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Abstract

In this paper, we introduce a generalization of frames called par-
tial resolution squares. We are interested in constructing sets of
complementary partial resolution squares for Steiner triple systems.
Our main result is the existence of six complementary partial res-
olution squares for Steiner triple systems of order v which can be
superimposed in a v × v array so that the resulting array is also
the array formed by the superposition of three mutually orthogo-
nal Latin squares of order v where v ≡ 1 (mod 6), v ≥ 7, and
v /∈ {55, 115, 145, 205, 235, 265, 319, 355, 415, 493, 649, 697}.
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1 Introduction.

A balanced incomplete block design (BIBD) D is a collection B of subsets
(blocks) taken from a finite set V of v elements with the following properties.

(1) Every pair of distinct elements from V is contained in precisely λ blocks
of B.

(2) Every block contains exactly k elements.

We denote such a design as a (v, k, λ)−BIBD.
A (v, k, λ)−BIBD D is said to be near resolvable if the blocks of D can

be partitioned into classes (resolution classes) R1, R2, . . . , Rv such that for
each element x of D there is precisely one class which does not contain x
in any of its blocks and each class contains precisely v − 1 distinct elements
of the design. The classes R1, R2, . . . , Rv form a resolution of D and D is
denoted by NR(v, k, λ)−BIBD. Two necessary conditions for the existence
of a NR(v, k, λ) − BIBD are v ≡ 1 (mod k) and λ = k − 1. Results on
NR(v, k, k − 1)−BIBDs can be found in [7] and [2].

Let R and R′ be two resolutions of a NR(v, k, λ)−BIBD. R and R′ are
said to be orthogonal if |Ri ∩R′

j | ≤ 1 for all Ri ∈ R, R′
j ∈ R′. (It should be

noted that the blocks of the design are considered as being labeled so that if a
subset of the elements occurs as a block more than once the blocks are treated
as distinct.) If a NR(v, k, λ) − BIBD has a pair of orthogonal resolutions,
it is called doubly near resolvable and is denoted by DNR(v, k, λ)−BIBD.
We can use a pair of orthogonal resolutions of a DNR(v, k, λ) − BIBD to
construct a v × v array. (For convenience, we often refer to this array as a
DNR(v, k, λ) − BIBD.) We index the rows and columns of the array with
the pair of orthogonal resolutions R and R′. In the cell labeled (Ri, R

′
j), we

place Ri ∩ R′
j. If Ri ∩ R′

j = ∅, the cell is left empty. The rows of the array
will contain the resolution classes of the resolution R and the columns will
contain the resolution classes of the orthogonal resolution R′. As an example,
a DNR(10, 3, 2)−BIBD is displayed in Figure 1.
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8,3,4 6,7,1 9,5,2
9,4,0 7,8,2 5,6,3

8,9,3 5,0,1 6,7,4
6,1,2 9,5,4 7,8,0

7,2,3 5,6,0 8,9,1
7,9,1 6,8,4 3,2,0

8,5,2 4,3,1 7,9,0
9,6,3 0,4,2 8,5,1

5,7,4 9,6,2 1,0,3
6,8,0 5,7,3 2,1,4

Figure 1
A (1, 2; 3, 10, 1)-frame, [5].

If the DNR(v, k, λ)− BIBD has the additional property that under an
appropriate ordering of the resolution classes R and R′, Ri ∪ R′

i contains
precisely v− 1 distinct elements of the design and Ri ∩R′

i = ∅ for all i, then
the array is called a (1, λ; k, v, 1)-frame. The diagonal of a (1, λ; k, v, 1)-frame
is empty and a unique element of the design can be associated with each cell
(i, i). The DNR(10, 3, 2)−BIBD in Figure 1 is a (1, 2; 3, 10, 1)-frame. The
element associated with cell (i, i) is i for i = 0, 1, . . . , 9.

Let F be a set of t (1, λ; k, v, 1)-frames, F = {F 1, F 2, . . . , F t}. Let F be
the superposition of F 1, F 2, . . ., and F t , F = F 1 ◦ F 2 ◦ . . . ◦ F t. If the main
diagonal of F is empty and each cell of F contains at most one block of size
k, then F is called a set of t complementary (1, λ; k, v, 1)-frames.

For more general definitions and results on frames and sets of t comple-
mentary frames, we refer to [14, 9] and [6]. Frames and sets of complementary
frames have been used extensively in constructions for doubly near resolvable
and doubly resolvable balanced incomplete block designs, [9, 10, 11, 12, 15, 6].
Recently, a connection between sets of mutually orthogonal Latin squares and
sets of complementary frames has been established in [13]. In particular, sets
of k complementary frames can be constructed with the additional property
that the blocks can be ordered to provide a set of mutually orthogonal Latin
squares, [13]. These designs are useful in recursive constructions and some
applications are described in [13]. In this paper, we are interested in an
analogue of this result which uses s-partial resolution squares.

An s-partial parallel class P of a (v, k, λ)−BIBD D is a set of s pairwise
disjoint blocks. An s-partial resolution of D is a partition of the blocks of D
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into s-partial parallel classes. The number of s-partial parallel classes in an
s-partial resolution of D is b/s where b is the number of blocks in D. Note
that if s = (v−1)/k and λ = k−1 then the number of partial parallel classes
is v and the design is a NR(v, k, k − 1)−BIBD.

Two s-partial resolutions R and R′ of D are said to be orthogonal if
|Ri∩R′

j | ≤ 1 for all Ri ∈ R, R′
j ∈ R′. (It should be noted that the blocks of

the design are considered as being labeled so that if a subset of the elements
occurs as a block more than once the blocks are treated as distinct.) As in
the case of resolutions, we can use a pair of orthogonal s-partial resolutions
of a design to construct a square array. We index the rows and columns
of the array with the pair of orthogonal s-partial resolutions R and R′. In
the cell labeled (Ri, R

′
j), we place Ri ∩ R′

j. If Ri ∩ R′
j = ∅, the cell is left

empty. The resulting array is an s-partial resolution square for the design
D. The rows of the array will contain the s-partial parallel classes of the
resolution R and the columns will contain the s-partial parallel classes of the
orthogonal resolution R′. Note that if s = (v− 1)/k and λ = k− 1, then the
s-partial resolution square is a DNR(v, k, k − 1) − BIBD. In Figure 2, we
display a 2-partial resolution square for a (13, 3, 1) − BIBD. The symbols
are {0, 1, . . . , 9, a, b, c}.

In this paper, we will deal exclusively with partial resolution squares for
(v, 3, 1) − BIBDs or Steiner triple systems of order v, STS(v). We now
restrict our definitions and results to this case, however we note that the
ideas clearly extend to more general designs.

We first recall that the number of blocks in a STS(v) is v(v−1)/6. So the
number of s-partial parallel classes in an s-partial resolution is v(v − 1)/6s.
We are interested in the case when s = (v − 1)/6. So v ≡ 1 (mod 6) and
there are v s-partial resolution classes each containing (v − 1)/6 blocks. A
pair of orthogonal (v − 1)/6-partial resolutions of a STS(v) can be used to
construct a v × v array. For notational convenience, we call a (v − 1)/6-
partial resolution square for a STS(v) a PRsq(v). Suppose the STS(v) is
written on the symbols {0, 1, 2, . . . , v−1}. The PRsq(v) is called normalized
if the symbol i does not occur in row i or column i for i = 0, 1, 2, . . . , v − 1
and the main diagonal of the square is empty. The PRsq(13) in Figure 2 is
normalized.
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2 6 5 1 3 9
3 7 6 2 4 a

3 5 b 4 8 7
4 6 c 5 9 8

6 a 9 5 7 0
7 b a 6 8 1

8 c b 7 9 2
9 0 c 8 a 3

a 1 0 9 b 4
b 2 1 a c 5

c 3 2 b 0 6
0 4 3 c 1 7

1 5 4 0 2 8

Figure 2
A normalized PRsq(13).

The analogue of a set of t complementary frames is a set of t comple-
mentary normalized PRsq(v). As in the case of frames, we want to place
several partial resolution squares in a single array. Let Si denote a normal-
ized PRsq(v) for i = 1, 2, . . . , t, and let S = {S1, S2, . . . , St}. Let S be the
superposition of S1, S2, . . ., and St, S = S1 ◦ S2 ◦ . . . ◦ St. S is a v × v array
and the main diagonal of S is empty. If each cell of S contains at most one
block, then S is called a set of t complementary PRsq(v). It is easy to see
that 1 ≤ t ≤ 6.

A set of t complementary (normalized) PRsq(v) is called balanced if each
element of V −{i} occurs m times in row i and each element of V −{i} occurs
m times in column i of S. (We note that the array S constructed from a
set of 2m balanced complementary PRsq(v) is an (m, 2m; 3, v, 1)-frame and
contains the blocks of a (v, 3, 2m)−BIBD, [14, 9].)

In the remainder of this paper, we will restrict our attention to sets of
six balanced complementary PRsq(v). For notational convenience, we de-
note a set of six balanced complementary PRsq(v) and the resulting array
by BCPRsq(v). In this case, the array is completely filled except for the
diagonal and element i does not occur in row i or column i for all i. (The
underlying design is a (v, 3, 6) − BIBD which can be decomposed into six
(v, 3, 1) − BIBDs.) We need one further definition before describing our
results.
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Suppose that it is possible to order the symbols in the filled cells of a
BCPRsq(v) in such a way that a square consisting of the ith element of each
cell (i = 1, 2, 3) is a latin square Li (when an idempotent main diagonal is
added), and suppose that L1, L2, and L3 form a set of three mutually or-
thogonal latin squares, then the BCPRsq(v) is called a mutually orthogonal
Latin square ordered BCPRsq(v) or a MOLS-ordered BCPRsq(v). (Defi-
nitions and results on mutually orthogonal Latin squares can be found in [1]
or the texts [3] or [4].)

An example of a MOLS-ordered BCPRsq appears in Figure 3. This
square, a BCPRsq(7), was constructed by superimposing 6 complementary
normalized PRsq(7)s. The filled cells of the ith of these squares can be
seen below in the ith (extended) diagonal. Note that all off-diagonal cells
are filled, that the ith row (column) contains every symbol except i exactly 3
times (once as the first symbol, once as the second and once as the third), that
the three squares comprised only of either the 1st, the 2nd or the 3rd symbol
in each cell are three idempotent MOLS(7) (when the main diagonal is filled
in appropriately), and that the set of all filled cells is a (7, 3, 6)−BIBD.

653 536 412 365 241 124
235 064 640 523 406 352
463 346 105 051 634 510
621 504 450 216 162 045
156 032 615 561 320 203
314 260 143 026 602 431
542 425 301 254 130 013

Figure 3
A MOLS-ordered BCPRsq(7).

A cyclic Steiner triple system of order v contains exactly (v − 1)/6 = s
base blocks. If the base blocks are disjoint, then clearly a (v − 1)/6-partial
resolution can be constructed cyclically from these base blocks. The set
{a1, . . . as} is an adder for a set of base blocks {B1, . . . Bs} if {B1+a1, . . . Bs+
as} is also a set of disjoint blocks of the design. Note that the cyclic translates
of the disjoint base blocks and the cyclic translates of the base blocks plus
adders are a pair of orthogonal partial resolutions and yield a PRsq(v). Also
note that when a PRsq(v) is formed in this manner the s-transversal of filled
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cells can be decomposed into s disjoint transversals each consisting of the
translates of a starter block. The PRsq(13) in Figure 2 was constructed in
this manner with the set of base blocks {{2, 6, 5}, {1, 3, 9}} and the adder
{4, 2}.

In the next section, we describe a direct construction for BCPRsq(v)
which uses this type of structure. This construction is used together with re-
cursive constructions in section 3 to prove our main result on MOLS-ordered
BCPRsq(v) for v ≡ 1 (mod 6).

2 Direct Construction.

In this section we give a direct construction using finite fields. Our general
construction is the following.

Lemma 2.1 Let g be a generator of the multiplicative group of the field Fq

where q = 6t + 1 is a prime power. Let ind(s) be the index of the element
s ∈ Fq (i.e. if k = ind(s), then gk = s). If there exists an x such that the
following conditions are satisfied:

1. |ind(g2t + gx)− ind(1 + gx)| ≥ t

2. |ind(g2t + gx)− ind(g4t + gx)| ≥ t

3. |ind(g4t + gx)− ind(1 + gx)| ≥ t

then there exists a MOLS-ordered BCPRsq(q).

Proof: From the Bose construction, it is well known that the starter blocks
T = {{gi, g2t+i, g4t+i}, 0 ≤ i ≤ t − 1} can be used to generate an STS(q).
Clearly, gjtT = Tj for 0 ≤ j ≤ 5 yields six sets of starter blocks of (isomor-
phic) STS(q)s. It is our intention to pack these 6 STSs in a square of size q
by q. For our purposes, it is convenient to order each block in these triple
systems. In particular, we order each block in T as {(gi, g2t+i, g4t+i), 0 ≤ i ≤
t− 1}, and then we extend this ordering to each Tj in the obvious way. Note
that for all v − 1 ordered starter blocks, the blocks are uniquely identified
by the first element in the ordered block. Define Qk = (gk, gk+2t, gk+4t) for
each k ∈ Z6t. We let the corresponding adder for Qk be gk+x. The q by q
square R is indexed by the elements in Fq. In the first row of the square,
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Qk is placed in column −gk+x for all k ∈ Zq−1. The remaining square is
constructed by developing the first row using Fq (i.e. if R(a, b) = (u, v, w),
then cell R(a + h, b + h) = (u + h, v + h,w + h) for all h ∈ Fq).

We must check that this construction satisfies the conditions for a MOLS-
ordered BCPRsq(q). First we must check that the square R is well-defined,
i.e. that there is exactly one triple in every off-diagonal cell. This is true
since the adders are all distinct and consist of every nonzero element of Fq.
Hence the square R does indeed contain 6 distinct STS(q) in the union of all
the cells.

Next we check the row and column balance. Row balance is obvious since
each row is a translate of the first row and it is easy to see that each non-zero
element of Fq occurs exactly three times in that row. Further note that each
symbol occurs exactly once in each position in the ordered triples of the first
row and hence of each row. Now we check the columns. The first column
contains all of the ordered triples Qk + gk+x = (gk, gk+2t, gk+4t) + gk+x for all
k ∈ Z6t. We see that the set of first symbols occurring in the triples of the
first column are {gk + gk+x|k ∈ Z6t} = {gk(1 + gx)|k ∈ Z6t}. Clearly this
consists of every non-zero element of Fq exactly once. In a similar manner we
see that the set of elements in the second positions and the set of elements in
the third position in the first column also contain each symbol of Fq exactly
once. Hence by construction, each column of R has this property.

Next we show that the three latin squares formed from the first, second
and third symbols in each cell are indeed orthogonal (latin was proved in the
paragraph above). Consider the first two: call them L1 and L2. In the first
row of the superposition of L1 and L2 are the pairs (gk, gk+2t) for all k ∈ Z6t.
The (ordered) differences between the first element and the second element
is gk+2t − gk = gk(g2t − 1). Clearly as k goes through all the elements of Z6t,
every difference occurs exactly once. Hence when this first row is developed
in the additive group of the field, every pair will occur exactly once (except
the pairs (i, i) which are assumed to be on the diagonal). Hence L1 and L2

are mutually orthogonal. That L1 and L3, and L2 and L3 are orthogonal can
be shown similarly.

Finally, we must check that each column of R contains 6 partial parallel
classes. We will show that the translates of each partial parallel class in
the first row form a partial parallel class of the first column (i.e. no symbol
occurs twice in the translates). Consider the partial parallel class Tj =
{{gi+jt, g(2+j)t+i, g(4+j)t+i}, 0 ≤ i ≤ t− 1} for 0 ≤ j ≤ 5. We have previously
established that all the symbols occurring the first position are distinct, next
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we show that no symbol in the first position of a translate can equal a symbol
in the second position of a translate. Assume equality, then for some s, k
with |s − k| < t we must have gs+jt + gs+jt+x = gk+(2+j)t + gk+jt+x. Hence,
gs+jt(1 + gx) = gk+jt(g2t + gx), which implies gs(1 + gx) = gk(g2t + gx). Now
the first condition in the hypothesis of this lemma, namely that |ind(g2t +
gx)− ind(1 + gx)| ≥ t gives the required contradiction. In a similar manner,
the other two conditions of the hypothesis insure that the first and second
and the second and third symbols in the translates are distinct. Hence the
first column consists of six partial parallel classes. Now, by construction we
have that every column of R contains 6 partial parallel classes, completing
the proof. �

We illustrate this construction for v = 13: the element x = 1 satisfies the
hypothesis of Lemma 2.1 and g = 2 is a generator of F13. Table 1 gives six
sets of starter blocks as well as the column in the first row where each block
is placed.

starter blocks column
T = (g0, g4, g8) = (1, 3, 9) −2 = −g0+1

(g1, g5, g9) = (2, 6, 5) −4 = −g1+1

g2T = (g2, g6, g10) = (4, 12, 10) −8 = −g2+1

(g3, g7, g11) = (8, 11, 7) −3 = −g3+1

g4T = (g4, g8, g0) = (3, 9, 1) −6 = −g4+1

(g5, g9, g1) = (6, 5, 2) −12 = −g5+1

g6T = (g6, g10, g2) = (12, 10, 4) −11 = −g6+1

(g7, g11, g3) = (11, 7, 8) −9 = −g7+1

g8T = (g8, g0, g4) = (9, 1, 3) −5 = −g8+1

(g9, g1, g5) = (5, 2, 6) −10 = −g9+1

g10T = (g10, g2, g6) = (10, 4, 12) −7 = −g10+1

(g11, g3, g7) = (7, 8, 11) −1 = −g11+1

Table 1
Starter blocks and adders for a BCPRsq(13).

Note that the BCPRsq(13) in Figure 2 is constructed from T in Table
1. The square in Figure 4 is a BCPRsq(13) constructed using the starter
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blocks and adders listed in Table 1. (For typesetting purposes we substituted
the symbol a for 10, b for 11 and c for 12).

652 ca4 526 b78 4ca a4c 391 913 265 8b7 139 78b
89c 763 0b5 637 c89 50b b50 4a2 a24 376 9c8 24a
35b 9a0 874 1c6 748 09a 61c c61 5b3 b35 487 a09
b1a 46c ab1 985 207 859 1ab 720 072 6c4 c46 598
6a9 c2b 570 bc2 a96 318 96a 2bc 831 183 705 057
168 7ba 03c 681 c03 ba7 429 a7b 3c0 942 294 816
927 279 8cb 140 792 014 cb8 53a b8c 401 a53 3a5
4b6 a38 38a 90c 251 8a3 125 0c9 64b c90 512 b64
c75 5c7 b49 49b a10 362 9b4 236 10a 75c 0a1 623
734 086 608 c5a 5ac b21 473 ac5 347 21b 860 1b2
2c3 845 197 719 06b 6b0 c32 584 b06 458 32c 971
a82 304 956 2a8 82a 17c 7c1 043 695 c17 569 430
541 b93 415 a67 3b9 93b 280 802 154 7a6 028 67a

Figure 4
A MOLS-ordered BCPRsq(13).

Lemma 2.2 For every prime power q ≡ 1 (mod 6), 7 ≤ q ≤ 5077 and for
q = 5779, 5827, 8053 and 11827, there exists an x satisfying conditions 1,2,
and 3 of Lemma 2.1.

Proof: The values for x are given in Appendix 1. For q = pn with n > 1,
a table giving the irreducible polynomial and a generator for GF(q) is in
Appendix 2. �

¿From the two lemmas above we have the following theorem.

Theorem 2.3 For every prime power q with q ≡ 1 (mod 6), 7 ≤ q ≤
5077 and for q = 5779, 5827, 8053 and 11827, there exists a MOLS-ordered
BCPRsq(q).
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3 Recursive Constructions and Spectrum.

In this section we describe some recursive constructions which when combined
with the results from the previous section will give us the spectrum of MOLS-
ordered BCPRsqs. We begin with a PBD-closure result. (For definitions and
results on PBD-closure, we refer to [17].)

Lemma 3.1 If there exists a pairwise balanced design of order v with block
sizes from the set K (a PBD(v, K)) and if there exists a MOLS-ordered
BCPRsq(k) for all k ∈ K, then there exists a MOLS-ordered BCPRsq(v).
Equivalently, the set S = {v | there exists a MOLS-ordered BCPRsq(v)} is
PBD-closed.

Proof: This construction is the standard PBD construction for sets of mu-
tually orthogonal Latin squares and block designs. Since a MOLS-ordered
BCPRsq(k) consists of three superimposed idempotent MOLS(k), it follows
that the resulting v × v array, S, is also MOLS-ordered. It also follows that
in S all off-diagonal cells are filled and that it is row and column balanced.
It remains to show only that S is the array formed by the superposition of
six complementary PRsq(v).

For every block of size k (k ∈ K) of the pairwise balanced design there
exists a BCPRsq(k), and each of these arrays consists of a set of six comple-
mentary PRsq(k)s. We use the blocks of the ith partial resolution square for
each of the blocks in the PBD to construct a PRsq(v), Si, for i = 1, 2, . . . , 6.
So it is straightforward to check that S is the superposition of S1, S2, . . . , S6.
�

We now use a PBD closure result from Mullin and Stinson [16] and Greig
[8]. Let Q1 = {q : q ≡ 1 (mod 6), q ≤ 5077, q a prime power }, let
P = {55, 115, 145, 205, 235, 265, 319, 355, 391, 415, 445, 451, 493, 649, 667, 685,
697, 745, 781, 799, 805, 1315} and let E = {5779, 5827, 8053, 11827}.

Theorem 3.2 If v ≥ 7 and v 6∈ P , then there exists a PBD(v, Q1 ∪ E).

Proof: The proof is implicitly contained in [16]. We will give an outline of
the proof here but we refer to [16] for the details.

Lemma 4.1 of [16] (with some additional PBD’s found in [8]) shows that
if n ≡ 1 (mod 6), n ≤ 5071, and n 6∈ P , then there exists a PBD(n, Q1).
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In text following the proof of Lemma 5.1 in [16], the authors assert that for
every n ≡ 1 (mod 6) between 5077 and 46357 (except n ∈ E), there exists
a PBD(n, Q1) . Finally, Lemma 5.1 in [16] proves by induction that if there
exists a PBD(n, Q1 ∪ E) for all 1927 ≤ n ≤ 46357 with n ≡ 1 (mod 6),
then there exists a PBD(n, Q1 ∪ E) for all n ≡ 1 (mod 6) with n ≥ 1927.
The result follows. �

¿From Theorems 2.3 and 3.2 and Lemma 3.1 we have the following.

Theorem 3.3 If v ≥ 7 with v ≡ 1 (mod 6) and if v 6∈ P , then there exists
a MOLS-ordered BCPRsq(v).

We will now construct MOLS-ordered BCPRsqs for some of the val-
ues missing from the theorem above. We first note that the singular di-
rect product holds for normalized partial resolution squares and for sets of
t complementary partial resolution squares. Since these constructions are
straightforward generalizations of the singular direct product constructions
for frames and sets of t complementary frames, we omit the proofs and refer
to [14, 9]. (The decomposition into six complementary PRsqs follows from
the decomposition of the base design, a BCPRsq(u), and the subdesigns,
BCPRsq(v).) We state the construction for the case of interest to us.

Theorem 3.4 If there is a BCPRsq(u), a BCPRsq(v), and three mutually
orthogonal Latin squares of order v−1, then there is a BCPRsq(u(v−1)+1).

Corollary 3.5 If there is a MOLS-ordered BCPRsq(u), a MOLS-ordered
BCPRsq(v), and three mutually orthogonal Latin squares of order v − 1,
then there is a MOLS-ordered BCPRsq(u(v − 1) + 1).

Proof: This follows immediately since the singular direct product also holds
for sets of mutually orthogonal Latin squares.�

Lemma 3.6 For w ∈ {391, 445, 451, 667, 685, 745, 781, 799, 805, 1315} there
exists a MOLS-ordered BCPRsq(w)
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Proof: Each of these is an application of Corollary 3.5. For each w, Table 2
gives the appropriate value of u and v so that the corollary can be applied.
�

w u v w u v
391 13 31 445 37 13
451 25 19 667 37 19
685 19 37 745 31 25
781 13 61 799 19 43
805 67 13 1315 73 19

Table 2
Parameters for applications of Corollary 3.5.

¿From Theorem 3.3 and Lemma 3.6 we have the following result.

Theorem 3.7 For every n ≡ 1 (mod 6), n ≥ 7, except possibly for n ∈
{55, 115, 145, 205, 235, 265, 319, 355, 415, 493, 649, 697} there exists a MOLS-
ordered BCPRsq(n).
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Appendix 1

g x q g x q g x q g x q g x q
3 0 7 2 1 13 2 1 19 3 2 31 2 2 37
3 0 43 2 1 61 2 2 67 5 5 73 3 4 79
5 0 97 5 0 103 6 0 109 3 0 127 2 1 139
6 0 151 5 2 157 2 2 163 2 1 181 5 4 193
3 0 199 2 3 211 3 12 223 6 6 229 7 6 241
6 0 271 5 0 277 3 0 283 5 2 307 10 1 313
3 0 331 10 2 337 2 1 349 6 1 367 2 3 373
2 3 379 5 0 397 21 1 409 2 2 421 5 4 433
15 7 439 13 0 457 3 7 463 3 0 487 7 5 499
2 1 523 2 1 541 2 8 547 3 3 571 5 1 577
7 3 601 3 3 607 2 1 613 2 1 619 3 2 631
11 1 643 2 1 661 5 1 673 3 6 691 2 3 709
5 1 727 6 0 733 3 0 739 3 0 751 2 2 757
11 0 769 2 2 787 3 9 811 3 0 823 2 3 829
2 7 853 2 6 859 2 1 877 2 1 883 2 1 907
7 3 919 5 1 937 5 0 967 6 1 991 7 5 997
11 4 1009 10 3 1021 5 0 1033 3 1 1039 7 1 1051
3 2 1063 6 1 1069 3 8 1087 5 0 1093 2 10 1117
2 1 1123 11 4 1129 5 2 1153 2 5 1171 11 2 1201
2 2 1213 3 0 1231 2 1 1237 7 2 1249 3 7 1279
2 3 1291 10 0 1297 6 1 1303 13 10 1321 3 0 1327
2 2 1381 13 8 1399 3 4 1423 6 0 1429 3 6 1447
2 1 1453 3 0 1459 6 1 1471 2 1 1483 14 13 1489
2 1 1531 5 15 1543 2 5 1549 3 2 1567 3 0 1579
11 6 1597 7 0 1609 2 1 1621 3 0 1627 11 13 1657
3 2 1663 2 7 1669 2 1 1693 3 0 1699 3 3 1723
2 1 1741 2 4 1747 7 1 1753 6 2 1759 5 0 1777
10 0 1783 6 0 1789 11 3 1801 3 4 1831 2 3 1861
2 7 1867 10 0 1873 6 0 1879 5 2 1933 3 3 1951
2 2 1987 5 0 1993 3 3 1999 3 5 2011 5 3 2017
2 3 2029 2 17 2053 2 1 2083 7 2 2089 5 0 2113
2 6 2131 10 5 2137 3 3 2143 23 0 2161 7 1 2179
5 0 2203 2 1 2221 3 2 2239 7 0 2251 2 1 2269
7 0 2281 19 0 2287 2 1 2293 3 1 2311 7 0 2341
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g x q g x q g x q g x q g x q
3 3 2347 2 7 2371 5 1 2377 5 4 2383 2 5 2389
2 4 2437 2 3 2467 5 0 2473 3 1 2503 17 2 2521
2 2 2539 6 6 2551 2 2 2557 7 0 2593 5 1 2617
3 2 2647 2 3 2659 7 1 2671 2 1 2677 2 4 2683
19 1 2689 2 1 2707 5 0 2713 3 6 2719 3 9 2731
6 1 2749 3 0 2767 6 2 2791 2 5 2797 2 6 2803
5 2 2833 2 1 2851 11 0 2857 5 2 2887 5 9 2917
13 0 2953 10 0 2971 14 11 3001 2 1 3019 2 7 3037
11 8 3049 6 0 3061 2 1 3067 6 1 3079 6 1 3109
7 0 3121 3 0 3163 7 3 3169 7 2 3181 2 1 3187
5 0 3217 6 1 3229 2 4 3253 3 5 3259 3 0 3271
6 3 3301 2 1 3307 10 7 3313 6 0 3319 3 0 3331
5 9 3343 22 5 3361 5 3 3373 3 0 3391 5 0 3433
7 0 3457 3 0 3463 2 1 3469 2 1 3499 7 4 3511
2 7 3517 17 0 3529 7 1 3541 2 1 3547 3 4 3559
2 1 3571 3 3 3583 5 8 3607 2 1 3613 15 12 3631
2 6 3637 2 2 3643 5 3 3673 2 2 3691 5 0 3697
2 10 3709 3 8 3727 2 5 3733 7 0 3739 7 1 3769
5 8 3793 3 1 3823 5 1 3847 2 1 3853 2 1 3877
11 3 3889 2 17 3907 3 8 3919 2 1 3931 3 3 3943
6 5 3967 2 5 4003 2 3 4021 3 9 4027 10 4 4051
5 0 4057 2 1 4093 2 1 4099 12 11 4111 13 4 4129
5 8 4153 3 0 4159 5 0 4177 11 7 4201 2 1 4219
3 0 4231 2 1 4243 2 20 4261 5 1 4273 5 3 4297
3 1 4327 10 7 4339 2 6 4357 2 5 4363 3 1 4423
21 0 4441 3 3 4447 2 2 4483 2 1 4507 7 1 4513
3 2 4519 6 1 4549 11 5 4561 3 2 4567 11 6 4591
5 8 4597 2 1 4603 2 3 4621 3 1 4639 3 3 4651
15 0 4657 3 0 4663 2 6 4723 17 1 4729 3 0 4759
6 0 4783 2 1 4789 7 8 4801 2 1 4813 3 0 4831
11 0 4861 3 1 4903 6 2 4909 2 1 4933 6 1 4951
2 1 4957 11 2 4969 2 6 4987 5 0 4993 3 0 4999
2 9 5011 3 3 5023 2 3 5059 2 3 5779 2 2 5827
2 4 8053 2 7 11827
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Appendix 2

Irreducible Polynomial Generator x q
x2 + x + 2 2x 7 25

x2 + 8x + 10 5x + 4 1 121
x2 + 5x + 9 8x + 16 0 289
x2 + 14x + 5 20x + 18 0 529
x2 + 23x + 26 27x + 2 1 841
x2 + 12x + 1 40x + 38 0 1681
x2 + 38x + 10 39x + 16 0 2209
x2 + 22x + 34 31x + 40 0 2809
x2 + 12x + 53 52x + 43 5 3481
x2 + 24x + 12 18x + 48 2 5041

18


