this Hamiltonian path can also be given as
S = {1, 1, 2, 2, . . ., p−1

2
, p−1

2
}. This is essentially the well-known Walecki

Construction (see [3] for a recent survey of this construction).
The main result of this paper is that when S consists of exactly two

different values a and b, that there is always a Hamiltonian path in Kp

where the edges all have length either a or b.

2 Paths with Edge Lengths a and b

The case of exactly two edge lengths is greatly simplified by the following
two reductions.

Lemma 2 Let p be a prime. The existence of a Hamiltonian path in Kp

where all edges have length a or b is equivalent to the existence of a Hamil-
tonian path where all lengths are 1 and a−1b.

Proof: Since Zp is a field, multiplicative inverses exist for all elements of
Zp \ {0}. List the vertices of the Hamiltonian path with lengths a and b in
the order in which they were visited, x0, x1, . . . , xp−1. Since it is a Hamil-
tonian path, every vertex appears exactly once. Multiply each vertex by
a−1. The resulting sequence is a−1x0, a

−1x1, . . . , a
−1xp−1. Since a−1 is a

unit in Zp, each element of Zp appears once in the new sequence, so it is
still a Hamiltonian path. Furthermore, the lengths of each path are now
either a−1 ∗ a = 1 and a−1 ∗ b.

Clearly it doesn’t matter which length was chosen to be labeled a and
which was chosen to be labeled b. Hence, one can always label the length
that occurs more often as a and the length that occurs less often as b.
This reduces Buratti’s entire problem with two edge lengths to showing
that there is a Hamiltonian path with edge lengths 1 and k for all k where
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number of occurrences of edges of length 1 is not less than the number oc-
currences of edges of length k. We record this in the following proposition.

Proposition 3 Let 1 < k ≤ p−1

2
and suppose that there exists a Hamilto-

nian path in Kp containing u edges of length 1 and v edges of length k for
every u and v with u + v = p− 1 and u ≥ v. Then, given any a and b with
1 ≤ a, b ≤ p − 1 and any na and nb with na + nb = p − 1 there exists a
Hamiltonian path H in Kp with exactly na edges of length a and nb edges
of length b .

3 Constructions

For the remainder of the paper we will be constructing Hamiltonian paths
in Kp (p ≥ 5 a prime) with all edges of length 1 or k with 1 < k ≤ p−1

2
.

Let n denote the number of edges of length k in the Hamiltonian path and
hence there are p − 1 − n edges of length 1 in the path. From Proposition
3 we can assume that 1 ≤ n ≤ p−1

2
. Using the division algorithm, we write

n = qk + r where 0 ≤ r < k. We require four fairly similar constructions
to cover all the cases. We consider the cases when k is even and when k is
odd with r even, r odd, and q = 1.

3.1 k even

Lemma 4 If n = qk + r with k even, then there is a Hamiltonian path in
Kp with n edges of length k and (p − 1) − n edges of length 1.

Proof: First consider the case where n = qk + r with k even, r even.
We begin by placing all the edges of length k and construct a path in the
following manner:

Start at 0 and go upwards in increments of k until the vertex (q +1)k is
reached. This picks up all of the vertices congruent to 0 modulo k between
0 and (q + 1)k. Add one to get to (q + 1)k + 1, then travel backwards in
increments of k. This picks up all of the vertices congruent to 1 modulo
k. At 1, add one to get to the vertex 2 and then travel to the vertices
congruent to 2 modulo k by way of paths of length k. Continue in this
pattern until you have reached the vertex r−1. At this point, add 1 to get
to the vertex r and travel upwards in increments of k. Instead of going to
(q + 1)k + r, end at qk + r. Add 1 and travel downwards to r + 1. Pick
up the remaining congruence classes (modulo k) in this manner. Since k is
even, the last congruence class will be obtained by traveling downward and
ending at k− 1. This part of the Hamiltonian path containing the edges of
length k is summarized in the list below:
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0, k, 2k, . . . , (q + 1)k,

(q + 1)k + 1, qk + 1, . . . , 1,

2, k + 2, 2k + 2, . . . , (q + 1)k + 2,

(q + 1)k + 3, qk + 3, . . . , 3,

. . .

r − 2, k + (r − 2), . . . , (q + 1)k + (r − 2),
(q + 1)k + (r − 1), qk + (r − 1), . . . , r − 1,

r, k + r, 2k + r, . . . , qk + r,

qk + r + 1, . . . , r + 1,

r + 2, . . . , qk + (r + 2),
. . .

qk + (k − 1), . . . , k − 1

Note that if r = 0, it is necessary to start at the row beginning with r and
not the row listed above as beginning with 0.

This path exhibits certain properties. First, it is easy to see that every
vertex between 0 and (q + 1)k + (r− 1) has been visited. Furthermore, the
degree of every vertex in that range is 2 with the exceptions of 0 and k−1.
Second, the path contains exactly n edges of length k. This follows since
the first r congruence classes have q + 1 edges of length k going forward
and the last k− r congruence classes contain exactly q edges going forward
giving a total of r(q + 1) + (k − r)q = qk + r = n edges of length k. Lastly,
the vertex 0 has an open end, so the additional edges of length 1 can be
added in a counterclockwise manner starting at 0 until reaching the vertex
(q + 1)k + r. The addition of these edges of length 1 yields a Hamiltonian
path.

In the case where k is even and r is odd, the same construction above
can be used with one slight modification. Let r = s + 1 and use s in the
construction. The path contains qk + r − 1 edges of length k and ends at
k−1. Add the edge (k−1,−1). This time the open vertex is at −1, so the
extra edges of length 1 needed to make a Hamiltonian path are added this
time in a counterclockwise manner starting at −1.

The last property that needs to be checked is that this construction
fits in Kp for all p. In the case of r even, the largest vertex visited is
(q + 1)k + r − 1. In the case of r being odd, one more vertex was used,
so if the vertices are relabeled so the open end is at 0, the largest vertex
visited is (q + 1)k + r (we must show this value is less than p). Recall
that by Proposition 3, n = qk + r ≤ p−1

2
and k ≤ p−1

2
. It follows that,

(q+1)k+r = (qk+r)+k ≤ p−1

2
+ p−1

2
= p−1. Therefore, this construction

works for all p.
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Figures 1 and 2 show an example of the construction when k is even.
Figure 1 shows a path where k is even and r is even. In this example, 10
edges of length 4 are placed in Z23. In this case, n = qk + r = 2 ∗ 4 + 2.
Figure 2 shows how the case where k is even and r is even can be extended
to r being odd by adding the edge (k−1,−1). For this case we demonstrate
11 edges of length 4 in Z23.
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Figure 1: A Hamiltonian path with p = 23, n = 10, k = 4
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Figure 2: A Hamiltonian path with p = 23, n = 11, k = 4

3.2 k odd

It is necessary to break this case into three parts. Lemma 5 covers the case
when k is odd and r is even. Lemmas 6 and 7 cover the case when k is odd
and r is odd with Lemma 6 providing a construction for q ≥ 2 and Lemma
7 providing the construction for q = 1.
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Lemma 5 If n = qk+r with k odd and r even, then there is a Hamiltonian
path in Kp with n edges of length k and (p − 1) − n edges of length 1.

Proof: In the case of k odd and r even, we use essentially the same
pattern that was used in the k even case with even remainder. However
note that instead of ending the path at the vertex k−1, the path now ends
at qk + k − 1. This change is noted in the summary of the pattern below.

0, k, 2k, . . . , (q + 1)k,

(q + 1)k + 1, qk + 1, . . . , 1,

2, k + 2, 2k + 2, . . . , (q + 1)k + 2,

(q + 1)k + 3, qk + 3, . . . , 3,

. . .

r − 2, k + (r − 2), . . . , (q + 1)k + (r − 2),
(q + 1)k + (r − 1), qk + (r − 1), . . . , r − 1,

r, k + r, 2k + r, . . . , qk + r,

qk + r + 1, . . . , r + 1,

r + 2, . . . , qk + (r + 2),
. . .

k − 1, . . . , qk + (k − 1)

Once again, this path visits the first (q + 1)k + (r − 1) vertices and
contains exactly n = qk + r edges of length k, since again the first r

congruence classes have q + 1 edges of length k going forward and the
last k − r congruence classes contain exactly q edges going forward. To
extend this path to a Hamiltonian path, the remaining edges of length 1
are be added in a counterclockwise manner starting at the open end, i.e.
at the vertex 0.

Finally, it is necessary to check that this construction will fit into Kp.
Once again, the highest vertex visited is (q + 1)k + r − 1. The conditions
that n = qk + r ≤ p−1

2
and k ≤ p−1

2
still hold by Proposition 3. It follows

that (q+1)k + r−1 = (qk+ r)+k−1 ≤ p−1

2
+ p−1

2
−1 = p−2, completing

the proof.

Figure 3 shows the construction in Lemma 5 for p = 29, k = 5, and
n = 12 = 2 ∗ 5 + 2.

Lemma 6 If n = qk + r with k odd, r odd and q ≥ 2, then a Hamiltonian
path with n edges of length k and (p − 1) − n edges of length 1 exists.

Proof: Similar to what was done with the case where k is even, the
construction for k odd and r even can be extended to k odd and r odd by
adding one edge. As before, we do the construction for k odd and r even
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Figure 3: A Hamiltonian path with p = 29, n = 12, k = 5

using s = r − 1 as the remainder. This time the path ends at the vertex
qk + k− 1. Add in the edge (qk + k− 1, qk + 2k− 1). The vertices between
(q + 1)k + r − 1 and (q + 2)k − 1 can be reached by paths of length 1 by
starting at the open end of the path at qk + 2k− 1 and subtracting 1. The
vertices between qk + 2k − 1 and 0 can be reached by paths of length 1
where 0 is the starting point and the edges proceed counterclockwise.

In this case, it is necessary to show that qk +2k−1 ≤ p−1. By Propo-
sition 3, qk + r ≤ p−1

2
. Since qk ≤ qk + r, it follows that qk ≤ p−1

2
. Now

using the hypothesis that q ≥ 2 we get that qk + 2k − 1 ≤ qk + qk − 1 ≤
p−1

2
+ p−1

2
− 1 ≤ p − 1, completing the proof.

Figure 4 shows the construction from Lemma 6 for p = 29, n = 13, and
k = 5. Note that the constructed path is the same as in Figure 3 with the
addition of the edge (14, 19) and the subtraction of the edge (19, 20).
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Figure 4: A Hamiltonian path with p = 29, n = 13, k = 5
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In the case where q = 1, Lemma 6 will not work when 2k is greater
than p−1

2
. Our final lemma gives a construction for the q = 1 case.

Lemma 7 If n = qk + r with k odd, r odd and q = 1, then a Hamiltonian
path with n edges of length k and (p − 1) − n edges of length 1 exists.

Proof: Consider the following construction: Place an edge of length k

from 0 to k. Instead of going forward 1 (as in the previous constructions),
subtract 1 to get to the vertex k − 1. At this point go forward k to the
vertex 2k − 1. Add in two edges of length 1 by going forwards to 2k and
2k + 1. From here, the pattern is similar to previous constructions. Travel
backwards and pick up the class of numbers congruent to 1 modulo k. Add
1 and travel forwards by lengths of k, which adds the vertices congruent
to 2 modulo k to the path. Continue in this pattern until the vertex r is
reached by traveling backwards from 2k+r. This gives 2k+r as the largest
vertex visited thus far. At this point use the following pattern: add 1, add
k, add 1, subtract k. This continues until the vertex k − 2 is reached by
traveling backwards from 2k− 2. This path is summarized in the following
list:

0, k,

k − 1, 2k − 1, 2k,

2k + 1, k + 1, 1,

2, k + 2, 2k + 2,

. . .

r − 1, k + r − 1, 2k + r − 1,

2k + r, k + r, r,

r + 1, k + r + 1,

k + r + 2, r + 2,

. . .

r − 3, k + (r − 3)k + (r − 2), r − 2

This path indeed contains the correct number of edges of length k since
every vertex between 0 and k + r has an edge of length k traveling forward
with the exception of vertex k. Also, it is easy to see that there are no
isolated vertices between 0 and k + r. Lastly, the end at 0 is open, which
enables us to pick up the vertices between 2k+r and 0 with edges of length
1.

The last thing to check is that the construction fits in Kp. By Propo-
sition 3, n = k + r ≤ p−1

2
. Also k ≤ p−1

2
. Therefore, 2k + r = k + k + r ≤

p−1

2
+ p−1

2
= p − 1, completing the proof.

Figure 5 shows the construction from Lemma 7 for p = 23, k = 7, and
n = 10 = 1 ∗ 7 + 3.
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Figure 5: A Hamiltonian path with p = 23, n = 10, k = 7

4 Conclusion

We combine the constructions of the previous section to get the following
theorem.

Theorem 8 Let p a prime, k ≤ p−1

2
, and n ≤ p−1

2
, then there exists a

Hamiltonian path in Kp containing n edges of length k and (p − 1) − n

edges of length 1.

Proof: This theorem follows directly from Lemmas 4, 5, 6, and 7.

From the reductions of Section 2 and Theorem 8 we now have a solution
to Buratti’s Conjecture for the case of two distinct edge lengths.

Theorem 9 Given p a prime, 1 ≤ n ≤ p − 1 and any nonzero lengths a, b

with {a, b} ∈ Zp, there exists a Hamiltonian path in Kp containing n edges
of length a and (p − 1) − n edges of length b.

Proof: By Theorem 8, there exists a Hamiltonian path in Zp containing
n edges of length k and (p− 1)−n edges of length 1. The existence of this
path in conjunction with Proposition 3 give the existence of the desired
path.

We note here that Theorem 4 was proven indenendently by Horak and
Rosa in [2]. The interested reader is referred to that paper for further
discussion of Buratti’s problem.

The following corollary deals with the case of Hamiltonian paths in
complete graphs of nonprime order.

Corollary 10 Given s ∈ N and n ≤ s−1

2
, there exists a Hamiltonian path

in Ks containing n edges of length k and (s − 1) − n edges of length 1.
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Proof: Examining the proofs of Lemmas 4, 5, 6, and 7, it can be observed
that the condition of s being a prime was not used. Therefore, the con-
structions work for any s ∈ N.

Our final corollary deals with Hamiltonian paths with edges of length
a and b in Ks with s not prime.

Corollary 11 Given s ∈ N and assume that a and b are nonzero lengths
in Zs with gcd(s, a) = 1 and gcd(s, b) = 1, then there exists a Hamiltonian
path in Ks containing n edges of length a and (s − 1)− n edges of length b

for all 0 ≤ n ≤ s − 1.

Proof: The case of n = 0 or n = p − 1 is solved by considering the path
consisting of the successive multiples of a (or b) in the cyclic group Zs.
Now without loss of generality assume that n ≤ s−1

2
. Since b is a unit in

Zs, the existence of a Hamiltonian path in Ks with n edges of length a and
(s − 1) − n edges of length b is implied by the existence of a Hamiltonian
path in Ks with n edges of length ab−1 and (s − 1) − n edges of length 1.
The result now follows from Corollary 10.

A basic computer search conducted using Mathematica has shown Bu-
ratti’s Conjecture is true for p = 7. The following is a table that contains
every possible multiset S of lengths in Z7 and a Hamiltonian path in K7

whose edge lengths correspond to the values in the multi-set S.

S Hamiltonian Path S Hamiltonian Path

{1, 1, 1, 1,1,1} {0, 1, 2, 3,4,5, 6} {1, 1, 3, 3,3, 3} {0, 3, 2, 6,5, 1, 4}
{1, 1, 1, 1,1,2} {0, 1, 2, 3,4,6, 5} {1, 2, 2, 2,2, 2} {0, 2, 4, 5,3, 1, 6}
{1, 1, 1, 1,1,3} {0, 1, 2, 3,6,5, 4} {1, 2, 2, 2,2, 3} {0, 2, 4, 1,6, 5, 3}
{1, 1, 1, 1,2,2} {0, 1, 2, 3,5,4, 6} {1, 2, 2, 2,3, 3} {0, 2, 5, 6,4, 1, 3}
{1, 1, 1, 1,2,3} {0, 1, 2, 3,6,4, 5} {1, 2, 2, 3,3, 3} {0, 1, 4, 2,5, 3, 6}
{1, 1, 1, 1,3,3} {0, 1, 2, 5,6,3, 4} {1, 2, 3, 3,3, 3} {0, 3, 6, 4,1, 2, 5}
{1, 1, 1, 2,2,2} {0, 1, 2, 4,6,5, 3} {1, 3, 3, 3,3, 3} {0, 3, 4, 1,5, 2, 6}
{1, 1, 1, 2,2,3} {0, 1, 2, 6,4,5, 3} {2, 2, 2, 2,2, 2} {0, 2, 4, 6,1, 3, 5}
{1, 1, 1, 2,3,3} {0, 1, 2, 5,4,6, 3} {2, 2, 2, 2,2, 3} {0, 2, 4, 6,1, 5, 3}
{1, 1, 1, 3,3,3} {0, 1, 4, 5,2,3, 6} {2, 2, 2, 2,3, 3} {0, 2, 4, 6,3, 1, 5}
{1, 1, 2, 2,2,2} {0, 1, 6, 4,2,3, 5} {2, 2, 2, 3,3, 3} {0, 2, 5, 3,6, 4, 1}
{1, 1, 2, 2,2,3} {0, 2, 3, 5,6,1, 4} {2, 2, 3, 3,3, 3} {0, 3, 5, 2,6, 1, 4}
{1, 1, 2, 2,3,3} {0, 1, 3, 6,4,5, 2} {2, 3, 3, 3,3, 3} {0, 3, 6, 4,1, 5, 2}
{1, 1, 2, 3,3,3} {0, 3, 4, 1,6,5, 2} {3, 3, 3, 3,3, 3} {0, 3, 6, 2,5, 1, 4}

The cases in K8 and K9 were also run on the computer. In the case
of K8, there are 120 possible multi-sets S and 105 of them are realizable
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as Hamiltonian paths. In the case of K9, there are 165 multi-sets S with
161 of these having realizable Hamiltonian paths. The only four sets that
do not have realizable paths are {1, 3, 3, 3,3,3, 3, 3}, {2, 3, 3, 3,3,3, 3, 3},
{3, 3, 3, 3, 3,3,3, 3} and {3, 3, 3, 3, 3, 3, 3,4}. Clearly these paths are not
realizable as it is not possible to attain elements of more than 2 of the
congruence classes modulo 3. It is interesting to note that these are the
only multisets in Z9 with no realizable path.
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