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Abstract

A complete arc in a design is a set of elements which contains no block, and is
maximal with respect to this property. The spectrum of sizes of complete arcs in
Steiner triple systems is determined without exception here.

1 Definitions

A Steiner triple system of order v (briefly STS(v)) is a pair (X,B) where X is a v-element
set and B is a collection of 3-subsets of X (triples), such that every pair of X is contained
in exactly one triple of B. It is well known that a necessary and sufficient condition for a
STS(v) to exist is that v ≡ 1 or 3 (mod 6).

A subset S of the set X of elements of the STS is independent, or an arc, if |B ∩ S| ≤ 2
for each B ∈ B. For a set S of elements, we say that an element x of X \ S is spanned by a
pair {s, t} ∈ S if {s, t, x} ∈ B. A set S is spanning if every x ∈ X \ S is spanned by a pair
in S. A subset which is both independent and spanning is precisely a maximal independent
set, or complete arc. When s = |S|, the term complete s-arc is employed.

A subset S of elements is scattering if it is independent and, for any two blocks B,C ∈ B
with |B ∩ S| = |C ∩ S| = 2, we find B \ S 6= C \ S. In other words, all elements spanned by
pairs in S are distinct. Now let

L(v) =
⌊

1
2
(
√

8v + 1 − 1)
⌋

U(v) =
⌈

1
2
(
√

8v + 1 − 1)
⌉

T (v) =

{
v+1
2

if v ≡ 3, 7 (mod 12)
v−1
2

if v ≡ 1, 9 (mod 12)

Sauer and Schönheim [11] establish that T (v) is the largest size of an independent set in
an STS(v); Bigelow and Colbourn [1] later generalized this to triple systems of higher index.
Colbourn, Dinitz, and Stinson [4] establish that L(v) is the largest size of a scattering set,
and that U(v) is the smallest size of a spanning set, in an STS(v).
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An independent set of maximum size is necessarily maximal, and hence the result of
Sauer and Schönheim gives complete arcs of size T (v). A spanning set of minimum size need
not, in general, be independent. However, the technique of Colbourn, Dinitz, and Stinson
produces spanning, independent sets – and hence complete arcs – of size U(v). Evidently,
the size s of a complete arc in an STS(v) satisfies U(v) ≤ s ≤ T (v). We have now seen
that known results establish that the two extreme values can be realized. In this paper,
we establish that the spectrum of sizes of complete arcs in STS(v)s is precisely the interval
[U(v), T (v)].

There is an extensive literature on independent sets and complete arcs in triple systems.
One example is the study of partitions into complete arcs of minimum cardinality [5, 8].
However, previous work focuses primarily on the question of Erdös and Hajnal [6] asking
what the minimum over all STS(v)s of the size of a maximum independent set in the STS.
There exist STS(v)s in which the largest independent set has size at most c

√
v, where c is

an absolute constant [2, 3, 7, 9]. In addition, there are STS(v)s having no spanning set of
size U(v) [4]. Hence it is surely not the case that every STS(v) has complete arcs of each
size s satisfying U(v) ≤ s ≤ T (v); rather, for every such s, we establish that there exists an
STS(v) with a complete s-arc.

We use one construction repeatedly, the singular direct product for STSs. We outline
it here. A subsystem of order w in an STS(v) (V,B) is a set W ⊆ V where every triple
of B meets W in 0, 1, or 3 elements. Given an STS(v) with a sub-STS(w), the singular
direct product produces an STS(3(v − w) + w) having subsystems of order v and w (and
perhaps others). The construction is as follows. Let X = V \ W . The STS to be formed
has elements (X × {1, 2, 3}) ∪ W , writing xi for (x, i) ∈ X × {1, 2, 3}. Take a latin square
L of side v − w with rows, columns, and symbols indexed by the elements of X. When
L(a, b) = c, form a triple {a1, b2, c3} (these are latin square triples). Now, for i = 1, 2, 3,
place a copy of the STS(v) on (X × {i}) ∪ W , so that the subsystem of order w appears
on W (these are i-subsystem triples). Suppress the second and third copy of the triples
on W . The result is an STS(3(v − w) + w) with a sub-STS(w) on W , and sub-STS(v)s
on (X × {i}) ∪ W for i = 1, 2, 3. In addition, if the STS(v) had other subsystems, these
appear again in the STS(3(v−w)+w). For convenience, we always take V = {1, . . . , v} and
W = {v − w + 1, . . . , v}.

Since the effective application of the singular direct product requires the presence of
appropriate subsystems, it is important to limit the size of the subsystems that we require.
If 3(v − w) + w, v, and w are all to be admissible orders for an STS, and we want to write
every admissible order in the form 3(v − w) + w, we note that w = 0 works for v ≡ 3, 9
(mod 18), w = 1 works for v ≡ 1, 7 (mod 18), and w = 3 works for v ≡ 15 (mod 18). But
an STS(v) always has subsystems of order 0, 1, and 3 when v ≥ 3, and hence one can
always apply singular direct product with w ∈ {0, 1, 3}. Unfortunately, one congruence class
remains: v ≡ 13 (mod 18). In this case, w = 7 works; however, in an inductive strategy it is
then necessary to ensure that the STSs constructed have sub-STS(7)s.

We therefore prove the following stronger characterization of the spectrum for complete
arcs:

Theorem 1.1 If x ≡ 1, 3 (mod 6) and U(x) ≤ s ≤ T (x), there exists an STS(x) with a
complete s-arc. When x = 7 or x ≥ 15, this STS(x) has a sub-STS(7) and the sub-STS(7)
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contains at least two elements of the complete arc. When x ≥ 15, for the complete arc and
sub-STS(7) chosen, there is an element of the sub-STS(7) that is spanned by a pair within
the complete arc but not within the sub-STS(7).

The remainder of this paper proves the theorem stated, proceeding inductively on v. We
tabulate first the minima and maxima for some small orders.

v U(v) T (v) v U(v) T (v) v U(v) T (v) v U(v) T (v)
3 2 2 7 4 4 9 4 4 13 5 6

15 5 8 19 6 10 21 6 10 25 7 12
27 7 14 31 8 16 33 8 16 37 9 18

The main theorem holds for x ∈ {3, 7, 9, 13}, since in these cases there are no sizes strictly
between the minimum and the maximum.

2 The middle range

We apply the singular direct product to obtaining different sizes of complete arcs by using
both the flexibility in selecting the latin square to be used, and in selecting the ingredient
STSs. To produce a number of useful latin squares, we employ the following theorem of
Ryser [10]:

Theorem 2.1 Let L be a partial latin square of order n in which cell (i, j) is filled if and
only if i ≤ r and j ≤ s. Then L can be completed to a latin square of order n if and only if
N(x) ≥ r + s − n for x = 1, 2, . . . , n, where N(x) denotes the number of elements in L that
are equal to x.

Corollary 2.2 Let n be an integer and m ≤ n
2
. Let σ be an integer satisfying m ≤ σ ≤

min(m2, n). There exists a latin square of order n in which, in the subarray in rows 1, . . . ,m
and columns 1, . . . ,m, the set of distinct symbols that appear is precisely {n− σ + 1, . . . , n}.

Proof: Form a latin square of side m on symbols n − m + 1, . . . , n. Now for i = n − σ +
1, . . . , n−m, select arbitrarily some symbol occurring two or more times in the square, and
replace one of the occurrences by the symbol i. This can be done since σ ≤ m2, and the
resulting partial m×m square has exactly α ≤ n symbols in it. Apply Theorem 2.1, trivially
since r + s − n ≤ 0, to obtain the conclusion. 2

Theorem 2.3 Let x ≡ 1, 3 (mod 6). Let s be an integer satisfying

(a) 2U(x
3
) ≤ s ≤ x

3
− 1 + T (x

3
) if x ≡ 3, 9 (mod 18)

(b) 2U(x+2
3

) − 1 ≤ s ≤ x−1
2

if x ≡ 1, 7 (mod 18)
(c) 2U(x+6

3
) − 1 ≤ s ≤ x−1

2
if x ≡ 15 (mod 18)

(d) 2U(x+14
3

) − 2 ≤ s ≤ x−9
2

if x ≡ 13 (mod 18)

Then there is an STS(x) having a complete s-arc, and when x = 7 or x ≥ 15 also having a
sub-STS(7) containing at least two elements of the arc.
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Proof: Case (a): x ≡ 3, 9 (mod 18). Set v = x/3 and w = 0. When s ≥ 3U(v), write
s = 2q+β for β ∈ {q−1, q, q+1}; otherwise, write q = U(v) and s = 2q+β. Now q < v/2, so
apply Corollary 2.2 with m = q and σ = v−β to form a latin square L of side v. Use L to form
the latin square triples in the singular direct product. For i = 1, 2, the i-subsystem triples
are formed by an STS(v) having a complete q-arc on {1, . . . , q}. The 3-subsystem triples are
formed by an STS(v) having an independent set on {1, . . . , β}. The first and second systems
exist since v−1

2
≥ q ≥ U(v). Since β ≤ q + 1 when q ≤ v−3

2
, and β ≤ T (v) when q = v−1

2
,

the third STS(v) with an independent set of size β also exists. The singular direct product
produces an STS(x) having a complete s-arc on ({1, . . . , q} × {1, 2}) ∪ ({1, . . . , β} × {3}).
Independence is immediate. Every element in the first two subsystems is spanned by the
complete q-arcs, while all elements of the third ingredient STS that are not in the arc are
spanned by the latin square triples. Inductively, we can select the first STS(v) to have a
sub-STS(7) when v = 7 or v ≥ 15. It remains to treat x ∈ {27, 39}.

Case (b): x ≡ 1, 7 (mod 18). Write v = x+2
3

and w = 1. When s ≥ 3U(v), write
s = 2q + β for β ∈ {q − 1, q, q + 1}; otherwise when q ≥ 2U(v), write q = U(v) and
s = 2q + β. Now proceed as above, but with L of side v − 1, ensuring that the point v
appears in neither of the complete arcs, nor the independent set of the third system. If
s = 2U(v)− 1, set q = U(v)− 1, β = 0, and include the single point of the subsystem in the
complete arc. To ensure the presence of a sub-STS(7), it remains to treat x ∈ {25, 37}.

Case (c): x ≡ 15 (mod 18). If x = 15 see Lemma 3.2. Otherwise, write v = x+6
3

and w = 3. When s ≥ 3(U(v) − 1) + 1, write s = 2q + β + 1 for β ∈ {q − 1, q, q + 1};
otherwise, write q = U(v) − 1 and s = 2q + β + 1. Apply Corollary 2.2 with m = q and
σ = x−3

3
− β to form a latin square L of side v − 3, yielding the latin square triples. Choose

the first two STS(v)s with complete q-arcs, arranged in such a way that v − 2 is a point
of the q-arc, but v − 1 and v are not; this can always be done since q ≤ v−1

2
. Choose the

last STS(v) so that {1, . . . , β} ∪ {v − 2} is an independent set. The complete s arc is on
({1, . . . , q}× {1, 2}) ∪ ({1, . . . , β}× {3}) ∪ {v − 2}. To ensure the presence of a sub-STS(7)
inductively, we must treat the case x = 33. Parameters v = 15 and w = 3 in case (c) also
handle x = 39, left from case (a).

Case (d): x ≡ 13 (mod 18). Write v = x+14
3

and w = 7. Although we have required
that the systems constructed have sub-STS(7)s, we have exercised no control over the size
of the intersection of various complete arcs with the subsystem. As a result, we obtain a
weaker result here. We may suppose inductively that an STS(v) exists having a complete
t-arc for U(v) ≤ t ≤ T (v); further suppose that in the STS(v) with the complete t-arc,
we find exactly δt of the points of the arc in the sub-STS(7). Evidently, 2 ≤ δt ≤ 4. We
write s = 2q + β − δq so that q ≥ U(v), and 0 ≤ β ≤ T (v) − 4. When this can be
done, choose latin square triples as before, then place STS(v)s having a complete q-arc on
elements {1, . . . , q − δq} ∪ {v − 6, . . . , v − 7 + δq}, and place finally the third STS with an
independent set on {1, . . . , β} ∪ {v − 6, v − 5, v − 4, v − 3}. If we follow the prescription for
the singular direct product blindly, this third STS would require an independent set meeting
a sub-STS(7) in precisely four points, and our induction hypothesis does not support this.
Instead, we therefore omit the sub-STS(7)s when placing the first two STS(v)s, and place
the third STS(v) on ({1, . . . , v − 7} × {3}) ∪ {v − 6, . . . , v} so that its independent set of
size β + 4 appears on the desired points. This may, of course, fail to place an STS(7) on the
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points {v−6, . . . , v}. Nevertheless, provided the STS(v) employed indeed has a sub-STS(7),
it remains in the STS(x) and continues to satisfy the induction hypothesis.

Since the {δq}’s are unknown, one must be careful to see what values can be handled.
For each value of q, by selecting 0 ≤ β ≤ T (x+14

3
) − 4, we handle an interval of values, and

δq contributes only some small uncertainty about which interval is covered. However, the
interval for q and the interval for q + 1 must meet (or overlap) if T (x+14

3
) − 4 ≥ 3, which

always holds since x > 13.
Finally, we must handle the cases when v ∈ {25, 27, 33, 37}. We simply outline the

strategy here. To produce an STS(v) having a complete s-arc, we employed Stinson’s hill-
climbing algorithm with two modifications. First, we forced the selection of an STS(7) on
the points {0, 1, 2, s, s + 1, s + 2, s + 3}. Then we required that whenever a triple is added,
its largest element is at least s. This ensures that the elements {0, . . . , s − 1} form an arc,
and then a simple verification is made that the arc is complete. Solutions for 7 ≤ s ≤ 12
when v = 25, 8 ≤ s ≤ 13 when v = 27, 8 ≤ s ≤ 16 when v = 33, and 9 ≤ s ≤ 18 when
v = 33, were found in this way (and are available from the authors). For v = 25, the system

abm acn bco aop bnp cmp mno adx aet afw ags ahy aiv ajq aku alr bdv ber

bfx bgu bht biq bjw bks bly cds cev cfr cgt chu cix cjy ckq clw deq dfm

dgw dhp dir djt dky dlo dnu efo egx ehw eim eju ekp els eny fgn fhq fit

fjs fkv flu fpy ghr giy gjp gkm glv goq his hjo hkn hlx hmv ijn iko ilp

iuw jkr jlm jvx klt kwx lnq mqw mrt msy mux nrw nsv ntx ory osx otu ovw

pqu prx psw ptv qrv qst qxy rsu twy uvy

has complete arcs

abcfkty, abchkrvx, abcepsuxy, abehnoquvx, abcdefghijkl

A second STS(25),

abl acm bcn ano bmo clo lmn adx aet afu ags ahp aiq ajr aky avw bdu bev

bft bgr bhw bix bjq bks bpy cdq cew cfy cgu chv cip cjt ckr csx deo dfs

dgy dhn dit djm dkl dpw drv efm egp ehq eil ejs ekx enr euy fgq fhl fir

fjv fkn fow fpx ght giv gjn gkm glw gox him hjo hku hrx hsy ijy iko inu

isw jkp jlx juw kqv ktw lpr lqs ltu lvy mpt mqy mrw msv mux npq nst nvx

nwy ops oqu ory otv puv qrt qwx rsu txy

has complete arcs

abehmru, abdhmrty, abcgopqtw, abcdfgkopv, abcdefghijk

An STS(27) and some of its complete arcs are:

abn aco bcp apq boq cnq nop adA aes afu agz ahy aiw ajr akt alv amx bdx

bez bfr bgA bht biv bjy bkw bls bmu cdv cex cfy cgs chr cit cjw cku clA

cmz deq dfn dgu dho dis djp dkz dlr dmt dwy efv egn ehp eiA ejt eky elo

emw eru fgt fhs fip fjz fkA flx fmq fow ghw gio gjv gkq gly gmr gpx hix

hju hkn hlz hmA hqv ijn ikr ilu imy iqz jks jlq jmo jxA klp kmv kox lmn

ltw mps nry nst nuz nvA nwx orA osz otv ouy prv pty puA pwz qrt qsu qwA

qxy rsw rxz svx syA tux tzA uvw vyz

abdglopt, abfopvxyA, abdefgmopy, abdfgkopsvy, abcdefghijklm
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An STS(33) and some of its complete arcs are:

abq acr bcs ast brt cqt qrs adD aew afy agC ahv aiG ajz akE alB amu anA

aoF apx bdE bex bfG bgA bhD biF bjv bkw blu bmC bny boz bpB cdu ceB cfF

cgx chz civ cjA ckC clw cmy cnE coD cpG dev dfx dgq dhB diw djs dkr dlt

dmG dnz doy dpF dAC eft egr ehs eiC ejD ekA elE emF enu eoq epz eyG fgw

fhq fiD fjE fkz flv fms fnB foA fpu frC ghy giu gjF gkv glG gmz gnD goB

gpt gsE hiE hjx hkF hlA hmw hnG hor hpC htu ijB ikt ilr imA ins iox ipq

iyz jkG jlq jmr jnC jot jpy juw kly kmB knq kou kps kxD lmx lnF los lpD

lzC mnt moE mpv mqD nov npr nwx opw oCG pAE quv qwG qxz qyE qAB qCF ruz

rvG rwF rxB ryA rDE suB svF swA sxC syD szG tvx twy tzE tAD tBC tFG uxy

uAF uCE uDG vwE vyC vzA vBD wzB wCD xAG xEF yBF zDF BEG

abcdefzC, abgprsuDF, abefjkrsBF, abcfhiouwBC, abchowxyABCE, abcdefghijklmnop

An STS(37) and some of its complete arcs are:

abs act bcu auv btv csv stu adJ aeK afy agw ahB aiH ajA akE alC amx anF

aoD apI aqG arz bdy bex bfD bgE bhJ biF bjC bkH blA bmG bnz boI bpK bqB

brw cdE ceI cfF cgH chD ciC cjK ckx clJ cmy cnB coz cpA cqw crG deu dfB

dgt dhK div djI dkG dlH dmw dnD dox dps dqF drC dzA efC egB eht eiA ejv

ekD els emz enH eoy epw eqE erJ eFG fgz fhE fix fjt fkI flw fmJ fns fou

fpH fqA frK fvG ghs giI gjG gkA glK gmC gny goF gpx gqv gru gDJ hiu hjy

hkw hlv hmI hnA hoC hpG hqx hrH hzF ijs ikz ilD imK inG iow ipy iqt irB

iEJ jkF jlB jmD jnu joH jpE jqJ jrx jwz klt kms knC koK kpJ kqy krv kuB

lmF lnx loG lpz lqI lry luE mnv moB mpu mqH mrA mtE noE npt nqK nrI nwJ

opv oqs ort oAJ pqC prF pBD qrD quz rsE swH sxG syz sAC sBF sDI sJK twF

txA tyG tzK tBH tCD tIJ uwx uyH uAD uCK uFI uGJ vwA vxJ vyC vzD vBE vFK

vHI wyE wBC wDG wIK xyK xzH xBI xCF xDE yAI yBJ yDF zBG zCJ zEI ABK AEF

AGH CEH CGI DHK EGK FHJ

abjopqruy, abcegivyDG, abcejryBDEH, abegjltyzFHI, abcmrBCDEFIJK,

abcdefghijklmnopqr

Except when (v, s) = (27,12), (33,13), (33,14), (33,15), (37,14), (37,15), (37,16), or (37,17),
these examples treat all cases with v ∈ {25, 27, 33, 37}. We leave the remaining cases for s
as easy exercises for the reader. 2

3 At and near the maximum

Theorem 2.3 misses a narrow but growing interval of values near the minimum, and only a
few values near the maximum. We treat the missed values near the maximum first. The
maximum value itself, T (v), has been settled by Sauer and Schönheim [11], but we must
repeat it in order to ensure the presence of the required sub-STS(7).

We employ here another standard construction, the v → 2v + 1 construction. A 1-factor
in a graph is a regular, spanning subgraph of degree 1 (i.e., a perfect matching). A 1-
factorization of a graph G is a set F = {F1, . . . , Fr} where each Fi is a 1-factor (here G must
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be an r-regular graph). Now if an STS(v) on elements V exists, and a one-factorization of
the complete graph of order v + 1 on a disjoint set X of elements exists, one produces an
STS(2v+1) on V ∪X as follows. Include all triples in the STS(v). Then let V = {z1, . . . , zv},
and let the 1-factorization be F = {F1, . . . , Fv}. Whenever {a, b} ∈ Fi, add the triple
{zi, a, b}. The result is easily seen to be an STS(2v + 1), but more is true: X forms an
independent set of size v + 1.

Typically the STS(2v + 1) constructed has many more complete arcs. We examine this
next. A set D of vertices in a graph is independent if it induces a void subgraph, and it
is dominating if every vertex not in D has at least one neighbour in D. Consider a 1-
factorization F = {F1, . . . , Fv} of Kv+1, and let Gr =

⋃r
i=1 Fi. Now choose an STS(v) for

which {z1, . . . , zr} is a complete arc, and choose a 1-factorization F of Kv+1 so that D is an
independent dominating set of size s in Gr. Then applying the v → 2v + 1 construction, it
is easily verified that {z1, . . . , zr} ∪ D is a complete (r + s)-arc in the STS(2v + 1).

It is easy to produce 1-factorizations of Kv+1, v odd, in which the first v−1
2

1-factors form
a bipartite graph with an independent, dominating set of size v+1

2
— this is just a class of

the bipartition. In fact, the same independent, dominating set is present in Gr for every r
satisfying 1 ≤ r ≤ v−1

2
. Hence we conclude:

Theorem 3.1 If an STS(v) having a complete s-arc exists, then an STS(2v + 1) having a
complete (s+ v+1

2
)-arc also exists. If the STS(v) has a sub-STS(7) meeting the conditions of

Theorem 1.1, so also does the STS(2v + 1).

Inductively, Theorem 3.1 fails to produce the required sub-STS(7) within the sub-STS(v)
when 2v + 1 ∈ {19, 27}. However, in both cases, one can choose the 1-factorization to have
a sub-1-factorization of order 4. Then attaching the three 1-factors of the subfactorization
to three elements of a triple in the sub-STS(v) yields the required sub-STS(7).

The structure of the independent dominating sets can also be exploited:

Lemma 3.2 There is an STS(15) having a complete s-arc in which δs arc elements lie in a
sub-STS(7) when (s, δs) ∈ {(8, 4), (7, 4), (6, 4), (5, 3)}.

Proof: For (8,4), apply Theorem 3.1. For (7,4), consider the 1-factorization:

1,4 1,5 1,6 1,7 1,8 1,2 1,3
2,8 2,4 2,5 2,6 2,3 3,6 2,7
3,7 3,8 3,4 3,5 4,6 4,7 4,5
5,6 6,7 7,8 4,8 5,7 5,8 6,8

Each column forms a 1-factor, and the first four 1-factors yield a graph with {1,2,3} as an
independent dominating set. Employ these in the doubling construction using an STS(7)
having a complete 4-arc, attaching the first four 1-factors to the arc elements. The 4-arc,
together with elements {1,2,3} from the 1-factorization, give the complete 7-arc.

For (6,4), choose a 1-factorization in which the first three 1-factors form two disjoint
complete graphs on four elements each. Then the first four 1-factors induce a graph with an
independent dominating set of size two.
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For (5,3), employ the same 1-factorization, noting that the first three 1-factors also induce
a graph with an independent dominating set of size two. Suppose without loss of generality
that the edge joining the two elements in the independent dominating set appears in the
seventh 1-factor. Then choose the STS(7) to be used to have triples {x1, x2, x4}, {x1, x3, x5},
and {x2, x3, x6}, without loss of generality. Then {x1, x2, x3} is not a complete arc, but it
fails to span only x7. But x7 is spanned by the two elements of the independent dominating
set. 2

Now we turn to cases when x ≡ 1, 9 (mod 12). When x ≡ 1, 3, 7, 15 (mod 18), Theorem
2.3 reaches the maximum, x−1

2
. Indeed when x ≡ 9 (mod 18) and x ≡ 9 (mod 12), we find

x ≡ 9 (mod 36) so that x
3
≡ 3 (mod 12) and again Theorem 2.3 reaches the maximum.

Therefore the only remaining case is when x ≡ 13 (mod 36).

Theorem 3.3 Let v = 36t +13, t ≥ 1. When 15t +5 ≤ s ≤ 18t + 6, there exists an STS(v)
having a complete s-arc. In addition, it contains a sub-STS(7) meeting the conditions of
Theorem 1.1.

Proof: Form an STS(6t+3) on elements (X×{0, 1})∪{∞} in which {∞, x0, x1} is a triple for
each x ∈ X. Let D be the set of triples not containing ∞. On X×{0, 1}×{0, 1, 2}×{0, 1}, we
form a set of triples, writing the 4-tuple (x, i, a, p) as (xi, ap). When {xi, yj, zk} ∈ D, we form
the 36 triples obtained by taking {(xi, ap), (yj, bq), (zk, cr)} whenever a + b + c ≡ 0 (mod 3)
and p + q + r ≡ 1 (mod 2), and of course {p, q, r} ⊆ {0, 1} and {a, b, c} ⊆ {0, 1, 2}. Call the
resulting set of triples B. Now no triple contains more than two elements of X × {0, 1} ×
{0, 1, 2} ×{0}, since in each triple chosen we required that p + q + r ≡ 1 (mod 2). However,
for every point of X×{0, 1}×{0, 1, 2}×{1}, there are two points in X×{0, 1}×{0, 1}×{0}
with which it forms a triple of B. To verify this, consider a point (zk, c1). Find a triple of
D, say {xi, yj, zk}, that contains zk. If c = 2, select a = 0 and b = 1; otherwise select
a = b = c. In either case, choose p = q = 0. Then {(xi, ap), (yj, bq), (zk, c1)} is indeed in B,
and {(xi, ap), (yj, bq)} appear in the required set.

Let ŝ = s − (15t + 5). For any ŝ different selections of x ∈ X, place on {x} × {0, 1} ×
{0, 1, 2} × {0, 1} together with a new point ∞ an STS(13) with a complete 5-arc on

{(xi, ap) : (i, a, p) ∈ {0, 1} × {0, 1} × {0} or (i, a, p) = (1, 2, 0)}.

For the remaining 3t+1− ŝ choices of x ∈ X, on {x}×{0, 1}×{0, 1, 2}×{0, 1} together with
the new point ∞, place an STS(13) with a complete 6-arc on {x} × {0, 1} × {0, 1, 2} × {0}.
In both cases, we ensure (without loss of generality) that {∞, (xi, 00), (xi, 01)} is a triple for
i = 0, 1.

The set of all blocks forms an STS(v) with v = 36t + 13. The unions of the complete
arcs in the STS(13)s so placed is a complete s-arc as required. When {xi, yj, zk} ∈ D, we
find a sub-STS(7) satisfying the conditions of Theorem 1.1, on ({(x, i), (y, j), (z, k)}×{0}×
{0, 1}) ∪ {∞}. 2

4 At and near the minimum

Theorem 2.3 treats all values from approximately 2
√

2√
3

√
x upwards, whereas U(x) is approx-

imately
√

2
√

x. To continue with the singular direct product, we must then abandon the
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assumption that within the first two STS(v)s the elements included form a complete arc of
the subsystem. In this case, the machinery developed in [4] can be used.

Colbourn, Dinitz, and Stinson [4] prove that

Theorem 4.1 For every v ≡ 1, 3 (mod 6), there is an STS(v) with a scattering set of size
L(v). Moreover, when v = 31 or v ≥ 43, there is an STS(v) with a scattering set of size
L(v) in which exactly two points of the scattering set are in a sub-STS(7), and at least four
other points of the sub-STS(7) are spanned by the scattering set.

They also employ the singular direct product, but the latin squares required have some-
what different restrictions. A latin square of side r is (a, b)-scattered if

1. The a× a subarray indexed by rows 1, . . . , a and columns 1, . . . , a contains a2 distinct
symbols, none of which are in the set {1, . . . , b}.

2. In rows 1, . . . , a, the symbols 1, . . . , b appear in ab distinct columns.

3. In columns 1, . . . , a, the symbols 1, . . . , b appear in ab distinct rows.

Lemma 4.2 [4] If b ≤ a and r ≥ max(a2 +b, ab+a+b), then an (a, b)-scattered latin square
of side r exists.

We follow the prescription by Colbourn, Dinitz, and Stinson [4] closely.

Theorem 4.3 Let x = 3r + w, with w = 0 when x ≡ 3, 9 (mod 18), w = 1 if x ≡ 1, 7
(mod 18), w = 3 when x ≡ 15 (mod 18), and w = 7 when x ≡ 13 (mod 18). Let e = w
when w ∈ {0, 1}, e = 2 when w = 7, and e = U(x) mod 3 when w = 3. Let a1, a2, a3

satisfy dU(x)−e
3

e ≥ a1 ≥ a2 ≥ a3 ≥ bU(x)−e
3

c and a1 + a2 + a3 + e = U(x). Then whenever
U(x) ≤ s ≤ a1 + a2 + e + (r − a1a2), there is an STS(x) having a complete s-arc which
contains an STS(7) meeting the conditions of Theorem 1.1.

Proof: We form the STS(x) on ({1, . . . , r}×{1, 2, 3})∪{r+1, . . . , r+w}, writing xi for (x, i).
First we form an (a1, a3)-scattered latin square of side r, which is shown to exist in [4]. For
concreteness, suppose that the latin square L constructed has symbols {r − a1a2 + 1, . . . , r}
in the leading a1 × a2 subarray, that it has symbols 1, . . . , a3 in rows 1, . . . , a1 appearing in
columns r− a1a3 +1, . . . , r, and that it has symbols 1, . . . , a3 in columns 1, . . . , a2 appearing
in rows r − a2a3 + 1, . . . , r. Our objective is to form a complete arc that contains (at least)
the points P = {r + 1, . . . , r + e} ∪

⋃3
i=1({1, . . . , ai} × {i}). If we use L to form latin square

triples, then immediately we find that no element xi can be added to P while keeping the set
independent if x > ajak and {i, j, k} = {1, 2, 3}. One can, however, for fixed i ∈ {1, 2, 3}, add
all elements {xi : ai < x ≤ r − ajak, {i, j, k} = {1, 2, 3}} to P while retaining independence
among the latin square triples. But one cannot, in general, add elements with different
subscripts and retain independence.

The subsystem triples on {1i, . . . , ri, r+1, . . . , r+w} for i = 1, 2, 3 must now be selected.
We choose the first system to be an STS(r + w) with a sub-STS(w), having a scattering set
of size a1 + e with e of the scattering set elements in the sub-STS(w). In general, we further
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prescribe the number d1 of elements of the sub-STS(w) spanned by the scattering set. Place
the STS with scattering set on ({1, . . . , a1}×{1})∪{r+1, . . . , r+e}, so that the

(
a1+e

2

)
triples

having two elements in the scattering set have third elements (which are all different) equal
to {a1 + 1, . . . , a1 +

(
a1+e

2

)
− d1} outside of the subsystem, and to {r + e + 1, . . . , r + e + d1}

within the subsystem. Evidently, when a1 +
(

a1+e
2

)
− d1 ≥ r − a2a3, the 1-subsystem triples,

together with the latin square triples, prevent the addition of any element x1 with x > a1 to
P , while retaining independence. We always take d1 = 0 when x ≡ 1, 3, 7, 9 (mod 18). We
take d1 = 1 when x ≡ 15 (mod 18), and we take d1 = 4, 3, 3 when U(x) ≡ 0, 1, 2 (mod 3),
respectively. Colbourn, Dinitz, and Stinson [4] verify that the required inequality above is
met by these choices of parameters.

The second subsystem is placed similarly, with third elements in the sub-STS(w) from
{r+e+1, . . . , r+e+

(
e
2

)
}∪{r+e+d1 +1, . . . , r+e+d1 +d2−

(
e
2

)
}. When r+e+d1 +d2−

(
e
2

)

exceeds r +w, for the latter set take {r +w− d2 +
(

e
2

)
+1, . . . , r +w}. Again the verification

requires that we specify d2. We take d2 = d1 except when x ≡ 13 (mod 18) and U(x) ≡ 0
(mod 3), in which case we take d2 = 2. Colbourn, Dinitz, and Stinson [4] verify that
a2 +

(
a2+e

2

)
− d2 ≥ r − a1a3, so that no element of the form x2 can be added to P while

retaining independence once the 2-subsystem triples are present.
If we were to place the third subsystem also similarly, this would in fact realize the

minimum size U(x) of the complete arc. However, we vary the prescription for this last
ingredient. The basic fact upon which we rely is that having placed latin square, 1-subsystem,
and 2-subsystem triples, the only candidates to add to P while retaining independence are
{x3 : a3 < x ≤ r − a1a2} ∪ {r + e + d1 + d2 −

(
e
2

)
+ 1, . . . , r + w}. Some computation shows

that with the specified choices of e, d1, and d2 for each choice of w, the latter set (within the
subsystem) is empty except when x ≡ 13, 15 (mod 18), in which cases it contains at most
one element. This limitation depends in no way on the selection of the third subsystem to
place.

So write s̃ = s−U(x), the amount by which the size of the desired complete arc exceeds
the size of a minimum complete arc. Form an STS(r + w) on {1, . . . , r + w} with a sub-
STS(w) on {r+1, . . . , r+w} having an independent set on {1, . . . , a3 + s̃}∪{r+1, . . . , r+e}
by which all elements {a3 + s̃ + 1, . . . , r − a1a2} ∪ {r + e + d1 + d2 −

(
e
2

)
+ 1, . . . , r + w} are

spanned. We have seen that the size of the latter set (within the subsystem) is at most one.
When w ∈ {0, 1, 3}, this can be ensured for any STS(r + w). When w = 7, the induction
hypothesis provides the required system (except when r + w ≤ 13, which cannot hold).

Indeed we can choose 0 ≤ s̃ ≤ r−a1a2−a3 as we like, since a1a2 comprises approximately
two-thirds of the elements. That one can always choose s̃ at the maximum without exceeding
the size of an independent set in the STS(r + w) is an easy but tedious verification (which
we completed with a simple Maple program). The more serious issue is whether we can
choose s̃ small. However, Colbourn, Dinitz, and Stinson [4] verify that when s̃ = 0 we have
a3 +

(
a3+e

2

)
− d3 ≥ r− a1a2, so the result is always a complete arc. The required sub-STS(7),

when present in one of the ingredients, remains in the STS constructed. 2
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5 Putting the pieces together

The remaining issue is to consider those values that are too large for Theorem 4.3, but too
small for Theorem 2.3. Since the largest size treated by Theorem 4.3 grows approximately

as x
9
, while the smallest size treated by Theorem 2.3 grows only as

√
8x
3

, it is easy to see

that for x sufficiently large, all sizes of complete arcs are treated by one (or both) of these
two constructions. However, for small values of x, one must verify that there remains no gap
between the two constructions. This verification is lengthy, but easily done.

It is not unexpected that the possible sizes of complete arcs form an interval, and indeed
that there is substantial flexibility in forming them. Nevertheless, the techniques used appear
to encounter essentially different problems near the minimum, in the middle, and near the
maximum sizes. It would be of interest to find single systems that admit many different sizes
of complete arcs. Our experience is that most systems have very many small complete arcs
but few (if any) of sizes near the maximum. This suggests the problem of determining the
maximum, over all Steiner triple systems of a given order, of the size of a smallest complete
arc in the system. We expect this number to be close to U(v) on the (admittedly weak)
basis of computational evidence.
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