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Abstract

In this note, I will summarize the one hour talk that I gave at Graph
Theory Day 48, held at Mount Saint Mary College on Saturday, November
13.

The talk covered several main topics. I first spoke about my experi-
ence designing the schedule for the XFL Football League in 2000. I then
showed how to construct the patterned tournament and how to construct
a balanced tournament design from this patterned tournament. Then I
spoke about schedules with more balance conditions and the connection
between these schedules and certain higher dimensional arrays. Next I
discussed how to assign the minimum number of referees to a round robin
tournament schedule and I ended with a construction of a schedule for a
league with 39 golfers playing in threesomes that I originally constructed
for my mother-in-law, Joyce Cook.

1 The XFL schedule

In March of 2000, my friend and colleague Dalibor Froncek told me that he had
heard that there was a new professional football league being formed, it was
called the XFL. He said that if they are new, then they must need a schedule.

I called the general manager of the league, Rich Rose, and offered our services
to him. On March 2, we sent a letter to Rich describing our qualifications and
proposing that we be hired to construct the schedule of play for the new league.
On March 8, we received a call from him confirming that the XFL was willing to
hire us and that they were even willing to pay us for the schedule. It was agreed
that he would send a list of requirements for the league schedule and that we
would construct the best possible schedule satisfying these requirements.

Here are the guidelines and preferences as given to us by the XFL.

Guidelines

• There are two divisions East and West with four teams in each division.
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• Each team will play ten games.

• Each team will play every other team in its own division twice.

• Each team will play every team in the other division once.

• Each team will have five home games and five away games.

• Every team will have one home and one away game against every team in
its own division.

• Each team will have two home games and two away games against the
four teams from the other division.

Preferences

• Teams that have non-divisional games along opposite coasts will play both
non-divisional games in consecutive weeks to avoid scheduling competitive
advantages.

• No three-week-long road trips

• Every team should have at least one home game by the third week of the
season.

One can indeed see that some of the Guidelines and Preferences are redun-
dant. For instance, Preference 3 is included in Preference 2. Nevertheless, we
extracted the necessary information from the Guidelines and Preferences and
started working.

At this point in the talk I defined the notions of a round robin tournament
on n players, RR(n), and a bipartite tournament with two teams each having
n players, denoted by BT (2n).

Definition. A round-robin tournament on 2n players is a tournament that
consists of n games (each between two players) per round for 2n − 1 rounds in
which each player plays each other player exactly once. A bipartite tournament
on 2n players first partitions the players up into 2 teams (or divisions). The
tournament then consists of n games per round for n rounds where each game
is between two players from different teams. This tournament then satisfies the
property that each player plays every player on the other team exactly once.

So we see from the guidelines above that that the XFL was requiring us to
provide a tournament that consisted of an intradivisional double round robin
tournament (with 4 teams) and an interdivisional bipartite tournament (4 teams
in each division). In the talk, I then constructed a simple example of this and
even showed that it satisfied Guideline 5 above, namely that each team had 5
home and 5 away games.

We sent the XFL several nice schedules and thought that our job with them
was completed. A discussion of these schedules as well as a more in-depth dis-
cussion of the construction of the schedules can be found in [7]. Several months
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passed and we heard from the XFL again, but this time they had much more
specific properties that the schedule needed to satisfy. For example, because the
Chicago Auto Show was using Soldier Field, they needed Chicago to be away
in Week 2 and Week 3. They also wanted Chicago to play Orlando in Orlando
in Week 1 and New York to play at Las Vegas in Week 1. It was interesting
working in a “real world” situation like this. Each time we would send them a
nice schedule, they would thank us and then add a few more constraints that
they had neglected to tell us about before. It was certainly different than just
solving a well defined mathematical problem. Well, we did eventually come up
with a very nice schedule, which we named X5 and which they finally did indeed
adopt.

I showed slides of the X5 schedule as well as a photo of Dalibor and me at the
XFL Championship Game (the Million Dollar Game). I also showed a slide of
an article [2] in the New York Times about our work with the XFL. This article
can also be accessed from my web page (http://www.emba.uvm.edu/ dinitz/).
I lamented that it was unfortunate that the XFL folded after just one year (it
was certainly my 15 minutes of fame). I told of discussion that I had with
the president of the league, Basil Devito, while standing at midfield of the L.A.
Coliseum just after the championship game ended. He said to me “Jeff, the only
thing about the league that nobody every complained about was the schedule”.
I certainly felt good about that.

2 The patterned tournament and balanced tour-

nament designs

In this part of the talk I discussed a particularly nice way to construct a round-
robin tournament and showed how to then determine sites for the games so that
the tournament is balanced for sites. We now give this construction. Let Zn

denote the cyclic group of order n.

Definition. The set of pairs P = {{x,−x} : x ∈ Z2n−1, x 6= 0} is called
the patterned starter in the cyclic group of order 2n − 1. Notice that this
only accounts for 2n − 2 players. We add another player, called ∞ and define
S0 = P ∪ {0,∞}.

The n pairs in S0 can be viewed as the games played in the first week of
the round-robin tournament with 2n players. In general, for 0 ≤ i ≤ 2n− 2 the
games played in the ith week are the pairs in the set

Si = S0 + i = {{x + i,−x + i} : x ∈ Z2n−1, x 6= 0} ∪ {i,∞}.

It not too hard to check that the set {S0, S1, . . . , S2n−2} does indeed form
the weeks of a round robin tournament on 2n players. The key point to note is
that in P , every nonzero element of Z2n−1 occurs exactly once, and furthermore
that every nonzero element of Z2n−1 also appears exactly once as a difference
between the elements in the pairs in P . These two properties will guarantee
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that {S0, S1, . . . , S2n−1} forms a round-robin tournament. Also notice that the
pairs that are together in week i are those that sum to 2i modulo 2n − 1 (and
also the pair {i,∞}).

The round-robin tournament defined above is called the patterned tour-
nament on 2n players or in graph theoretic terms it is the patterned one-
factorization of K2n. In Example 2.1 below the games of the patterned tourna-
ment on 8 players are listed. Each row is a week of the tournament.

This tournament can be nicely visualized. In the diagram below (shown here
for 2n = 8) the edges represent the games in the 0th round (the pairs in S0). We
associate the symbol ∞ with the vertex in the center of the circle and note that
the symbols are elements of Z7 (so −1 = 6,−2 = 5, and −3 = 4). Subsequent
rounds are obtained by rotating the diagram. This is equivalent to adding 1 to
each element in each pair of the prior round (noting that ∞ + 1 = ∞).

0

-1 1

-2 2

-3 3

Note that this tournament is easily adaptable to having an odd number of
players. Merely delete player ∞. In this way in week i player i will have a
bye week and still throughout the tournament, each player will play each other
player exactly once.

Now from the patterned tournament we can design a schedule of play for 8
teams at 4 sites. In the example below the rows represents the weeks, while the
columns represent the sites.

Example 2.1 The patterned tournament on 8 players at 4 sites. The sites
(columns) are labeled by the differences between the elements in the pairs con-
tained in the column. So in this case the columns are ∞,±1,±2 and ±3, re-
spectively.

∞ ±1 ±2 ±3
week 0 0,∞ 3,4 6,1 2,5
week 1 1,∞ 4,5 0,2 3,6
week 2 2,∞ 5,6 1,3 4,0
week 3 3,∞ 6,0 2,4 5,1
week 4 4,∞ 0,1 3,5 6,2
week 5 5,∞ 1,2 4,6 0,3
week 6 6,∞ 2,3 5,0 1,4
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We can see that the balance on the sites is not very good as team ∞ plays
all its games at site ∞. Nonetheless, it is a nice easy construction for a round-
robin tournament on 8 players played at 4 sites, and in general for a round-robin
tournament on 2n players played at n sites.

We now wish to get the sites as balanced as possible. The best we can do is
have every player play at each site exactly twice, except for one site where they
only play once. The following definition is for such a tournament.

Definition. A balanced tournament design, BTD(n), defined on a 2n-set V is
an arrangement of the pairs of elements in V into a 2n− 1× n array such that:

1. every element of V is contained in precisely one cell of each row,

2. every element of V is contained in at most two cells in any column,

Example 2.2 A BTD(5). Note again that the weeks of the tournamenent are
the rows, while the columns represent the sites. Here we have 10 players (labeled
0 – 9).

8 4 9 3 5 6 1 2 0 7
9 2 8 5 0 3 4 7 1 6
1 3 4 6 8 7 9 0 2 5
5 7 0 2 9 1 8 6 3 4
0 6 1 7 4 2 5 3 8 9
2 3 9 4 6 7 8 0 1 5
4 5 8 2 0 1 9 6 3 7
9 7 0 5 8 3 1 4 2 6
8 1 6 3 9 5 7 2 0 4

I will now describe an easy construction of a balanced tournament design
from the patterned tournament on 2n players. This construction works when
2n ≡ 0 or 2 (mod 3).

By example, let 2n = 14 (all arithmetic mod 13). We begin with the pat-
terned tournament on 14 teams with the columns reordered as indicated by the
column headings.
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∞ ±2 ±6 ±3 ±1 ±5 ±4
∞, 0 12,1 10,3 5,8 6,7 4,9 11,2
∞, 1 0,2 11,4 6,9 7,8 5,10 12,3
∞, 2 1,3 12,5 7,10 8,9 6,11 0,4
∞, 3 2,4 0,6 8,11 9,10 7,12 1,5
∞, 4 3,5 1,7 9,12 10,11 8,0 2,6
∞, 5 4,6 2,8 10,0 11,12 9,1 3,7
∞, 6 5,7 3,9 11,1 12,0 10,2 4,8
∞, 7 6,8 4,10 12,2 0,1 11,3 5,9
∞, 8 7,9 5,11 0,3 1,2 12,4 6,10
∞, 9 8,10 6,12 1,4 2,3 0,5 7,11
∞, 10 9,11 7,0 2,5 3,4 1,6 8,12
∞, 11 10,12 8,1 3,6 4,5 2,7 9,0
∞, 12 11,0 9,2 4,7 5,6 3,8 10,1

Note again that every player is in every non-∞ site exactly twice, but that
player ∞ plays every game at site ∞. We wish to switch the cells from the ∞
column with cells from a non-∞ column in the same row. Our goal is that each
non-∞ column receives two of the ∞ cells. Such a pattern was first found by
Robert Gray in 1977 and reported in Hasselgrove and Leech [12]. The pattern
is as follows: in week i (i 6= n− 1) switch the pairs {∞, i} and {3i + 1,−i− 1}.

Notice that in week i, the pair with the difference ±((3i + 1) − (−i − 1)) =
±(4i + 2) is switched with the pair {∞, i} (this prompted our relabeling of the
columns of the original array). We also check that the sum of the pairs that get
switched is (3i + 1) + (−i − 1) = 2i so this is indeed a pair that plays in week
i. This gives a very nice pattern for the switches when the columns have been
reordered as above. We observe this pattern in the next example.

Here is the pattern of switches (the pairs to be switched with {∞, i} in row
i are in boldface):

∞ ±2 ±6 ±3 ±1 ±5 ±4
∞, 0 12,1 10,3 5,8 6,7 4,9 11,2
∞, 1 0,2 11,4 6,9 7,8 5,10 12,3
∞, 2 1,3 12,5 7,10 8,9 6,11 0,4
∞, 3 2,4 0,6 8,11 9,10 7,12 1,5
∞, 4 3,5 1,7 9,12 10,11 8,0 2,6
∞, 5 4,6 2,8 10,0 11,12 9,1 3,7
∞, 6 5,7 3,9 11,1 12,0 10,2 4,8
∞, 7 6,8 4,10 12,2 0,1 11,3 5,9
∞, 8 7,9 5,11 0,3 1,2 12,4 6,10
∞, 9 8,10 6,12 1,4 2,3 0,5 7,11
∞, 10 9,11 7,0 2,5 3,4 1,6 8,12
∞, 11 10,12 8,1 3,6 4,5 2,7 9,0
∞, 12 11,0 9,2 4,7 5,6 3,8 10,1

We note that after each bold pair in row i is switched with the pair {∞, i} each
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row will be unchanged and every column will contain each symbol either 1 or 2
times. The final tournament (a BTD(7)) is given below.

∞ ±2 ±6 ±3 ±1 ±5 ±4
12,1 ∞, 0 10,3 5,8 6,7 4,9 11,2
11,4 0,2 ∞, 1 6,9 7,8 5,10 12,3
7,10 1,3 12,5 ∞, 2 8,9 6,11 0,4
9,10 2,4 0,6 8,11 ∞, 3 7,12 1,5
8,0 3,5 1,7 9,12 10,11 ∞, 4 2,6
3,7 4,6 2,8 10,0 11,12 9,1 ∞, 5
∞, 6 5,7 3,9 11,1 12,0 10,2 4,8
5,9 6,8 4,10 12,2 0,1 11,3 ∞, 7
12,4 7,9 5,11 0,3 1,2 ∞, 8 6,10
2,3 8,10 6,12 1,4 ∞, 9 0,5 7,11
2,5 9,11 7,0 ∞, 10 3,4 1,6 8,12
8,1 10,12 ∞, 11 3,6 4,5 2,7 9,0
11,0 ∞, 12 9,2 4,7 5,6 3,8 10,1

Unfortunately this construction fails when 2n ≡ 1 (mod 3) and there is no
known direct construction for a BTD in this case. However, using recursive
constructions and other techniques from combinatorial design theory it is not
too hard to make BTD’s for all orders. This was first proven by Schellenberg,
van Rees and Vanstone [18] in 1977. We state this theorem below.

Theorem:[18] There exists a BTD(n) for all positive integers n 6= 2.

We next consider BTD’s on 2n players which satisfy a very restrictive prop-
erty, namely that every player plays at every site exactly once in the first n
weeks and exactly once in the last n weeks. These are called partitioned bal-
anced tournament designs. Here is the formal definition.

Definition. A BTD is a partitioned balanced tournament design (PBTD) if it
also satisfies:

1. in the first n rows, each element of V occurs in each column exactly once,

2. in the last n rows, each element of V occurs in each column exactly once.

The following example is of a partitioned BTD on 10 players. Notice that in
the first 5 rows (weeks) every symbol occurs exactly once in each column and
that this also holds true for the last 5 weeks.
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Example 2.3 A PBTD(5).

8 4 9 3 5 6 1 2 0 7
9 2 8 5 0 3 4 7 1 6
1 3 4 6 8 7 9 0 2 5
5 7 0 2 9 1 8 6 3 4
0 6 1 7 4 2 5 3 8 9
2 3 9 4 6 7 8 0 1 5
4 5 8 2 0 1 9 6 3 7
9 7 0 5 8 3 1 4 2 6
8 1 6 3 9 5 7 2 0 4

It is much more difficult to construct partitioned BTD’s than BTD’s. How-
ever in a series of papers, Lamken [13, 14] has proven the existence of PBTD’s
for all but three possible orders. We have:

Theorem 2.4 (Lamken 1987, 1996) There exists a PBTD(n) for all positive
integers n ≥ 3, with the possible exceptions of n = 9, 11 and 15.

We will have a use for these PBTD’s later in this paper.

2.1 Some enumeration results

In this section we mention some results concerning the enumeration of round-
robin tournaments and BTD’s. Two round-robin tournaments on 2n players
(one-factorizations of Kn) are isomorphic if one can be obtained from the other
by interchanging weeks or symbols. The exact number of nonisomorphic round
robin tournament on 2n players is known only up to 2n = 12. Table 1 gives
these values as well as a estimate on the number of nonisomorphic round-robin
tournaments on 14 and 16 players. As is evident, this number grows very rapidly.
It is a great example of combinatorial explosion.

2n number reference
2,4,6 1

8 6 Dickson,Safford, 1906
10 396 Gelling, 1973
12 526,915,620 Dinitz,Garnick,McKay [8], 1994
14 1.132× 1018 (est.) Dinitz,Garnick,McKay [8], 1994
16 7.07× 1030 (est.) Dinitz,Garnick,McKay [8], 1994

Table 1. The number of nonisomorphic round-robin tournaments on 2n players

We also give some results on the number of nonisomorphic BTD’s of order
2n ≤ 10.
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2n number reference
2,6 1
8 47 Corriveau [4], (1988)
10 30,220,557 Dinitz, Dinitz [6], (2005)

Table 2. The number of nonisomorphic BTD(n) (2n players)

We note that even though there are over 30 million BTD(5)’s that exactly
two of them are partitioned BTD’s. It is clear that each round robin tournament
on 2n players gives many BTD(n)’s (i.e keep the rows as the weeks and arrange
the columns to make the BTD). In particular for 10 players there are exactly
396 round robin tournaments, while there are 30,220,557 BTD’s. We have the
following information from [6] about the connection between the number of
round robin tournaments and the number of BTD’s in the case of 10 players.

• The greatest number of distinct BTD’s from any round robin tournament
on 10 players is 123,876, the least is 63,504 and the average is 89,998.8.

• The greatest number of nonisomorphic BTD’s from any round robin tour-
nament on 10 players is 103,912, the least is 293. In general, it is about
about 90,000 divided by the order of the automorphism group of the round
robin tournament.

3 Court Balanced Tournament Designs

It is certainly possible that there may be fewer than n sites available for a round
robin tournament on 2n players. However, if certain numerical condidions are
satisfied it is still possible to balance the tournament for sites.

Definition. A Court Balanced Tournament Design, CBTD(m, c), defined on
an m−set V is an arrangement of the pairs of elements in V into an

(
m
2

)
/c by

c array such that

1. no cell is empty,

2. every element of v occcurs at most once in each row,

3. each element of v appears in the same number of columns, and

4. each pair of elements from V occurs together in exactly one cell of the
array.

Here is an example of a court balanced tournament design on 10 players at 3
sites, a CBTD(10,3). Note that each player plays on each court exactly 3 times
and that there are 15 weeks in this tournament.
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Example 3.1 A CBTD(10,3)

1 0 3 6 2 8
1 5 3 7 2 9
2 6 1 8 3 4
2 7 1 9 3 5
3 8 2 4 1 6
3 9 2 0 1 7
2 3 5 8 6 7
5 0 6 9 7 8
6 4 1 3 8 9
7 5 8 4 9 0
8 6 9 5 4 0
7 9 6 0 4 5
8 0 4 7 1 2
1 4 2 5 3 0
4 9 7 0 5 6

Since each player plays m−1 games, if they are to play the same number at
each court, then necessarily c|(m− 1). Also, since the total number of games is(
m
2

)
and since there are no empty cells it must be true that c|

(
m
2

)
. This allows

us to compute the number of weeks for such a tournament as
(
m
2

)
/c. In 1994,

it was shown [16] that these necessary condition also turns out to be sufficient.

Theorem 3.2 (Mendelsohn, Rodney [16]) There exists a CBTD(2n, c) if and
only if c|

(
2n
2

)
, c|(2n − 1) and 1 ≤ c ≤ n.

4 Room squares and n-dimensional Room cubes

Room Squares are well studied objects in the area of combinatorial design theory.
In the context of this paper, they provide another way to balance sites (and other
measures) in a round-robin tournament. We begin with a definition.

Definition. Let n be an odd integer and let S be a set of size n + 1 called
symbols. A Room square of side n (denoted RS(n)) based on symbol set S is an
n × n array, F , which satisfies the following properties:

1. every cell of F either is empty or contains an unordered pair of symbols
from S,

2. every symbol x ∈ S occurs once in every row and once in every column of
F ,

3. every unordered pair of symbols occurs in exactly one cell of F .

It is known that a Room square of side n exists if and only if n is an odd
integer, n ≥ 1, n 6= 3, 5. See Mullin and Wallis [17] for a proof. For additional
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information about Room squares and related structures, see [9] or [3]. A Room
square of side 7 on the symbol set {∞, 0, 1, . . .6} is given in Example 4.1 below.

Example 4.1 A Room square of side 7.

∞0 3 4 6 1 5 2
∞1 4 5 0 2 6 3

∞2 5 6 1 3 0 4
1 5 ∞3 6 0 2 4

2 6 ∞4 0 1 3 5
4 6 3 0 ∞5 1 2
2 3 5 0 1 4 ∞6

A Room square of side n, say F , can be used to schedule a round robin
tournament for n + 1 teams. Again we let the rows of F be indexed by the n
weeks (rounds), and the columns of F are indexed by n sites. The round robin
tournament then satisfies the following properties:

1. every team plays once in every round and once at each site,

2. every pair of teams plays together exactly once during the tournament.

Notice that the round robin tournament formed from the rows of the Room
square of side 7 in Example 4.1 is again the patterned round robin tournament
(on 8 players). Also notice that this tournament is now balanced on sites as
each team playes exactly once at each of the 7 sites.

Now suppose that we wish to add another balance condition, say for example
referees. In the case of a round robin tournament on 2n players we would be
asking that it satisfies properties 1 and 2 above and in addition, the following
property:

3. there are 2n − 1 referees and each team sees each referee exactly once.

The following example describes a solution to this problem in the case of 8
players.

Example 4.2 A schedule of play for a round robin tournament on 8 players at
7 sites with 7 referees so that each player plays exactly once at each site and
sees each referee exactly once.

weeks sites referees
0 ∞0 16 25 34 ∞0 13 26 45 ∞0 15 23 46
1 ∞1 20 36 45 ∞1 24 30 56 ∞1 26 34 50
2 ∞2 31 40 56 ∞2 35 41 60 ∞2 30 45 61
3 ∞3 42 51 60 ∞3 46 52 01 ∞3 41 56 02
4 ∞4 53 62 01 ∞4 50 63 12 ∞4 52 60 13
5 ∞5 64 03 12 ∞5 61 04 23 ∞5 63 01 24
6 ∞6 05 14 23 ∞6 02 15 34 ∞6 04 12 35
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To construct the tournament from the above, merely choose a pair of players
and determine which week they play and at which site and with which referee.
For example, say the pair is {5, 6}. We see that they play in week 2 at site 1 and
have referee 3. It can be checked that this is indeed a schedule which satisfies
our three balance conditions (weeks, sites, referees).

A Room cube of side n is a 3 dimensional array with the property that each
of the 2-dimensional projections are Room squares of side n. It is interesting to
note that a schedule satisfying three balance conditions is equivalent to a Room
cube by the following (reversible) construction: put pair {i, j} in cell (w, s, r) if
pair {i, j} plays in week w at site s and with referee r. So from Example 4.2 we
can construct a Room cube of side 7.

Clearly there is no reason that one can’t ask for even more balance conditions
to be satisfied. (Although realistically it is getting a little far-fetched). The
following example on 10 players adds another balance condition, say time-of-
day.

Example 4.3 A schedule of play for a round robin tournament on 10 players at
9 sites with 9 referees at 9 different times-of-day so that each player plays exactly
once at each site, sees each referee exactly once and plays at each time-of-day
exactly once.

weeks sites referees times-of-day
1 01 23 45 67 89 01 29 36 48 57 01 26 39 47 58 01 25 34 68 79
2 02 13 46 58 79 02 15 34 69 78 02 14 37 56 89 02 18 35 49 67
3 03 12 47 59 68 03 16 28 45 79 03 17 25 48 69 03 15 27 46 89
4 04 16 25 39 78 04 17 26 35 89 04 18 27 36 59 04 13 28 57 69
5 05 18 24 37 69 05 14 27 39 68 05 19 28 34 67 05 16 29 38 47
6 06 19 27 35 48 06 12 37 39 58 06 15 24 38 79 06 14 23 59 78
7 07 15 28 36 49 07 19 25 38 46 07 13 29 45 68 07 12 39 48 56
8 08 17 29 34 56 08 13 24 59 67 08 16 23 49 67 08 19 26 37 45
9 09 14 26 38 57 09 18 23 47 56 09 12 35 46 78 09 17 24 36 58

To construct the tournament from the above, again merely choose a pair of
players and determine which week, site, referee and time-of-day they play. For
example, say the pair {1, 9}. We see that they then play in week 6 at site 7 and
have referee 5 and at the 8th time-of-day. It can be checked that this is indeed a
schedule which satisfies our four balance conditions (weeks, sites, referees, and
time-of-day).

We can generalize the notion of a Room cube to that of a Room t−cube
where a Room t−cube of side n is a t dimensional array with the property that
each of the 2-dimensional projections are Room squares of side n. A Room
t−cube of side n is equivalent to a round robin tournament satisfying t balance
conditions. So the example above can be used to construct a Room cube of side
7 and a Room 4-cube of side 9. Theorem 4.4 gives a compilation of the best
known existence theorems for Room t−cubes. See [9] for the original references
for these results
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Theorem 4.4 There exists a Room cube of side 7 (Gross, Mullin, Wallis 1973);
there exists a Room 4-cube of side 9 (Dinitz, Wallis 1985); and there exists a
Room 5-cube for every odd n ≥ 11, except possibly for n = 15. (Dinitz 1987).
There exists a Room 4-cube of side 15 (Dinitz 1980)

We are still a long way from knowing exactly the maximum number of con-
ditions of balance that a round robin tournament on 2n players can have. The
only values that are known explicitly are for 2n ≤ 10. It is conjectured [11] that
the maximum number t of conditions of balance in a round robin tournament on
2n players satisfies t ≤ n − 1 but this far from being proven. See [9] for further
more information on Room squares, Room t−cubes and related designs.

5 Assigning referees to round-robin tournaments

The material in this section comes from some recent work with Doug Stinson
and can be found in its entirety in [10].

We will again use a Room square F of side n to schedule a rond robin
tournament for n + 1 teams. However, unlike what was done previously we will
now let the rows of F be indexed by n playing fields, and the columns of F be
indexed by n rounds. The round robin tournament still satisfies the following
properties:

1. every team plays once on every field and every team plays once in every
round,

2. every pair of teams plays together exactly once during the tournament.

It is easily seen that there are exactly (n + 1)/2 games in every round, so
clearly at least (n+1)/2 referees are required for this tournament. Unlike in the
previous section where we had n referees for the tournament, in this application
we do not want to have referees “sitting around” doing nothing so we wonder
just how balanced the tournament can be with exactly (n + 1)/2 referees. Can
it even be scheduled?

In order to eliminate possible bias of referees, we would like to assign referees
to games in such a way that every team receives each referee roughly the same
number of times. More precisely, for every team T and for every referee R, it
should be the case that R is assigned to exactly one or two games involving
team T . A Room square for which referees can be assigned in this way will be
called a referee-minimal Room square, denoted RMRS(n).

Given a Room square F of side n, a column-transversal in F is a set of n
filled cells with the property that no two cells are in the same column and no
symbol occurs more than twice in these cells. F will be an RMRS(n) if and only
if there exists a set of (n + 1)/2 disjoint column-transversals in F (each column
transveral corresponds to an assigned referee).

Referee-minimal Room squares have a nice three-dimensional interpreta-
tion which gives a connection between balanced tournament designs and Room
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squares. Again for this application we will be considering the transpose of the
BTD’s of the earlier sections, so in this section a BTD(n) will be a n× (2n− 1)
array with the rows now representing the sites while the columns are the weeks.

Now, it is not hard to see that an RMRS(n) is equivalent to a three-
dimensional “brick”, having dimensions n × n × n+1

2 , that satisfies certain
conditions. Suppose that we think of the three dimensions of the brick as
corresponding to fields, rounds, and referees, respectively. If we collapse the
third dimension (i.e., project onto the first two dimensions), then we obtain a
Room square of side n. If we collapse the first dimension, then we obtain a
BTD((n + 1)/2).

5.1 A Construction for Referee-minimal Room Squares

We now describe a method of constructing RMRS(n) for almost all odd integers
n ≥ 9. We make use of a special type of Room square called a maximum empty
subarray Room square, denoted MESRS(n), which was first defined by Stinson
[19]. An MESRS(n) is an RS(n) containing an n−1

2 × n−1
2 subarray of empty

cells. We present an MESRS(9) in Example 5.1.

Example 5.1 A maximum empty subarray Room square of side 9, a MESRS(9).

37 28 59 4X 16
56 1X 47 29 38

2X 67 18 35 49
48 39 26 17 5X

19 45 3X 68 27
12 8X 57 69 34
46 13 89 7X 25
58 79 14 23 6X
9X 24 36 15 78

It is not hard to see that the rows and columns of an MESRS(n), say F , can
be permuted so that F has the form

(
A B
C D

)
,

where A has dimensions n+1
2 × n+1

2 , B has dimensions n+1
2 × n−1

2 , C has dimen-
sions n−1

2
× n+1

2
, D has dimensions n−1

2
× n−1

2
, B and C are filled, D is empty,

and the only filled cells in A are the diagonal cells. An MESRS(n) that is dis-
played in this fashion is said to be in standard form. Note that the MESRS(9)
in Example 5.1 is in standard form.

Now if one lines up all the filled cells of A in the column just to the left of
B (column n+1

2
), and puts CT to the left of that column, the resulting n+1

2
× n

array is a partitioned balanced tournament design. This construction can be
performed in reverse and hence we have the following theorem.
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Theorem 5.2 The existence of a MESRS(2n−1) is equivalent to the existence
of a PBTD(n).

Example 5.3 shows this connection in the case when n = 5.

Example 5.3 The partitioned BTD(5) that is equivalent to the maximum empty
subarray Room square of side 9 from Example 5.1

1 2 4 6 5 8 9 X 3 7 2 8 5 9 4 X 1 6
8 x 1 3 7 9 2 4 5 6 1 X 4 7 2 9 3 8
5 7 8 9 1 4 3 6 2 X 6 7 1 8 3 5 4 9
6 9 7 X 2 3 1 5 4 8 3 9 2 6 1 7 5 X
3 4 2 5 6 X 7 8 1 9 4 5 3 X 6 8 2 7

Given this connection between PBTD’s and MESRS, we can appeal again
to the result of Lamken [14] on the existence of PBTD’s to get the following
existence theorem for MESRS.

Theorem 5.4 Suppose n ≥ 9 is an odd integer, and n 6= 17, 21, 29. Then there
exists an MESRS(n).

Now, suppose we have an MESRS(n) in standard form. Let m = (n + 1)/2.
Suppose that the rows of B are denoted B1, . . . , Bm, and denote the rows of C
by C1, . . . , Cm−1. Let the diagonal of A be denoted Ad. We now assign referees
for the games. For 1 ≤ i ≤ m − 1, referee Ri is assigned to all the games in the
cells in Bi ∪Ci. Referee Rm is assigned to the games in the cells in Ad ∪ Bm.

We show that this assignment of referees to games yields an RMRS(n).
Every set of cells Ci contains every team exactly once, and every set of cells Bi

contains every team at most once. Therefore referees R1, . . . , Rm−1 are assigned
to each team either once or twice. In addition, it is not hard to see that the set
of cells Ad contains every team exactly once, and hence the desired property
holds also for referee Rm. Hence, we have proven the following.

Theorem 5.5 There exists an RMRS(n) for all odd integers n ≥ 9 except
possibly if n = 17, 21, 29.

5.2 Referee Field Changes

A round robin tournament based on a Room square is set up so that every team
plays on a different field during each round. However, there may be no reason
why the referees should be required to change fields so often. On the contrary,
it might be desirable for the referees to change fields as infrequently as possible.

Here is a small example to illustrate.

Example 5.6 Consider the RMRS(9) constructed as we have described in Sec-
tion 5.1. Referees R1, R2, R3 and R4 each change fields once, and referee R5

changes fields four times. The total number of field changes is therefore eight.
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In general, if we construct an RMRS(n) as described in Section 5.1, then
the total number of referee field changes is n − 1. In [10] we prove that it is
impossible to construct an RMRS(n) in which the total number of referee field
changes is less than n − 1. Hence we have the following theorem about referee
field changes in RMRS(n).

Theorem 5.7 Suppose n ≥ 9 is an odd integer, and suppose n 6= 17, 21, 29.
Then there exists an RMRS(n) in which the total number of referee field changes
is equal to n − 1. Moreover, for any odd integer n, there does not exist an
RMRS(n) in which the total number of referee field changes is less than n − 1.

5.3 An Open Problem

We mentioned a three-dimensional interpretation of RMRS(n) in Section 5.
In this interpretation, we have a three-dimensional brick such that one two-
dimensional projection yields a Room square and another two-dimensional pro-
jection yields a balanced tournament design. It is conceivable that the third
two-dimensional projection could also be a balanced tournament design; how-
ever, we do not have any examples where this occurs. Thus we pose the following
open problem.

For which odd integers n does there exist a three-dimensional brick
B having dimensions n× n × n+1

2
, such that every two-dimensional

projection of B is either a BTD((n + 1)/2) or an RS(n)?

The existence of such a brick is equivalent to the existence of a Room square
of side n which contains (n + 1)/2 disjoint transversals, where each transversal
consists of n filled cells with the property that no two cells are in the same row
or column and no symbol occurs more than twice in these cells. We were unable
to find any example of this object, even for small orders of n. However, we do
not hesitate to conjecture that such an object exists for many orders.

6 The Joyce Cook golf league

I ended the talk with a discussion of a league of play for golfers that involves
triples, instead of just pairs. These conditions were presented to me by my
mother-in-law, Joyce Cook, who needed a schedule of play for her golf league.
I was pleased that I could solve her problem as it turned out to be fairly off the
shelf.

Here are the general conditions that needed to be satisfied:

• 39 golfers play in 13 threesomes (so each player plays every week),

• 13 different starting “places”, 7 on the front nine, 6 on the back nine,

• league play lasts for 10 weeks,
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Here are the balance conditions:

• no two golfers are together in a threesome more than once,

• no golfer starts in the same place twice.

First note that since each golfer plays with two other golfers per week and
there are 10 weeks, that each golfer only plays with 20 of the 38 other golfers,
so the tournament schedule is not particularly tight.

In order to construct this schedule we need another object from combinato-
rial design theory called a latin square.

Definition A latin square of side (order) n is an n× n array in which each cell
contains a single element from an n−set S, and such that each element occurs
exactly once in each row and exactly once in each column.

Example 6.1 A latin square L of side 3 on symbol set S = {1, 2, 3}.

L =
1 2 3
2 3 1
3 1 2

We note in passing that the existence of a latin square of side n is equivalent
to the the existence of a bipartite tournament schedule for two teams each with
n players. The rows represent one team, the columns represent the other team
and the cells represent the rounds. More specifically, if L(r, c) = s, then person
r from team 1 plays person c from team 2 in round s.

Definition Two latin squares L and R (both on the symbol set S) of the same
order are orthogonal if when superimposed, every ordered pair of symbols from
S × T occurs exactly once.

Example 6.2 Two orthogonal latin squares L and R of side 3 on symbol set
S = {1, 2, 3} and the resulting superimposed square L × R.

L =
1 2 3
2 3 1
3 1 2

R =
1 2 3
3 1 2
2 3 1

L × R =
1,1 2,2 3,3
2,3 3,1 1,2
3,2 1,3 2,1

Orthogonal latin squares have been studied since they were first constructed
by Euler in 1782 in an attempt to solve the 36 officer problem. There is extensive
literature on Latin squares and the interested reader is referred to [5] and to
[3] (Part 2). One of the primary questions in this area concerns the existence
of sets of pairwise orthogonal latin squares for each order n. It is not hard
to show that there are at most n − 1 pairwise orthogonal latin squares of side
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n. However, this upper bound has only been achieved in the case when n is a
prime power. Nonetheless, this will be sufficient for our purposes. We have the
following theorem in this case.

Theorem 6.3 When n is a prime power, there exist n− 1 pairwise orthogonal
latin squares of side n.

We solve our golf scheduling problem by the use of 3 pairwise orthogonal
latin squares of side 13. We denote these as A, B and C. These three squares
are given in Example 6.4.

Example 6.4 Three pairwise orthogonal latin squares of side 13.

A =

0 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 0
2 3 4 5 6 7 8 9 10 11 12 0 1
3 4 5 6 7 8 9 10 11 12 0 1 2
4 5 6 7 8 9 10 11 12 0 1 2 3
5 6 7 8 9 10 11 12 0 1 2 3 4
6 7 8 9 10 11 12 0 1 2 3 4 5
7 8 9 10 11 12 0 1 2 3 4 5 6
8 9 10 11 12 0 1 2 3 4 5 6 7
9 10 11 12 0 1 2 3 4 5 6 7 8
10 11 12 0 1 2 3 4 5 6 7 8 9
11 12 0 1 2 3 4 5 6 7 8 9 10
12 0 1 2 3 4 5 6 7 8 9 10 11

B =

0 1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 0 1
4 5 6 7 8 9 10 11 12 0 1 2 3
6 7 8 9 10 11 12 0 1 2 3 4 5
8 9 10 11 12 13 1 2 3 4 5 6 7
10 11 12 0 1 2 3 4 5 6 7 8 9
12 0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11 12 0
3 4 5 6 7 8 9 10 11 12 0 1 2
5 6 7 8 9 10 11 12 0 1 2 3 4
7 8 9 10 11 12 0 1 2 3 4 5 6
9 10 11 12 0 1 2 3 4 5 6 7 8
11 12 0 1 2 3 4 5 6 7 8 9 10
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C =

0 1 2 3 4 5 6 7 8 9 10 11 12
3 4 5 6 7 8 9 10 11 12 0 1 2
6 7 8 9 10 11 12 0 1 2 3 4 5
9 10 11 12 0 1 2 3 4 5 6 7 8
12 0 1 2 3 4 5 6 7 8 9 10 11
2 3 4 5 6 7 8 9 10 11 12 0 1
5 6 7 8 9 10 11 12 0 1 2 3 4
8 9 10 11 12 0 1 2 3 4 5 6 7
11 12 0 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 11 12 0
4 5 6 7 8 9 10 11 12 0 1 2 3
7 8 9 10 11 12 0 1 2 3 4 5 6
10 11 12 0 1 2 3 4 5 6 7 8 9

Now we can solve our golf scheduling problem. We superimpose these three
squares to make a 13×13 array S: Each cell of S contains a triple (i, j, k) where
i is from A, j is from B, and k is from C. Our 39 golfers consist of the 13
symbols from A plus the 13 symbols from B plus the 13 symbols from C. We
let the weeks of the tournament be the rows of S and the 13 different starting
places be the columns. (Note that we even have 3 extra weeks). If the triple in
row r, column c is (i, j, k), then in week r, the triple consisting of golfer i (from
the A group) and golfer j (from the B group) and golfer k (from the C group)
will start at place c.

In Example 6.5 below we give the first three weeks of the tournament. We
can observe that in week 3, player 2 from A and player 4 from B and player 3
from C form a threesome what starts at place 1 (probably hole #1).

Example 6.5 The first 3 weeks of the tournament for 39 golfers (we have re-
placed 10 by a, 11 by b and 12 by c and supressed all commas) .

S =
000 111 222 333 444 555 666 777 888 999 aaa bbb ccc

123 234 345 456 567 678 789 89a 9ab abc bc0 c01 012
246 357 468 579 68a 79b 8ac 9b0 ac1 b02 c13 024 135

We now check the conditions. Obviously there are 39 players playing in
threesomes. There are also 13 different starting places and the league play is
designed for 10 weeks (with three extra weeks possible). From the fact that
A, B and C are latin squares we have that each player plays once in each week
and that no golfer starts in the same place twice. From the fact that these latin
squares are orthogonal we have that no two golfers are together in a threesome
more than once. Thus we have our schedule.

7 Further information

Further information on our scheduling of the XFL can be found at [7]. A
streaming video of parts of this talk as well as many of the slides from this talk
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can be found at www.msri.org/publications/ln/msri/2000/combdes/dinitz/1/.
A discussion of tournament scheduling that pays particular attention to the
home-away patterns can be found at [1]. An extensive survey of Room squares
and related designs (including balanced tournament designs) is [9]. Finally, as
noted above there is extensive literature on Latin squares and the interested
reader is referred to [5] and to [3] (Part 2).

Large schedules such as Major League Baseball require integer programming
techniques from operations research. These methods are beyond the scope of
this talk, however the interested reader is referred to the web page of Michael
Trick (http://mat.tepper.cmu.edu/sports/) for further information on this type
of scheduling.
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