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Abstract

In 1991, Lamken, Rees and Vanstone introduced the notion of class-uniformly re-
solvable designs, CURDs. These are resolvable pairwise balanced designs PBD(v, K, λ)
in which given any two resolution classes C and C ′, for each k ∈ K the number of blocks
of size k in C is equal to the number of blocks of size k in C ′. Danzinger and Stevens
showed that if a CURD has v points, then v ≤ (3p3)2 and v ≤ (p2)2 where pi denotes
the number of blocks of size i for i = 2, 3. They then constructed an infinite class of
extremal CURDS with v = (3p3)2 when p3 is odd and an infinite class with v = (p2)2

when p2 ≡ 2 (mod 6). In this note, we construct two new infinite families of extremal
CURDs, when v = (3p3)2 for all p3 ≥ 1 and when v = (p2)2 with p2 ≡ 0 (mod 3)
except possibly when p2 = 12.

1 Introduction

Let K be a set of positive integers. A pairwise balanced design PBD(v,K, 1) is a pair (V,B)
where |V | = v, and B is a collection of subsets of V called blocks. Each subset has size
k ∈ K and each pair of points of V occurs exactly one time in the blocks.

A group divisible design (or GDD) is a triple (X,G,B) which satisfies the following prop-
erties:

1. G is a partition of a set X (of points) into subsets called groups,

2. B is a set of subsets of X (called blocks) such that a group and a block contain at
most one common point,

3. every pair of points from distinct groups occurs in a unique block.

The group type of the GDD is the multiset {|G| : G ∈ G}. We use an “exponential”
notation to describe types: a GDD has type t1

u1t2
u2 . . . tk

uk if there are ui groups of size ti
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for 1 ≤ i ≤ k. A GDD (X,G,B) will be referred to as a K-GDD of type t1
u1t2

u2 . . . tk
uk if

|B| ∈ K for every block B in B.
A parallel class (or resolution class) of a PBD is a subset of the blocks that partitions the

set of points V . If the set of blocks can be partitioned into parallel classes, then the design
is resolvable, and we write RPBD(v,K, 1). Given an RPBD(v,K, 1) with K = {k1, . . . , kn},
if for each ki there is a corresponding pi such that

∑n
i=1 piki = v and each resolution class

contains exactly pi blocks of size ki, then the RPBD is a class-uniformly resolvable design or
CURD. In this case the CURD has partition kp1

1 kp1
1 · · · kpn

n .
CURDs were first defined and investigated in 1991 by Lamken, Rees and Vanstone [7].

In that paper the authors focus mainly on CURDs with block size 2 and 3 and describe
two notable infinite classes of CURDs. In 2001, Danzinger and Stevens [3] continued the
investigation by completeing one of the classes from the earlier paper. In addition, they prove
the bounds given below in Theorem 1.1 on CURDs which contain only blocks of sizes 2 and
3. Denote a CURD on v points with r resolution classes and p2 blocks of size 2 and p3 blocks
of size 3 in each resolution class (and no blocks of any other size) as a CURD(v, r, p2, p3).

Theorem 1.1 [3] Assume there exists a CURD(v, r, p2, p3). Then
(a) v ≤ (p2)

2 if p2 > 1, and
(b) v ≤ (3p3)

2 if p3 > 0.

Motivated by the bounds in Theorem 1.1, a CURD(v, r, p2, p3) with v = (p2)
2 or with

v = (3p3)
2 is termed an extremal CURD. In [3] it was shown that there exists an extremal

CURD(v, r, p2, p3) with v = (3p3)
2 when p3 is odd and with v = (p2)

2 when p2 ≡ 2 (mod
6). In this note we will construct extremal CURDs when v = (3p3)

2 for all p3 > 0 and when
v = (p2)

2 for all p2 ≡ 0 (mod 3) except when p2 = 12.

2 Extremal CURDs with v = (3p3)
2

First note that in the case when v = (3p3)
2 it necessarily follows that p2 = 3p3(3p3−1)

2
. In [3],

Danzinger and Stevens construct a CURD((3k)2, 3k(3k−1), 3k(3k−1)
2

, k) for all k odd. In this
section we will use a doubling-type construction to prove that these extremal CURDs also
exist when k is even and hence that there exists a CURD((3k)2, 3k(3k − 1), 3k(3k−1)

2
, k) for

all k ≥ 1. We begin with a definition.

A {2, 3}-GDD of type (9k2)4 is said to be 3-heavy if the blocks can be partitioned as
follows:

1. 18k2 parallel classes with 2k blocks of size 3 and 3k(6k − 1) blocks of size 2 in each
class.

2. 18k2 − 6k sets of blocks of size 2 such that each set covers all the points in exactly 2
groups in such a way that every group is missed by the blocks in exactly 9k2 − 3k sets.

The following is our main recursive construction.
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Theorem 2.1 If there exists a 3-heavy {2, 3}-GDD of type (9k2)4 and a CURD((3k)2, 3k(3k−
1), 3k(3k−1)

2
, k), then there exist a CURD((6k)2, 6k(6k − 1), 3k(6k − 1), 2k).

Proof: Given a 3-heavy {2, 3}-GDD of type (9k2)4 by definition there are 18k2 parallel
classes with 2k blocks of size 3 and 3k(6k − 1) blocks of size 2 in each class, as required.

Now put a CURD((3k)2, 3k(3k − 1), 3k(3k−1)
2

, k) on the points of each of the groups. We
have that each group is missed by exactly 9k2 − 3k of the sets of size 2, and each group
contains the blocks of a CURD with exactly this many parallel classes. So for each of the
18k2 − 6k sets of block size 2 add a parallel class from the each of the two groups that it
misses to construct a parallel class of blocks containing 9k2 +2× 3k(3k−1)

2
= 18k2 − 3k blocks

of size 2 and 2k blocks of size 3. This completes the construction.

It was shown in [3] that a CURD((3k)2, 3k(3k − 1), 3k(3k−1)
2

, k) exists for all k odd (in-

cluding k = 1). So in view of the previous theorem CURD((3k)2, 3k(3k − 1), 3k(3k−1)
2

, k) will
exist for all k if it can be shown that 3-heavy {2, 3}-GDD of type (9k2)4 exist for all k. These
3-heavy GDD will be contructed by an inflation construction given in Lemma 2.2. We need
another definition.

A {2, 3}-GDD of type (9k)4 is 3-light if it satisifies the following conditions:

1. there are 18k parallel classes of blocks with 2 blocks of size 3 and 3(6k − 1) blocks of
size 2 in each class, and

2. there are 18k − 6 sets of block size 2 such that each set covers the points in exactly 2
groups, in such a way that every group is missed by exactly 9k − 3 sets.

Lemma 2.2 If there exists a 3-light {2, 3}-GDD of type (9k)4 and a resolvable transversal
design TD(3, k), then there exists a 3-heavy {2, 3}-GDD of type (9k2)4.

Proof: Given a 3-light GDD of type (9k)4, first inflate each point to k points. Then,
apply Wilson’s construction (see [6]) for resolvable GDDs (using the resolvable TD(3, k) or a
resolvable TD(2, k)) to construct 3-heavy {2, 3}-GDD of type (9k2)4. Note that the number
of parallel classes in the resulting 3-heavy GDD as well as the sets containing only blocks of
size 2 will be k times the number in 3-light GDD, as required .

Theorem 2.3 There exists a 3-light {2, 3}-GDD of type (9k)4 for all k ≥ 1.

Proof: Case 1: k odd Let V = Z36k. The groups are {{4j + i : j ∈ Z9k} for i = 0, 1, 2, 3.
Consider the base blocks

{0, 1, 3},
{i, 18k + 3 − i} for i = 4, 5, . . . , 9k − 1,

{27k, 9k + 3}, {27k + 1, 9k + 2}, and {2, 18k + 2}.
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By adding 18k to all but the last block, we get all 36k elements, each exactly once. Note
that no two blocks have elements with the same difference and that the set of differences
that occur in these blocks is {1, 2, 3, 5, . . . 18k − 3, 18k − 1, 18k, 18k + 1, 18k + 3, . . . 36k −
5, 36k − 3, 36k − 2, 36k − 1}. Develop these blocks by adding 0, 1, . . . , 18k − 1 to obtain 18k
disjoint parallel classes where each parallel class has exactly 2 blocks of size 3. Note that all
pairs of points with an odd difference (or difference 2 or 18k) have now appeared together.

If two points have difference d ≡ 0 (mod 4), then they are in the same group and so can
not appear in a block together. For each d ≡ 2 (mod 4) with 6 < d ≤ 36k − 6 and d 6= 18k
construct two sets of blocks B0,d and B1,d where Bi,d = {{x, x + d}|x ≡ i (mod 4)}. Note
that each set misses exactly two of the groups of the GDD and that the addition of these
blocks completes the GDD. Finally, the fact that there are (9k − 3) × 2 = 18k − 6 of these
sets (and clearly every group is missed by exactly 9k − 3 of them) completes the proof.

Case 2: k even Let k = 2m and V = Z18m × Z4. The groups are Z18m × {i} for i ∈ Z4.
Consider the base blocks

{(0, 0), (0, 1), (18m − 1, 2)}
{(18m − 1 − i, 2), (i, 1)} for i = 1, 2, . . . , 9m − 1,
{(9m − i, 2), (9m + i, 1)} for i = 1, 2, . . . , 9m − 1,

{(9m, 1), (9m, 3)}

By adding (0, 2) to all but the last block we get all 36k elements, each exactly once. Again
note that no two blocks have elements with the same difference, hence when these blocks
are developed by adding (i, j) where i ∈ Z18m and j = 0, 1, we obtain 36m = 18k disjoint
parallel classes where each parallel class has exactly 2 blocks of size 3.

It is easy to check that any two points whose difference is (d, 1), for any d ∈ Z18m, appear
in one of the blocks constructed above. Also, points with difference (0,2) and ±(1, 2) have
appeared together. This leaves exactly those pairs of points whose difference is (d, 2) for
18m − 3 = 9k − 3 values of d to still be covered by blocks. For each d ∈ Z18m, d 6= 0, 1,−1,
define two sets of blocks {{(x, 0), (x+d, 2)} | x ∈ Z18m} and {{(x, 1), (x+d, 3)} | x ∈ Z18m}.
Each set misses exactly two of the groups of the GDD and by the difference property, the
addition of these blocks completes the GDD. Finally, the fact that there are (9k − 3) × 2 =
18k − 6 of these sets completes the proof.

Since a resolvable TD(3, k) exists for all k 6= 2, 6 (see [1]), from Lemma 2.2 and Theorem
2.3 we obtain the following theorem.

Lemma 2.4 For every k 6= 2, 6, there exists a 3-heavy GDD of type (9k2)4.

We now fill in both of the missing cases from the previous lemma.

Lemma 2.5 There exists a 3-heavy GDD of type (9k2)4 when k = 2 and when k = 6.

Proof: We first construct a 3-heavy GDD of type (36)4 ( i.e. type (9k2)4 when k = 2). Let
the elements of this design be the elements of Z144 and the groups of the design be the 4 trans-
lates of G = {0, 4, .., 140}. Begin with the following base blocks: {0, 70, 71}, {2, 67, 69}, {34, 68},
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{73, 35}, and {{3 + i, 66 − i}, 0 ≤ i ≤ 30}. Now, take these base blocks, and add 72 to con-
struct the first parallel class of blocks. Note that this class has 4 blocks of size 3, and 66
blocks of size 2, as required. Translating this parallel class by adding i = 0, 1, . . . , 71 gener-
ates the 72 disjoint parallel classes in the GDD. Now, the unused differences from the base
blocks are ±69 and all d ≡ 2 (mod 4) except d = ±2,±34,±38, and ±66 (all values modulo
144). For each of the unused differences d ≡ 2 (mod 4) construct two sets of blocks of size
2 (36 in each set) with all blocks having difference d. All the pairs in each set will be of the
form {x, x+ d} with x ∈ G and x ∈ G +1, respectively. This constructs a total of 56 sets of
blocks. From difference 69, construct four sets of blocks of size 2 with all blocks having dif-
ference d. All the pairs in each set will be of the form {x, x+69} with x ∈ G,G+1, G+2 and
G + 3, respectively. We have constructed the required 60 sets of blocks of size 2, completing
the proof.

To construct a 3-heavy GDD of type (9k2)4 when k = 6, we first construct a suitable
GDD of type (9 · 12)4 = (108)4. Consider V = Z432 with groups {i, i + 4, . . . , i + 428}
for i = 0, 1, 2, 3. We first construct a set of 108 parallel classes, each with four blocks
of size 3 and 210 blocks of size 2. Consider the collection of blocks {0, 9, 10}, {1, 3, 6}, {2 +
216, 8}, {4, 11}, {5+216, 7}, {12+i, 215−i} for i = 0, 1, 2, . . . , 96, and {109+216+i, 118−i}
for i = 0, 1, 2, 3, 4. It is easy to verify that all differences are distinct and not a multiple of 4
and that when 216 is added to each block that all elements in V are contained in exactly one
block. We have thus constructed a parallel class with 4 blocks of size 3 and 210 blocks of size
2. Translating this parallel class by adding i = 0, 1, . . . , 107 generates the 108 disjoint parallel
classes. As before, the sets of block size 2 are constructed from the differences missing from
the parallel class. Now, applying Wilson’s Fundamental Construction (see [6]) with weight
3 gives the desired 3-heavy GDD of type (9 · 62)4.

We can now state our main result regarding this extremal class of CURDs.

Theorem 2.6 For all n > 1 there exists a CURD((3n)2, 3n(3n − 1), 3n(3n−1)
2

, n), i.e. there
exists an extremal CURD with v = (3p3)

2 for all values of p3 ≥ 1.

Proof: Let n = 2t · k with k ≥ 1 odd. From [3] there exists a CURD((3k)2, 3k(3k −
1), 3k(3k−1)

2
, k) and from Lemmas 2.4 and 2.5 there is a 3-heavy {2, 3}-GDD of type (9k2)4.

Apply Theorem 2.1 t times to construct a CURD((3n)2, 3n(3n − 1), 3n(3n−1)
2

, n).

3 Extremal Curds with v = p2
2

The second extremal family from Theorem 1.1 is the family CURD(n2, n(n+1)
2

, n, n(n−2)
3

), i.e.
when v = p2

2. In [3] Danziger and Stevens prove that the basic necessary condition is n ≡ 0, 2
(mod 3) and they show that such CURDs exists whenever n ≡ 2 (mod 6). In this section,

we construct an extremal CURD(n2, n(n+1)
2

, n, n(n−2)
3

) for all n ≡ 0 (mod 3). We divide the
proof into two cases, n ≡ 0 (mod 6) and n ≡ 3 (mod 6).

We define a class-disjoint PBD(n, {2, 3}) is a regular PBD(n, {2, 3}) with exactly n blocks
of size 2 that can be partitioned into n classes of pairwise disjoint blocks, each class containing
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exactly one block of size 2. Note that in a class-disjoint PBD(n, {2, 3}) it follows that each
point is in n+1

2
blocks and hence each point is not in n−1

2
of the classes.

Theorem 3.1 For all n ≡ 3 (mod 6), there exists a class-disjoint PBD(n, {2, 3}).

Proof: From [5] there exists a cyclic Steiner triple system on n points with the property
that the base blocks are all disjoint. Let B be the set of base blocks in such a system. One
of the base blocks is the short block, namely {0, n

3
, 2n

3
}. To construct the first class, replace

this short block with {0, n
3
} and attach the remaining blocks from B. Note that the blocks

in this class are pairwise disjoint. The n classes are constructed by developing this first class
modulo n.

One other ingredient is needed for our general construction. A modified group-divisible
design with block size 3 (3-MGDD) of type uv, is a set U × V with |U | = u and |V | = v,
partitioned into first groups {{u}× V : u ∈ U}, and into second groups {{U × {v} : v ∈ V },
and equipped with a collection B of blocks of size 3, so that every pair of elements appears
either in a first or second group together, or in exactly one block in B, but not both. A
3-MGDD is resolvable (3-RMGDD) if the blocks can be partitioned into parallel classes each
class containing each point exactly once. The following recent theorem of Wang, Tang and
Danziger [9] details the existence of 3-RMGDD.

Theorem 3.2 [9] There exists a 3-RMGDD of type uv if and only if u ≥ 3, v ≥ 3, uv ≡
0 (mod 3) and (u − 1)(v − 1) ≡ 0 (mod 2) except when (u, v) = (3, 6) or (6, 3).

Theorem 3.3 There exists a CURD(n2, n(n+1)
2

, n, n(n−2)
3

) whenever n ≡ 3 (mod 6).

Proof: Let V = Zn ×Zn. We construct the blocks of the CURD in two stages, first we will
construct n classes consisting of blocks which contain points in the same “row” or the same
“column” of V , then we give the classes of blocks containing the other pairs of points.

Since n ≡ 3 (mod 6), from Theorem 3.1 above, there exists a class-disjoint PBD(n, {2, 3})
D with n classes {B0, B1, . . . , Bn−1}. Also, it is well known that when n ≡ 3 (mod 6) there is a
Kirkman triple system K of order n (with n−1

2
parallel classes). For each i = 0, 1, . . . n−1 and

each block {x, y, z} (or {a, b}) in class Bi construct the set of blocks {{(x, j), (y, j), (z, j)}|0 ≤
j ≤ n − 1} (or {{(a, j), (b, j)}|0 ≤ j ≤ n − 1}). Further, for each w not appearing in any of
the blocks in Bi (i = 0, 1, . . . n − 1) place a parallel class from K on the points {w} × Zn in
such a way that for each of the n−1

2
times that a class from D misses w, a different parallel

class from K is used. We have constructed n classes (one for each Bi) with n blocks of size

2 and n(n−2)
3

blocks all of size 3. Note that any two points in the same row or column of V
have now appeared together in exactly one block.

From Theorem 3.2, there exist a 3-RMGDD on the points V = Zn×Zn+1. Now, truncate
the RMGDD by deleting the last column, Zn × n. Note that now some blocks have size 2,
in fact, every parallel class of the truncated RMGDD now has exactly n blocks of size 2 and
n(n−2)

3
blocks of size 3. We now see that no pairs covered by this truncated MGDD are in

the same row or column of V and that if two points are in different rows or columns of V ,
then they are in a block of the truncated RMGDD. This completes the proof.
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We now consider the existence of CURD(n2, n(n+1)
2

, n, n(n−2)
3

) in the case where n ≡ 0
(mod 6). The proof is fairly similar to the one for n ≡ 3 (mod 6), except that since there
is no resolvable STS on n points we are forced to use resolvable group divisible designs and
frames. As before we need a few definitions.

Let (X,G,A) be a 3-GDD of type 23n with points X = {0, 1, . . . 6n − 1} and groups
G = {{i, i + 3n} | 0 ≤ i ≤ 3n − 1}. We say that (X,G,A) is class disjoint if the blocks can
be partitioned into 6n classes Bi, 0 ≤ i ≤ 6n − 1, such that for each i the blocks in class Bi

are disjoint and miss the group {i, i+3n} (i+3n is modulo 6n). Note that these classes are
not required to be full parallel classes. In addition, since the replication number of a 3-GDD
of type 23n is 3n − 1 and since there are 6n classes, we see that each point x ∈ X does not
appear in precisely 6n − (3n − 1) = 3n + 1 of the classes.

A 3-frame of type gn is a 3-GDD (X,G,A) of type gn with the additional property that
the blocks can be partitioned into partial parallel classes (called frame parallel classes) so
that each frame parallel class partitions the points of X \ Gi for some Gi ∈ G.

Lemma 3.4 For every n ≥ 3 there exists a class disjoint 3-GDD of type 23n.

Proof: We begin with a 3-frame of type 6n which was shown to exist in [8] if n ≥ 4 Let
the points of this frame be X = {0, 1, . . . 6n − 1} and the groups be Gi = {0 + i, n + i, 2n +
i, 3n + i, 4n + i, 5n + i} for 0 ≤ i ≤ n− 1. We partition these groups further into the groups
Γi = {{i, i + 3n} | 0 ≤ i ≤ 3n − 1} to construct the class disjoint 3-GDD. Remember, we
need to construct the classes of blocks Bi, 0 ≤ i ≤ 6n− 1, such that for each i the blocks in
class Bi are disjoint and miss the group Γi.

It is easy to show that for each group Gi, 0 ≤ i ≤ n − 1, there are three frame parallel
classes missing Gi. Call these classes Bi, Bn+i and B2n+i. Notice that we have just defined
3n of the classes of the class disjoint 3-GDD (Bi for 0 ≤ i ≤ 3n − 1) and that any pair of
points that are in different groups in the frame have appeared together in some block in one
of these classes. Also, clearly Bi misses group Γi for 0 ≤ i ≤ 3n − 1.

For each i with 0 ≤ i ≤ n − 1 on the points of Gi place a 3-GDD of type 23 with groups
Γi, Γn+i and Γ2n+i. This GDD has 4 blocks bi1, bi2, bi3 and bi4. We define the remaining clases
in the class disjoint GDD as follows. For each 0 ≤ i ≤ n − 1 let B3n+i = {b(i+1)1, b(i+2)2},
B4n+i = {b(i+1)3} , and B5n+i = {b(i+1)4} where all subscripts of the bi,j are taken modulo n.
It is now straightforward to check that we have constructed a class disjoint 3-GDD on the
points X = {0, 1, . . . 6n − 1} with groups Γi = {{i, i + 3n} | 0 ≤ i ≤ 3n − 1} and 6n classes
of blocks Bi, 0 ≤ i ≤ 6n − 1 when n ≥ 4

We now construct a class disjoint 3-GDD of type 29 directly. Let the points be Z16 ∪
{∞1,∞2} and the groups be {{0 + i, 8 + i} | 0 ≤ i ≤ 7} ∪ {∞1,∞2}. Now let A =
{{0, 1, 6}, {3, 7, 10}} and B = {{∞1, 0, 2}, {∞2, 6, 8}}. It is easy to check that the set of
blocks {A+ i |0 ≤ i ≤ 15}∪{B + i |i = 0, 1, 4, 5, 8, 9, 12, 13} is indeed a class disjoint 3-GDD
of type 29.

Theorem 3.5 There exists a CURD(m2, m(m+1)
2

,m, m(m−2)
3

) whenever m ≡ 0 (mod 6) except
possibly when m = 12.
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Proof: Let m = 6n and let V = Z6n × Z6n. We again construct the blocks of the CURD
in two stages, first constructing 6n classes consisting of blocks which contain points in the
same “row” or the same “column” of V , then giving the classes of blocks containing the
other pairs of points.

We will be placing the blocks of a 3-GDD of type 23n on the rows and columns of V so
we define the groups in row i as the set of points {{(i, j), (i, j + 3n)} | 0 ≤ j ≤ 3n − 1}.
Define the groups in the columns similarly.

From Theorem 3.4 above there is a class disjoint 3-GDD of type 23n, (X,G,A), with 6n
classes {B0, B1, . . . , B6n−1} as long as n ≥ 3. Also, from [11] there exists a resolvable 3-GDD
D of type 23n; this GDD necessarily has 3n − 1 parallel classes.

Now let 0 ≤ i ≤ 6n − 1. For each block {x, y, z} in class Bi of the class disjoint 3-GDD
construct the set of blocks {{(x, j), (y, j), (z, j)} | 0 ≤ j ≤ 6n − 1} on V . Further, for each
w not appearing in any of the blocks in Bi, except w = i or w ≡ i + 3n (mod 6n), place
a parallel class from D on the points {w} × Z6n in such a way that for each of the 3n − 1
times that a class from the class disjoint 3-GDD misses w, a different parallel class from D
is used. Finally, from the definition we have that the blocks in class Bi miss the points i
and i + 3n (mod 6n). If 0 ≤ i ≤ 3n − 1 add the following set of (vertical) blocks of size 2
to Bi: {{(i, j), (i + 3n, j)} | 0 ≤ j ≤ 6n − 1}. If 3n ≤ i ≤ 6n − 1 add the following set of
(horizontal) blocks of size 2 to Bi: {{(k, i− 3n), (k, i)} | 0 ≤ k ≤ 6n − 1}. Notice that each
of the 6n classes contructed on V has precisely 6n blocks of size 2 and all other blocks of
size 3 and that each is indeed a parallel class of V . Also, any two points in the same row or
column of V have now appeared together in exactly one block.

As in the case of Theorem 3.3, adding the blocks of a 3-RMGDD of type (6n)6n+1 which
has been truncated by one column gives the blocks covering all points not in the same row
or the same column. Also, each resolution class now has precisely 6n blocks of size 2 and
all the remaining blocks are still of size 3. This completes the proof when n ≥ 3, i.e when
m ≥ 18. A CURD(m2, m(m+1)

2
,m, m(m−2)

3
) when m = 6 is given in [7]

Combining Theorems 3.3 and 3.5 yields the main result of this section.

Theorem 3.6 There exists a CURD(m2, m(m+1)
2

,m, m(m−2)
3

) whenever m ≡ 0 (mod 3) except
possibly when m = 12.
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