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Abstract

A Costas array of order n is an n×n permutation matrix with the property
that all of the n(n− 1)/2 line segments between pairs of 1’s differ in length
or in slope. A Costas latin square of order n is an n× n latin square where
for each symbol k, with 1 ≤ k ≤ n, the cells containing k determine a Costas
array. The existence of a Costas latin square of side n is equivalent to the
existence of n mutually disjoint Costas arrays. In 2012, Dinitz, Östergård
and Stinson enumerated all Costas latin squares of side n ≤ 27. In this brief
note, a sequel to that paper, we extend this search to sides n = 28 and 29.
In addition we determine the sizes of maximal sets of disjoint Costas latin
squares of side n for n ≤ 29.
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1 Introduction and definitions

A Costas array of order n is an n×n permutation matrix with the property that all
of the n(n− 1)/2 line segments between pairs of 1’s differ in length or in slope.
The condition of having unique displacement vectors between all pairs of 1’s is
called the Costas property. In 1984, J.P. Costas introduced Costas arrays in the
context of SONAR detection; these arrays were used by the U.S. Navy for many
years (see [1]). For useful references for Costas arrays see [3, 4, 9, 11, 12].
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Example 1.1 All Costas arrays of order 4 (zeros omitted).
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For notational convenience, Costas arrays are often presented using a certain
one-line notation. Given a Costas array of order n, let π(i) = j whenever the
array contains a 1 in cell (i, j). A Costas array of order n can be presented as
the permutation π = (π(1),π(2), · · · ,π(n−1),π(n)). We call this the permutation
representation of a Costas array. Using this notation, the Costas arrays in the
first row of Example 1.1 have permutation representations (1,2,4,3), (4,3,1,2),
(2,1,3,4) and (3,4,2,1), respectively.

A Costas latin square of order n, denoted CLS(n), is a latin square of order
n such that for each symbol i, 1 ≤ i ≤ n, a Costas array results if a 1 is placed in
the cells containing symbol i. Clearly a CLS(n) is equivalent to n disjoint Costas
arrays of order n. Costas latin squares were first defined and studied by Etzion [7]
and are only known to exist when n = p−1 for all primes p and for n = 8. Using
the complete listing of all Costas arrays of orders n ≤ 27 [11] Dinitz, Östergård
and Stinson [2] enumerated all Costas latin squares of orders n ≤ 27. Since that
time all Costas arrays of orders 28 and 29 have also been classified (see [5, 6]) and
are available for download at [11]. In this paper we will discuss sets of disjoint
Costas arrays for those two orders.
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We also search for maximal sets of disjoint Costas arrays of order n for all
n ≤ 29. These can be superimposed to construct partial latin squares. Define a
k-maximal Costas partial latin square of order n, denoted mcpls(n,k), as an n×n
matrix containing the numbers 1 to k satisfying:

1. k ≤ n,

2. each number 1 to k appears exactly once in each row and each column,

3. each number 1 to k displays the Costas property, and

4. a Costas array of order n cannot be made from the remaining blank cells.

Clearly the existence of a maximal set of k disjoint Costas arrays is equivalent
to a mcpls(n,k). Notice also that a mcpls(n,n) is a Costas latin square of side n.

Example 1.2 A Costas latin square of order 12 and a 10-maximal Costas latin
square of order 21.

1 11 4 5 3 7 12 2 9 8 10 6
2 9 8 10 6 12 11 4 5 3 7 1
3 7 12 11 9 8 10 6 1 2 4 5
4 1 3 7 5 2 9 12 10 6 8 11
5 3 7 1 11 9 8 10 6 12 2 4
6 5 11 4 12 3 7 8 2 9 1 10
7 8 2 9 1 10 6 5 11 4 12 3
8 10 6 12 2 4 5 3 7 1 11 9
9 12 10 6 8 11 4 1 3 7 5 2

10 6 1 2 4 5 3 7 12 11 9 8
11 4 5 3 7 1 2 9 8 10 6 12
12 2 9 8 10 6 1 11 4 5 3 7

cls(12)

5 6 8 2 10 9 4 3 1 7
4 9 2 7 8 10 3 1 5 6

4 2 8 1 5 9 3 10 6 7
5 7 1 6 4 10 8 3 2 9

1 7 3 10 6 2 4 9 5 8
2 8 7 5 9 4 6 3 10 1

4 5 3 9 6 1 2 8 7 10
3 5 10 7 6 8 2 1 4 9

3 9 6 10 4 1 7 5 8 2
9 10 8 6 2 5 4 1 7 3

2 1 3 6 7 10 9 4 8 5
4 10 8 3 2 5 9 1 7 6
5 1 2 10 8 3 7 9 6 4
6 3 8 5 1 9 10 7 2 4
7 10 1 5 8 9 6 4 2 3
8 7 4 9 3 6 2 10 1 5

1 2 6 3 5 9 7 4 10 8
6 5 4 1 7 3 9 8 10 2

10 9 7 4 6 2 8 1 5 3
9 2 8 4 7 1 10 5 6 3

10 8 4 3 6 7 5 1 9 2

mcpls(21,10)

For Costas arrays of order n, the disjointness graph of order n, denoted Gn,
is a graph representing all Costas arrays of order n where each vertex represents
a Costas array and two vertices are adjacent if the Costas arrays those vertices
represent are disjoint. Note the number of vertices in Gn equals the number of
distinct Costas arrays of order n. We exhibit G4 in Example 1.3 below.
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Example 1.3 G4 constructed from the Costas arrays in Example 1.1.

In the next section of the paper we discuss the methodology used for searching
for maximal Costas partial latin squares and in the final section we present and
discuss our results.

2 Finding Costas latin squares and maximal Costas
latin squares

To continue the work from [2] we performed computer searchs for Costas latin
squares and maximal Costas partial latin squares of orders 1 to 29. Checking if
two Costas arrays are disjoint is only a matter of comparing the list representations
of those Costas arrays element wise; if at each index in the lists, the elements are
different, then the two Costas arrays are disjoint. Given a set of k mutually disjoint
Costas arrays of order n, A1,A2, ...,Ak, we use the following equation:

k

∑
i=1

i ·Ai (1)

to yield an n× n matrix where each number 1 to k appears exactly once in each
row and each column, and each number has the Costas property. If a Costas array
cannot be made from the remaining blank cells after performing equation (1), then
we have found a k-maximal Costas latin square of order n and equivalently the set
of Costas arrays is a maximal set of disjoint Costas arrays. If k = n, then we have
found a Costas latin square of order n.
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Notice that a set of k mutualy disjoint Costas arrays of order n will be rep-
resented as a k-clique in Gn, and a maximal set of k mutually disjoint Costas
arrays of order n will be represented by a maximal k-clique in Gn. Hence, we
downloaded a database of all Costas arrays for each order 1 to 29 from [11] and
built the disjointness graph, Gn, for each order n from 1 to 29. We then used the
clique-finding C-routines Cliquer [10] to search the disjointness graphs for maxi-
mal cliques, each of which represents a maximal Costas latin square. For instance,
from Example 1.3 we see that A1 = [1,2,4,3], A2 = [3,4,2,1], A3 = [2,1,3,4], and
A4 = [4,3,1,2] form a maximal 4-clique in G4 and hence form a CLS(4) after us-
ing Equation 1. This is demonstrated in the example below.

Example 2.1 Constructing a CLS(4) from G4

The search was performed on one node of the Vermont Advanced Computing
Core. This node contains two quad-core processors running at 2.8 Ghz. We used
this machine for over two months to find the values in the Table 3.1 below.

3 Results and Observations

As noted above, in this paper we complete the enumeration of Costas latin squares
of side 28 and 29. There are precisely 1,371,168 different Costas latin squares of
order 28 and there are none of order 29. The fact that there exists at least one
Costas latin square of order 28 was given in [2], however the precise number was
not determined in that paper.

The following table contains the a summary of our search. For each n < 29
we give the following data:

1. |V (Gn)|, the number of vertices in Gn – this is the number of distinct Costas
arrays of order n.
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2. |E(Gn)|, the number of edges in Gn – this is the number of pairs of disjoint
Costas arrays of order n.

3. Maximum – the maximum clique size. This is the size of the largest set of
disjoint Costas arrays of order n.

4. Maximal – the size(s) of maximal sets of disjoint Costas arrays of order n.

Table 3.1 Results from the computer search.

n |V (Gn)| |E(Gn)| Maximum Maximal
1 1 0 1 1
2 1 1 2 2
3 4 2 2 2
4 12 34 4 4
5 40 274 4 3,4
6 116 2508 6 6
7 200 6960 6 5,6
8 444 37228 8 6,8
9 760 103298 8 6,7,8

10 2160 847198 10 6,7,8,10
11 4368 3388642 10 7,8,9,10
12 7852 11142006 12 7,8,10,11,12
13 12828 29478750 11-12 7,8,10,11
14 17252 53281396 12-13 8,9,10
15 19612 68683920 11-14 9,10,11
16 21104 79791926 16 8,10,11,16
17 18276 59541992 12-16 8,9,10,11
18 15096 40454286 18 9,10,11,18
19 10240 18556592 12 9,10,11,12
20 6464 7384300 12 8,9,10,11,12
21 3536 2196898 11 8,9,10,11
22 2052 766072 22 22
23 872 129848 9 6,7,8,9
24 200 7288 8 5,7,8
25 88 1032 5 5
26 56 6239 6 4,6
27 204 7784 8 6,8
28 712 128744 28 28
29 164 3704 6 5,6

The following are some comments and observations concerning the results
presented in Table 3.1.
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• We give the precise value for the maximum clique sizes for G19 and G20
(both found to be 12) and for G29. We also find lower bounds for the size
of the maximum cliques in G13,G14,G15 and G17. These are new results.
All other values for the maximum clique size agree with the prior results
reported in [2].

• All values given for the sizes of maximal cliques are new to this paper.

• Some searches did not finish. Our computer resources included a maximum
wall-time of 77 days before the computer nodes needed to be restarted. We
did not complete those searches which required more time than the 77 days
allowed. Unfortunately, if the search does not complete, we do not get any
indication of how close the program was to termination.

• Note that for order 14 a maximal clique of size 10 was found, yet the size of
the maximum clique is either size 12 or 13. This indicates that the program
found a clique of size 12, however it ran out of time before determining
whether or not this clique was maximal. The value of 13 is from [2]. Simi-
larly for n = 17, a maximal clique of size 11 was found and a clique of size
12 was also found, but the program ran out of time before determining if
the clique of size 12 was maximal. Again, in [2] it is given that that the size
of the maximum clique is at most 16.

• Note that when n = 2,3,4,6,22,25 and 28 there are no maximal cliques that
are not maximum. Hence for these orders, any set of disjoint Costas arrays
of order n can be extended to a set of maximum size. We find this to be very
surprising.

• There are cases where the four rotations of a Costas array are mutually
disjoint. We term such a Costas array a super Costas array. We searched
for sets of disjoint super Costas arrays in the sense that if C and D are super
Costas arrays, then every rotation of C is disjoint from D. If n disjoint
super Costas arrays are found then we have 4n disjoint Costas arrays. One
particularly nice example of this is given in Example 3.1 below. It is a
MCPLS(20,12) composed of the rotations of 3 disjoint super Costas arrays.

• It is interesting to note that some of the maximal partial Costas latin squares
are very sparse. We found MCPLS(26,4), MCPLS(29,5), MCPLS(25,5)
and MCPLS(27,6) which are only 15.34%, 17.24% , 20% and 22.22%
filled, respectively. A MCPLS(26,4) is given in Example 3.2 below.

• The undergraduate honors thesis of the first author is accessible online at
[8]. In that thesis one can find an example of a maximal Costas latin square
as well as a Costas latin square for each known order. Other examples
found in that thesis include a super Costas array of each possible order and
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a frequency map of the filled cells in the set of all Costas arrays of each size
n with 3 ≤ n ≤ 29.

Example 3.1 A MCPLS(20,12) composed of the rotations of 3 disjoint super Costas
arrays.

9 8 10 3 5 4 2 7 1 12 6 11
1 6 9 4 7 12 10 5 2 11 8 3
2 11 12 6 7 1 3 5 8 10 9 4

1 10 5 8 11 4 2 9 6 7 12 3
8 7 1 4 12 9 11 10 2 3 5 6

3 11 12 5 2 6 8 4 7 10 9 1
4 7 9 1 8 10 12 6 3 11 5 2

11 2 10 3 7 8 6 5 1 12 4 9
5 12 2 6 3 11 9 1 8 4 10 7
6 3 5 10 2 9 11 4 12 7 1 8
7 10 8 3 11 4 2 9 1 6 12 5
8 1 11 7 10 2 4 12 5 9 3 6

2 11 3 10 6 5 7 8 12 1 9 4
9 6 4 12 5 3 1 7 10 2 8 11
10 2 1 8 11 7 5 9 6 3 4 12

5 6 12 9 1 4 2 3 11 10 8 7
12 3 8 5 2 9 11 4 7 6 1 10

11 2 1 7 6 12 10 8 5 3 4 9
12 7 4 9 6 1 3 8 11 2 5 10

4 5 3 10 8 9 11 6 12 1 7 2

Example 3.2 A MCPLS(26,4). This square has only 15.34% of cells filled.

4 2 1 3
2 4 1 3

1 4 2 3
3 2 1 4

1 4 2 3
3 1 4 2

4 3 2 1
1 2 3 4

4 2 1 3
1 4 2 3

4 3 2 1
2 3 1 4

2 3 4 1
2 4 3 1

4 2 1 3
1 4 3 2

2 1 3 4
1 3 2 4

3 4 2 1
1 2 4 3

3 1 2 4
3 1 4 2

3 4 1 2
3 2 1 4

1 2 3 4
4 1 3 2
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