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Abstract

The Hamilton-Waterloo problem is to determine the existence of a 2-factorization
of K2n+1 in which r of the 2-factors are isomorphic to a given 2-factor R and s of the
2-factors are isomorphic to a given 2-factor S, with r+s = n. In this paper we consider
the case when R is a triangle-factor, S is a Hamilton cycle and s = 1. We solve the
problem completely except for 14 possible exceptions. This solves a major open case
from the 2004 paper of Horak, Nedela, and Rosa.

1 Introduction

Let Kn denote the complete graph on n vertices. A factor in Kn is a spanning subgraph.
A k−factor is a k−regular spanning subgraph of Kn and a k−factorization is a set of
k−factors whose edge sets partition the graph. A fundamental question pervasive
in combinatorial design theory is the factorization problem, i.e whether or not there
exists a factorization of Kn where each of the factors are of a prescribed type. In this
paper we will strictly be concerned with the existence of certain 2-factorizations. The
earliest question concerning 2-factorizations (dating back to the Rev. T.P. Kirkman in
1850) is of the existence a 2-factorization of Kn where each 2-factor is the union of n
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disjoint 3-cycles – a so-called Kirkman triple system or KTS(n) (Kirkman constructed a
KTS(15)). It was shown in 1971 by Ray-Chadhuri and Wilson [11] and independently
by Lu (see [10]) that a KTS(n) exists if and only n ≡ 3 (mod 6). Generalizing to
higher k, a resolvable k−cycle system of order n is a 2-factorization of Kn in which
each 2-factor consists exclusively of k−cycles. In 1989, Alspach, Schellenberg, Stinson
and Wagner [2] proved that the necessary conditions are sufficient for the existence of
a resolvable k−cycle system of order n, namely that n is odd and that k ≡ n mod(2n).

The well-known Oberwolfach Problem was first formulated by Ringel at a meeting
in Oberwolfach in 1967. We denote the 2-regular graph consisting of exactly αi mi-
cycles for i = 1, 2, . . . , t by [mα1

1 , mα2
2 , . . . , mαt

t ]. The graph [mα] is called a Cm−factor

1



of Kn where n = m · α, also when m = 3 it will be called a triangle-factor. The
problem of determining whether Kn (n odd) has a 2-factorization in which each 2-
factor is isomorphic to [mα1

1 , mα2
2 , . . . , mαt

t ] is the Oberwolfach Problem and is denoted
by OP(n; mα1

1 , mα2
2 , . . . , mαt

t ). In words, the OP(n; mα1
1 , mα2

2 , . . . , mαt
t ) asks whether it

is possible to seat n participants at a conference over a series of n−1
2 days in such a way

that each person sits next to each other person exactly once where there are precisely
αi tables seating mi people for each 1 ≤ i ≤ t. Considerable effort has been expended
on this problem. The following was taken from an excellent survey of the known results
on the Oberwolfach Problem given in [4]. Original references are generally given in that
survey.

Theorem 1.1 (See [4]) Other than OP(4, 5) and OP(3, 3, 5) neither of which has a
solution, the following Oberwolfach problems all have solutions.

1. OP(mt; mt) for all t ≥ 1 and m ≥ 3 with m and t odd [2];

2. OP(n; mα1
1 , mα2

2 , . . . , mαt
t ) for n = α1m1 + α2m2 + · · ·+ αtmt ≤ 17;

3. OP(3k + 4; 3k, 4) for all odd k ≥ 1;

4. OP(3k + 5; 3k, 5) for all even k ≥ 4;

5. OP(n; rk, n− kr) for n ≥ 6kr − 1, k ≥ 1, r ≥ 3;

6. OP(n; r, n− r) for r = 3, 4, 5, 6, 7, 8, 9 and n ≥ r + 3;

7. OP(n; r, r, n− 2r) for r = 3, 4 and n ≥ 2r + 3;

8. OP(2r + 1; r, r + 1) for r ≥ 3;

9. OP(8s + 3; 3, 4s, 4s) for s ≥ 1;

10. OP(4α + 2s + 1; 4α, 2s + 1) for s ≥ 1, α ≥ 0;

The Oberwolfach Problem is extended further in the so-called Hamilton-Waterloo
problem. In this problem it is now assumed that the conference takes place in two
venues (Hamilton and Waterloo) with different fixed configurations of tables at each
site. More specifically, the Hamilton-Waterloo problem, denoted HW(r, s; m,k), is the
problem of determining whether Kn (n odd) has a 2-factorization in which exactly r of
the 2-factors are Cm−factors and s of the 2-factors are Ck−factors. Clearly a necessary
condition for the existence of an HW(r, s; m,k) is that if n = 2(r+s)+1 is the number
of points, then m divides n when r > 0, and k divides n when s > 0.

There is much less literature on the Hamilton-Waterloo problem than on the Ober-
wolfach problem. The first paper on this topic, [1], settled the problem for all odd
n ≤ 17 and in addition proved that the necessary conditions for the existence of
an HW(r, s; m, k) are sufficient when (m, k) ∈ {(3, 5), (3, 15), (5, 15)} except that an
HW(6, 1; 3, 5) does not exist and the case HW(v−3

2 , 1; 3, 5) is unresolved for n ≡ 0
(mod 15) with n > 15 . In a recent paper [6] it is shown that the necessary conditions
for the existence of an HW(r, s; 3, 4) are sufficient with 7 possible exceptions. It seems
somewhat fitting that the seating arrangement in Hamilton should be one big cycle (a
Hamilton cycle). There are two papers that treat this case. The paper by D. Bryant
[3] considers a slight (more general) variant of the Hamilton-Waterloo problem. In
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that paper it is proven that for all odd n ≥ 11, Kn has a 2-factorization in which three
of the 2-factors are isomorphic to any three given 2-regular graphs of order n, and
the remaining 2-factors are all Hamilton cycles. These are termed Hamilton cycle rich
2-factorizations.

In the paper by Horak, Nedela and Rosa [9] the authors consider the case of finding
a 2-factorization of Kn consisting of Hamilton cycles (at Hamilton) and of triangle-
factors (at Waterloo), so they are considering the case of HW(r, s; n, 3). In this case
the necessary condition is just that n ≡ 3 (mod 6), when s ≥ 1. Note that 0 ≤ r ≤ n−1

2 .
So since s + r = n−1

2 it is then convenient to just give the number of Hamilton cycles
r in the HW(r, s; n, 3) when determining the spectrum for this problem. The following
two theorems are proven in [9].

Theorem 1.2 [9] (a) Let n = 6k + 3 and assume that k ≡ 1 (mod 3), then there is
a solution to the Hamilton-Waterloo problem HW(r, s; n, 3) with triangle-factors and
exactly r Hamilton cycles for every 0 ≤ r ≤ n−1

2 , except possibly when r = 1.
(b) Let n = 6k+3 and assume that k ≡ 0, 2 (mod 3), then there is a solution to the

Hamilton-Waterloo problem HW(r, s; n, 3) with triangle-factors and exactly r Hamilton
cycles for every n+3

6 ≤ r ≤ n−1
2 , except possibly when r = n+3

6 + 1.

Theorem 1.3 [9] Let n ≡ 3 (mod 6). There is a solution to the Hamilton-Waterloo
problem HW(1, s; n, 3) with triangle-factors and exactly one Hamilton cycle when n =
a · 3m where a ∈ {5, 7, 13, 19} and m ≥ 1. There is no HW (1, 3; 9, 3).

It is Theorem 1.3 which we will improve in this paper. In fact this paper is com-
pletely dedicated to the case of the Hamilton-Waterloo problem with triangle-factors
and exactly one Hamilton cycle. As noted in [9], this is the most difficult case of this
problem. We will base our work on several recursive constructions as well as direct
constructions for some small orders. In Section 2 we give a few recursive construc-
tions. Section 3 gives direct constructions for some small orders as well as a recursive
construction for an important solution on 75 points. In Section 4 we give the main
recursive construction and solve the case when n ≡ 3 (mod 12) and finally in Section
5 we solve the case when n ≡ 9 (mod 12).

The following is our main result.

Theorem 1.4 There is a solution to the Hamilton-Waterloo problem on n points with
triangle-factors and exactly one Hamilton cycle for all n ≡ 3 (mod 6) except when n = 9
and with the possible exceptions of n ∈ {93, 111, 123, 129, 141, 153, 159, 177, 183, 201, 207,

213, 237, 249}.

2 Some Recursive Constructions

In this section we present several recursive constructions which give solutions to the
Hamilton-Waterloo problem. As we are only dealing with the case of triangle-factors
and exactly one Hamilton cycle we will define some notation designed for this purpose.
For the remainder of this paper we use the following definition.
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Definition 2.1 An HW(n) is a solution to the Hamilton-Waterloo problem (a 2-
factorization of Kn) with n−3

2 triangle-factors and exactly one Hamilton cycle.
An HW(n : a, b) is a solution to the Hamilton-Waterloo problem (a 2-factorization

of Kn) with exactly n−3
2 triangle-factors and one 2-factor consisting of one a−cycle

and one b−cycle.

The backbone and primary ingredient in most of the recursive constructions are
resolvable group divisible designs, transversal designs and frames. The necessary def-
initions and background on these objects can be found in Part IV of [5] but we will
give the basic definitions here also.

Let K and G be sets of positive integers. A group divisible design of order v (K-
GDD) is a triple (V ,G,B), where V is a finite set of cardinality v, G is a partition
of V into parts (groups) whose sizes lie in G, and B is a family of subsets (blocks)
of V that satisfy (1) if B ∈ B then |B| ∈ K, (2) every pair of distinct elements
of V occurs in exactly one block or one group, but not both, and (3) |G| > 1. If
v = a1g1 + a2g2 + . . . + asgs, and if there are ai groups of size gi, i = 1, 2, . . . , s, then
the K-GDD is of type ga1

1 ga2
2 . . . gas

s and denoted as a K-GDD(ga1
1 ga2

2 . . .gas
s ). When

K = {k}, a K-GDD is denoted as a k−GDD. A transversal design TD(k, n) is a k-GDD
of type nk . So a GDD is a transversal design if and only if each block meets every
group in exactly one point.

Let B be a set of blocks in a GDD. A parallel class or resolution class is a collection
of blocks that partition the point-set V of the design. A GDD or TD is resolvable if
the blocks of the design can be partitioned into parallel classes. A resolvable GDD is
denoted by RGDD.

Let k be a positive integer. A k−frame is a triple (V,G,B) where V is a set of
cardinality v, G is a partition of V into parts (groups), and B is a collection of blocks of
size k that can be partitioned into a collection P of partial resolution classes of V that
satisfies the conditions: (1) The complement of each partial resolution class P of P is
a group G ∈ G; (2) Each unordered pair {x, y} ⊆ V that does not lie in some group G

of G lies in precisely one block of B; and (3) No unordered pair {x, y} ⊆ V that lies in
some group G of G also lies in a block of B. As with GDD’s we say that a k−frame is
of type ga1

1 ga2
2 . . .gas

s if v = a1g1 + a2g2 + . . . + asgs, and if there are ai groups of size
gi for i = 1, 2, . . . , s.

In this paper we will require the existence of 3-frames of the following types:
24, 61124, 61125, 64122, 65121, 66, 124, 125, and 126. Existence of all of these frames
(except for the one of type 64122) is given in Section IV.5.2 of [5]. A 3-frame of type
64122 can be constructed from a 4-GDD of type 3462 (see [5], Table IV.4.10) by inflating
each block with a 3-frame of type 24.

We need to define one final ingredient for our first construction, namely a transversal
design missing a sub-transversal design. As we need only one specific instance of
this ingredient we will just give that specific definition here (again the more general
definition is available at [5]). A TD(k, n)-TD(k,2) is a TD(k, n) (on the pointset V) with
two designated points in each group (the hole) which satisfies the following properties:
(1) Any pair of distinct elements of V that occurs in a group does not occur in any
block; and (2) If a pair of distinct elements from V comes from distinct groups and
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each element occurs in the hole of its respective group, then that pair occurs in no
block of B; otherwise, it occurs in exactly one block.

Our first recursive construction enables us to multiply an HW(n) by v if there exists
a KTS(v), a Kirkman triple system of order v. It is an extension of a result in [9] which
covers the case when v = 3. We will give that result as Theorem 2.4.

Construction 2.2 Assume there exists a KTS(v), a TD(4, n)-TD(4, 2), a 3-RGDD(2v)
and a HW(n), then there exists an HW(vn).

Proof. Let D = (X,A) be a KTS(v) on the points X = Zv. Inflate each of these
points by a factor of n and denote the new points as ordered pairs in Zv×Zn . From the
TD(4, n)-TD(4,2), delete the points in last group to create a TD(3, n)−TD(3,2) (call
this T ) which is resolvable into n − 2 parallel classes of triples and 2 partial parallel
classes of triples (these will be missing the points in the hole). Now, for each block
{a, b, c} ∈ A place the blocks of T on the points {a, b, c}× Zn where the sub TD(3, 2)
is on the points {a, b, c}× {0, 1}. So we see that each resolution class of D yields n− 2
parallel classes of triples in Zv × Zn. Also, since each resolution class contributes 2
partial resolutions and there are v−1

2 resolution classes, we get v − 1 partial resolution
classes of triples (each missing the symbols in Zv × {0, 1}).

For each g ∈ Zv place the blocks of an HW(n) on the points {g}×Zn in such a way
that the points (g, 0) and (g, 1) are adjacent in the Hamilton cycle (denoted Hg).

On the set of points S = Zv × {0, 1}, we first define new groups G = {{(a, 0), (a +
1, 1)} | a ∈ Zv} where addition is in Zv. Place the blocks of a 3-RGDD(2v) on S,
respecting the groups of G. Here we note that each of the v − 1 parallel classes of
triples in the 3-RGDD(2v) can be added to a partial parallel class of triples from above
to form a parallel classes of triples in the new design.

Finally, we construct the Hamilton cycle in Zv × Zn. For each g ∈ Zv delete the
edge (g, 0)(g, 1) in the Hamilton cycle Hg to construct a Hamilton path H∗

g in {g}×Zn

beginning at (g, 1) and ending at (g, 0). Also let ei denote the edge between (i, 0) and
(i + 1, 1). Now sew all these Hamilton paths together to get a Hamilton cycle C as
follows: C = H∗

0e0H
∗
1e1H

∗
2e2 . . .H∗

v−1ev−1.
We first note that this construction yields only 3-cycles and one Hamilton cycle.

It is also easy to check that each pair of points in Zv × Zn occurs exactly once in
either a triangle or adjacent in the Hamilton cycle. Finally note that the triples are
resolvable into parallel classes. Each resolution class of the KTS gives n − 2 parallel
classes of triples for a total of v−1

2 · (n − 2) parallel classes of this type. The HW(n)’s
together contributen−3

2 parallel classes of triples and there are v − 1 parallel classes
formed by the classes in the 3-RGDD(2v) combined with the partial parallel classes
from the TD(3, n)-TD(3,2). The total number of parallel classes of triples is vn−3

2 as
required.

In the above construction, if exactly one of the HW(n) is replaced by an HW(n : a, b)
we obtain the following construction.

Construction 2.3 Assume there exists a KTS(v), a TD(4, n)-TD(4, 2), a 3-RGDD(2v),
an HW(n) and an HW(n : a, b), then there exists an HW(vn : vn − b, b).
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The following is Lemma 11 in [9].

Theorem 2.4 [9] If there exists an HW(n), then there is an HW(3n).

We now have a multiplication theorem which generalizes Theorem 2.4.

Theorem 2.5 If there exists an HW(n), then there is an HW(vn) for all v ≡ 3 (mod
6).

Proof. When v = 3 the result is from Theorem 2.4. If v > 3, the result is from
Construction 2.2 since all of the necessary ingredients (a KTS(v), a TD(4, n)-TD(4,2),
a 3-RGDD(2v)) all are known to exist (See [5]).

It is apparent that one ingredient in the proof of Theorem 2.4 above is an HW(n).
In fact, exactly three copies of the design are used in the construction. If exactly one
of those copies is replaced by an HW(n : n − 3, 3), the next theorem results.

Theorem 2.6 If there exists an HW(n) and a HW(n : n − 3, 3), there exists an
HW(3n : 3n − 3, 3).

For the following construction as well as for several others which will follow we use
the idea of sewing together long cycles. Let G be a group divisible design and say
that each point in G has been inflated by some amount. Let b be an inflated block
with weight wb and g be a (inflated) group of weight wg that intersects b in three
points x, y, z. Place the blocks of an HW(wb) on the points of b in such a way that the
Hamilton cycle is Hb = (yPbxz) where Pb is a path from y to x in b which contains
each of the points of b (except z) exactly once. Place the blocks of an HW(wg) on the
points of g in such a way that the Hamilton cycle is Hg = (xzPgy) where Pg is a path
from z to y in g which contains each of the points of g (except x) exactly once. Now we
sew together Hb and Hg to form the big cycle H = (xzPgyPb). Note that H contains
all the points in Hb ∪ Hg and all the same edges, except xy and yz. However, these
edges appear in triangles in the HW(wg) and the HW(wb), respectively.

To summarize the above paragraph, when two cycles Hb and Hg are sewn together
a new single cycle is formed and all the same of edges are still covered either in the
new cycle or in triangles of the original HW’s.

Our master design in the next construction is a resolvable holey group divisible
design. Let X be a set of 3mn points which is partitioned into 3-subsets Xij , 1 ≤ i ≤
m, 1 ≤ j ≤ n. Let A be a collections of 3-subsets of X (the blocks) which satisfy the
following conditions: (1) every pair of points x ∈ Xi1j1 and y ∈ Xi2j2 is contained in
exactly one block if i1 6= i2 and j1 6= j2 and in no block if either i1 = i2 or j1 = j2,
and (2) the blocks are resolvable into parallel classes. Then (X,A) is a resolvable
holey group divisible design and denoted as a 3-RHGDD of type (m, 3n). The subsets⋃n

j=1 Xij , where 1 ≤ i ≤ m, are called the groups while the subsets
⋃m

i=1 Xij , where
1 ≤ j ≤ n, are the holes.

Construction 2.7 Assume there exists a 3-RHGDD(k,3n), a 3-RGDD(3k), an HW(3n)
and an HW(3k), then there exists an HW(3nk).
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Proof. Begin with the master design, the 3-RHGDD(k, 3n). Put the blocks of the
HW(3n) in each of the groups making sure that in each case the Hamilton cycle contains
the three vertices in the first hole (Xi1, for each 1 ≤ i ≤ k) in the manner described
above. Note that 3n−3

2 parallel classes of triples result from taking the union of the
parallel classes of triples from the HW(3n) in each group. Now put the blocks of the
HW(3k) in the first hole, again being careful to place the Hamilton cycle appropriately.
Now sew together the horizontal and the vertical Hamilton cycles to get one big cycle
containing all the points.

In all the other holes place the blocks of a 3−RGDD(3k). The union of one parallel
class of blocks from each of these designs with a parallel classes of triples from the
HW(3k) in the first hole forms a parallel class of blocks in the entire design. The total
number of parallel classes of triples thus formed is 3k−3

2 .
It is straightforward to check that all pairs are covered in either the Hamilton cycle

or in a triple. There are 1
2(3n−3)(k−1) parallel classes in the 3-RHGDD(k, 3n), which

when added to the earlier mentioned parallel classes gives a total of 3kn − 3 parallel
classes of triples, the desired number.

Again, the following is an easy generalization of the above construction where one
HW(3n) is replaced by an HW(3n : a, b).

Construction 2.8 Assume there exists a 3-RMGDD(nk), a 3-RGDD(3k), an HW(3n),
an HW(3n : a, b) and a HW(3k), then there exists an HW(3nk : 3nk − a, a).

From Constructions 2.7 and 2.8 we get the following two theorems since all the
necessary ingredients exist. The existence of 3-RHGDD(k,3n) is given in [12], while
existence results on 3-RGDD(3k) can be found in [5].

Theorem 2.9 If there exists an HW(3n) and a HW(3k), then there exists an HW(3nk).

Theorem 2.10 If there exists an HW(3n), an HW(3n : a, b) and a HW(3k), then
there exists an HW(3nk : 3nk − a, a).

3 Small orders

In this section we construct solutions to the Hamilton-Waterloo problem for some small
orders. The constructions are all direct constructions obtained by the aid of a computer
except for the last one which is recursive.

Proposition 3.1 There exists an HW(21 : 18, 3).

On the point set V = Z9 × {0, 1} ∪ {x, y, z}, let C0 denote the following set of
seven triples (where (a, b) ∈ Z9 × {0, 1} is denoted ab): C0 = {{00, 10, 40}, {30, 50, 01},
{70, 11, 31}, {21, 51, 61}, {x, 20, 41}, {y, 60, 71}, {z, 80, 81}}.

Then C0 forms a parallel class of triples in V . Eight other parallel classes of triples
are formed by developing C0 mod(9,−). It is easy to check that the two mixed dif-
ferences, 7 and 8 are unused. The final parallel class consists of the 3-cycle (x, y, z)
along with the 18-cycle constructed from the mixed differences 7 and 8. The 18-cycle
is (00, 81, 10, 01, 20, 11, 30, . . .61, 80, 71).
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Proposition 3.2 There exists an HW (27).

On the point set V = Z9 × {0, 1, 2}, let C0 = {{00, 10, 30}, {20, 60, 01}, {11, 21, 41},
{31, 71, 02}, {12, 22, 42}, {50, 32, 82}, {40, 81, 62}, {70, 61, 72}, {80, 51, 52}}.

Then C0 forms a parallel class of triples in V . Eight other parallel classes of triples
are formed by developing C0 mod(9,−). The three blocks, {000142}, {103122}, and
{207112} will each generate one parallel class of triples when developed mod(9,−).
Finally, one can check that pairs of elements of the form (x0, (x + 1)1), (y0, (y + 5)2)
and (z1, (z + 5)2) (for x, y, z ∈ Z9) have yet to appear together in a block. By Lemma
1 of [9] these sets of edges can be ordered to form a Hamilton cycle in V .

We now extend our notation slightly for Propositions 3.3 and 3.8. Define a HW(n :
a, b, c) to be a solution to the Hamilton-Waterloo problem (a 2-factorization of Kn)
with exactly n−3

2 triangle-factors and one 2-factor consisting of exactly one a−cycle,
one b−cycle and one c−cycle.

Proposition 3.3 There exists an HW (27 : 12, 12, 3).

On the point set V = Z24 ∪ {x, y, z}, let C = {{1, 2, 7}, {3, 5, 20}, {6, 9, 22}}. Let

C0 = C ∪ (C + 12) ∪ {{x, 0, 4}, {y, 11, 23}, {z, 12, 16}} and
C1 = C ∪ (C + 12) ∪ {{z, 0, 4}, {y, 11, 23}, {x, 12, 16}}.

Then C0 is a parallel class of triples which when developed by adding all the elements
of {0, 1, 2, 3, 8, 9, 10, 11} (modulo 24) yields 8 parallel classes of triples. Also, when C1

is developed by adding all the elements of {4, 5, 6, 7} (modulo 24) there are 4 additional
parallel classes formed (for a total of 12). The triples in these 12 parallel classes contain
every pair of elements in V except those with difference 10 and those with both elements
from the set {x, y, z}. These missing pairs form two disjoint 12-cycles which together
with the 3-cycle (x, y, z) comprise the last parallel class.

Proposition 3.4 There exists an HW (33).

On the point set V = Z11 × {0, 1, 2}, let
C0 = {{00, 10, 30}, {20, 60, 01}, {40, 90, 11}, {21, 31, 51}, {41, 91, 02}, {61, 101, 32},

{12, 22, 52}, {50, 62, 82}, {100, 42, 92}, {70, 81, 72}, {80, 71, 102}}.
Then C0 forms a parallel class of triples in V . Ten additional parallel classes of

triples are formed by developing C0 mod(11,−).
Each of the four blocks, {00, 01, 62}, {10, 31, 82}, {20, 61, 62} and {30, 101, 02} will

generate one parallel class of triples when developed mod(11,−). Finally, one can
check that pairs of elements of the form (x0, (x + 6)1), (y0, (y + 9)2) and (z1, (z + 9)2)
(for x, y, z ∈ Z11) have yet to appear together in a block. By Lemma 1 of [9] these sets
of edges can be ordered to form a Hamilton cycle in V .

Proposition 3.5 There exists an HW (33 : 30, 3).
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On the point set V = Z15 × {0, 1}∪ {x, y, z}, let C0 denote the following set of triples:
C0 = {{00, 10, 30}, {20, 60, 110}, {01, 11, 31}, {40, 120, 21}, {50, 41, 81}, {80, 91, 141},

{100, 51, 121}, {130, 71, 131}, {70, 111, x}, {90, 61, y}, {140, 101, z}}
Then C0 forms a parallel class of triples in V . Fourteen other parallel classes of

triples are formed by developing C0 mod(15,−). It is easy to check that the two mixed
differences, 7 and 8 are unused. The final parallel class consists of the 3-cycle (x, y, z)
along with the 30-cycle constructed from the mixed differences 7 and 8. The 18-cycle
is (00, 81, 10, 91, 20, . . .61, 140, 71).

Proposition 3.6 There exists an HW (39 : 36, 3).

On the point set V = Z36 ∪ {x, y, z}, let C = {{1, 2, 4}, {3, 7, 15}, {5, 14, 28},
{8, 13, 29}, {9, 16, 35}}. Now let

C0 = C ∪ (C + 18) ∪ {{x, 0, 6}, {y, 12, 30}, {z, 18, 24} and
C1 = C ∪ (C + 18) ∪ {{z, 0, 6}, {y, 12, 30}, {x, 18, 24}.

Then C0 is a parallel class of triples which when developed by adding all the elements
of {0, 1, . . .5, 12, 13, . . .17} (modulo 36) yields 12 parallel classes of triples. Also, when
C1 is developed by adding all the elements of {6, 7, . . .11} (modulo 48) there are 6
additional parallel classes formed (for a total of 18). These triples in these 18 parallel
classes contain every pair of elements in V except those with difference 11 and those
with both elements from the set {x, y, z}. These missing pairs form a 36-cycle which
together with the 3-cycle (x, y, z) comprises the last parallel class.

Proposition 3.7 There exists an HW (51).

On the point set V = Z17 × {0, 1, 2}, let
C0 = {{00, 10, 30}, {20, 60, 110}, {40, 100, 01}, {50, 120, 31}, {11, 21, 41}, {51, 91, 141},

{61, 121, 02}, {81, 151, 12}, {22, 32, 52}, {42, 82, 132}, {70, 62, 122}, {80, 92, 162},
{90, 101, 72}, {130, 131, 152}, {140, 161, 142}, {150, 71, 112}, {160, 111, 102}}.

Then C0 forms a parallel class of triples in V . Sixteen additional parallel classes of
triples are formed by developing C0 mod(17,−).

Each of the seven blocks, {00, 31, 32}, {00, 41, 102}, {00, 51, 142}, {00, 61, 72},
{00, 111, 62}, {00, 141, 42}, {00, 161, 122} will generate one parallel class of triples when
developed mod(17,−). Finally, one can check that pairs of elements of the form
(x0, (x + 10)1), (y0, (y + 8)2) and (z1, (z + 6)2) (for x, y, z ∈ Z17) have yet to ap-
pear together in a block. By Lemma 1 of [9] these sets of edges can be ordered to form
a Hamilton cycle in V .

Proposition 3.8 There exists an HW (51 : 24, 24, 3).

On the point set V = Z48∪{x, y, z}, let C = {{1, 2, 4}, {3, 7, 12}, {5, 11, 37}, {6, 17, 44},
{9, 21, 38}, {10, 23, 43}, {15, 22, 40}}. Now let

C0 = C ∪ (C + 24) ∪ {{x, 0, 8}, {y, 18, 42}, {z, 24, 32}} and
C1 = C ∪ (C + 24) ∪ {{z, 0, 8}, {y, 18, 42}, {x, 24, 32}} .

Then C0 is a parallel class of triples which when developed by adding all the elements
of {0, 1, 2, . . .7, 16, 17, . . . , 23} (modulo 48) yields 16 parallel classes of triples. Also,
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when C1 is developed by adding all the elements of {8, 9, . . . , 15} (modulo 48) there
are 8 additional parallel classes formed (for a total of 24). The triples in these 24
parallel classes contain every pair of elements in V except those with difference 14 and
those with both elements from the set {x, y, z}. These missing pairs form two disjoint
24-cycles which together with the 3-cycle (x, y, z) comprises the last parallel class.

Proposition 3.9 There exists an HW (69).

On the point set V = Z23 × {0, 1, 2}, let
C0 = {{00, 10, 30}, {20, 60, 110}, {40, 100, 170}, {50, 130, 01}, {70, 180, 11}, {21, 31, 51},

{41, 81, 131}, {61, 121, 191}, {71, 151, 02}, {91, 201, 12}, {22, 32, 52}, {42, 82, 132},
{62, 122, 192}, {80, 72, 152}, {90, 92, 202}, {120, 101, 102}, {140, 111, 172},
{150, 171, 162}, {160, 211, 222}, {190, 181, 212}, {200, 161, 142}, {210, 141, 112},
{220, 221, 182}}.

Then C0 forms a parallel class of triples in V . Twenty two additional parallel classes
of triples are formed by developing C0 mod(23,−).

Each of the ten blocks, {00, 11, 82}, {00, 31, 122}, {00, 41, 142}, {00, 71, 182},
{00, 81, 202}, {00, 91, 42}, {00, 111, 162}, {00, 131, 152}, {00, 141, 52}, {00, 151, 92} will gen-
erate one parallel class of triples when developed mod(23,−). Finally, one can check
that pairs of elements of the form (x0, (x+12)1), (y0, (y +10)2) and (z1, (z +13)2) (for
x, y, z ∈ Z23) have yet to appear together in a block. By Lemma 1 of [9] these sets of
edges can be ordered to form a Hamilton cycle in V .

Proposition 3.10 There exists an HW (87).

On the point set V = Z29 × Z3, let C0 = {{00, 10, 30}, {20, 60, 110}, {40, 100, 170},
{50, 130, 230}, {70, 190, 81}, {90, 240, 121}, {140, 161, 202}, {150, 211, 282}}. Let C1 and
C2 be cyclic shifts of C0 mod (−, 3) and let D = {{180, 261, 222}, {220, 271, 252},
{250, 181, 262}, {260, 251, 182}, {270, 221, 272}}.

Then C = C0 ∪ C1 ∪ C2 ∪ D forms a parallel class of blocks in V . Twenty eight
additional parallel classes of triples are formed by developing C modulo (29,−).

Each of the blocks in the following set generates a parallel class when devel-
oped mod(29,−) {{00, 01, 142}, {00, 91, 182}, {00, 101, 202}, {00, 111, 242}, {00, 121, 22},
{00, 131, 52}, {00, 141, 92}, {00, 151, 152}, {00, 191, 162}, {00, 201, 192}, {00, 211, 72}, {00,

251, 82}, {00, 261, 172}}.
Finally, one can check that pairs of elements of the form (x0, (x+27)1), (y0, (y+10)2)

and (z1, (z+11)2) (for x, y, z ∈ Z29) have yet to appear together in a block. By Lemma
1 of [9] these sets of edges can be ordered to form a Hamilton cycle in V .

Proposition 3.11 There exists an HW (87 : 84, 3).

On the point set V = Z84∪{x, y, z}, let C = {{1, 2, 4}, {3, 7, 12}, {5, 11, 18}, {6, 16, 24},
{8, 19, 34}, {9, 25, 62}, {10, 31, 70}, {13, 40, 75}, {15, 38, 74}, {17, 36, 69}, {21, 41, 71}, {22,

39, 68}, {23, 35, 79}}.
Now let C0 = C ∪ (C + 42) ∪ {{x, 0, 14}, {y, 30, 72}, {z, 42, 56}} and let
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C1 = C ∪ (C + 42) ∪ {{z, 0, 14}, {y, 30, 72}, {x, 42, 56}}. Then C0 is a parallel class of
triples which when developed by adding all the elements of {0, 1, . . .13, 28, 29, . . . , 41}
(modulo 84) yields 28 parallel classes of triples. Also, when C1 is developed by adding
all the elements of {14, 15, . . . , 27} (modulo 84) there are 14 additional parallel classes
formed (for a total of 42). The triples in these 42 parallel classes contain every pair of
elements in V except those with difference 41 and those with both elements from the
set {x, y, z}. These missing pairs form an 84-cycle and the 3-cycle (x, y, z) comprising
the last parallel class.

The following is a recursive construction for an HW(75) and a HW(75:72,3). We
will take special note of the structure of the resulting designs as they will be major
ingredients in our main recursive construction in the next section.

Proposition 3.12 There exists an HW (75) and a HW (75 : 72, 3).

Proof. The master design D = (X ,A) is a 5-GDD(46) on the symbols Z6×Z4 . Note
that this GDD is actually a frame and is easily obtainable by deleting a point from the
(25,5,1)-BIBD. Inflate each point in this design by 3 and add 3 points at infinity to get
a total of 75 points. Denote the point set by V = Z6 × Z4 × Z3 ∪ {x, y, z} where now
group i contains the points {i} × Z4 × Z3.

Let b0 be a block in the master design which misses the first group. On the points
b0×Z3 put an HW(15) being sure that for each x ∈ b0 that (x, 0), (x, 2) and (x, 1), (x, 2)
are both edges in the Hamilton circuit H0. Let b1 be a block in D with the property
that it misses the 6th group and intersects b0 in the 5th group. On the points b1 × Z3

put a 2-factorization of K15 consisting of one 2-factor with 3 C3’s and a C6 and all
other 2-factors consisting of just 3-cycles (such a factorization is given in [8]). This
factorization should be placed so that the 6-cycle, C, is in the first two groups and
each of the remaining three 3-cycles is in a different group. C should contain the edges
(p, 0), (p, 2) and (p, 1), (p, 2) and (q, 0), (q, 2) and (q, 1), (q, 2) where p and q are the
points in b1 in the first two groups. For each of the remaining blocks b ∈ A place a
3-RGDD(35) on the points b × Z3 (respecting the groups).

Now, on the first group plus the points {x, y, z} put an HW(15) being certain that
both the edges (p, 0), (p, 1) and (p, 0), (p, 2) are in the Hamilton cycle. On the second
group plus the points {x, y, z} put an HW(15:12,3), where in the last 2-factor the 3-
cycle is (x, y, z) and the 12-cycle contains the edges (q, 0), (q, 1) and (q, 0), (q, 2) as well
as (a, 0), (a, 1) and (a, 0), (a, 2) where a is the point in b0 and the second group. In
each remaining group gi plus the points {x, y, z} put an HW(15:12,3), where in the last
2-factor the 3-cycle is again (x, y, z) and the 12-cycle contains the edges (ai, 0), (a1, 1)
and (ai, 0), (ai, 2) where ai ∈ b0 ∩ gi. As in Construction 2.7 we ”sew” the long cycles
together to obtain a Hamilton cycle on all of V .

Each of the other 2-factors are formed by taking the union of a triangle-factor from
each group gi and adding to that the triangle-factors that arise from a parallel class
of blocks missing gi. Since there are 6 triangle-factors in each group we see that this
construction yields 36 triangle-factors, the required number. It is not hard to check
that indeed we have constructed the desired HW(75).

To construct an HW(75 : 72, 3), instead of placing an HW(15) on the first group
as above, place an HW(15:12,3) on the points of that group in the obvious manner.
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The only thing that is changed is that now the last 2-factor consists of a 72-cycle and
a 3-cycle instead of a Hamilton cycle.

In order to solve the existence problem for HW(6n + 3) we will be working in
congruence classes modulo 12. To facilitate the recursion we define the following sets:

S = {t | there exists an HW (12t + 3)}
S3 = {t | there exists an HW (12t + 3 : 12t, 3)}
M = {t | there exists an HW (12t + 9)}

The following three propositions summarize our results for small values in the sets
S, S3, and M .

Proposition 3.13 {1, 3, 5, 6, 7, 8, 11, 12, 16, 19} ⊂ S3.

An HW(12t + 3: 12t,3) is given in [8] for t = 1. When t = 3 and 7 direct con-
structions for an HW(12t + 3 : 12t, 3) are given above in Propositions 3.6 and 3.11,
respectively. Justification for the remaining orders is given in the following table.

t 12t+3 Justification
5 63 Theorem 2.6. HW(21) from [9], HW(21:18,3) from Proposition 3.1
6 75 Proposition 3.12
8 99 Theorem 2.6. HW(33) and HW(33:30,3) from Propositions 3.4 and 3.5
11 135 Theorem 2.6. HW(45) and HW(45:42,3) from Theorem 2.6 with n = 15
12 147 Theorem 2.10 with n = k = 7. HW(21) from [9], HW(21:18,3) from

Proposition 3.1
16 195 Theorem 2.10 with 3k = 15 and 3n = 39. HW(15) and HW(39) from [9],

HW(39:36,3) from Proposition 3.6
19 231 Theorem 2.10 with 3k = 33 and 3n = 21

Proposition 3.14 {1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 16, 19, 20, 21} ⊂ S.

An HW(12t + 3) is given in [9] for t = 1, 3, 5, 11, and 14. When t = 2, 4, 7 direct
constructions for an HW(12t + 3) are given above in Propositions 3.2, 3.7, and 3.10,
respectively. Justification for the other orders is given in the following table.

t 12t+3 Justification
6 75 Proposition 3.12
8 99 Theorem 2.4. HW(33) from Prop. 3.4
12 147 Theorem 2.9 with n = k = 7.
16 195 Theorem 2.9 with 3n = 15 and 3k = 39. HW(39) from [9]
19 231 Theorem 2.9 with 3n = 21 and 3k = 33
20 243 Theorem 2.4 (twice), with n = 27.
21 255 Theorem 2.9 with 3n = 15 and 3k = 51. HW(51) from Proposition 3.7

Proposition 3.15 {1, 2, 3, 4, 5, 6, 8, 9, 13, 15, 18, 21} ⊂ M .

An HW(12t+9) is given in [9] for t = 1, 3, 4, 9 and 15. When t = 2 and t = 5 direct
constructions for an HW(33) and a HW(69) are given above in Propositions 3.4 and
3.9, respectively. Justification for the other orders is given in the following table.

12



t 12t+9 Justification
6 81 Theorem 2.4. HW(27) from Proposition 3.2
8 105 Theorem 2.9 with n = 5 and k = 7
13 165 Theorem 2.9 with n = 5 and k = 11
18 225 Theorem 2.5 with n = 15
21 261 Theorem 2.4. HW(87) from Proposition 3.10

4 The spectrum: the 3 modulo 12 case

The following construction will be our main recursive construction. In each case the
master design is a TD(6,n) and we carefully sew the long cycles together as in Con-
structions 2.7 and 3.12.

Construction 4.1 Assume there exists a TD(6, n) and 1 ≤ k1, k2 ≤ n.
a) If {n, k1} ⊂ S3 and k2 ∈ S3 ∪ {2, 4}, then 4n + k1 + k2 ∈ S3.
b) If {n, k2} ⊂ S3 ∪ {2, 4} and k1 ∈ S, then 4n + k1 + k2 ∈ S.

Proof of a) Let D be the master design, a TD(6,n). Give weight 12 to all the points
in the last four groups. Let b be a designated block in D and give weight 12 to the
points in b that are in the first two groups. We first assume that k2 6= 2, 4. Give k1 − 1
additional points weight 12 group 1, give k2 − 1 additional points weight 12 in group
2 and give all other points weight 0. Additionally add three infinite points {x, y, z}.
Now, in each inflated block of D (except b) put the blocks of a 3-frame of type either
124, 125 or 126 (respecting the groups). On the first and second groups put the blocks
of an HW(12k1 + 3 : 12k1, 3) and a HW(12k2 + 3 : 12k2, 3), respectively where the 3-
cycle in the non-triangle 2-factor is (x, y, z). On the final four groups put the blocks of
a HW(12n+3 : 12n, 3), where again the 3-cycle in the non-triangle 2-factor is (x, y, z).
Let Li denote the long cycle in each of these groups

Now consider the inflated block b, it consists of 6 groups each of size 12. As was
done to construct the blocks of the HW(75:72,3) in Proposition 3.12, begin with the
master design (X,A), a 5-GDD(46) and inflate each point in this design by 3. Let b0

be a block in A which misses the first group. On the points of the inflated b0 put an
HW(15) with Hamilton circuit H0 as before. Again let b1 be a block in A with the
property that it misses the 6th group and intersects b0 in the 5th group. On the points
of the inflated b1 put a 2-factorization of K15 consisting of one 2-factor with a C6 and
3 C3’s and where all other 2-factors are triangle-factors [8]. This factorization should
be placed so that the 6-cycle C is in the first two groups and each of the remaining
three 3-cycles is in a different group. Finally, for each of the remaining blocks B ∈ A
place a 3-RGDD(35) on the points of the inflated B (respecting the groups).

To make a cycle of length 12(4n + k1 + k2), sew L1 to C, C to L2 and each of
L2, L3, . . .L6 to H0 in precisely the same manner as was done in Proposition 3.12. Add
the cycle (x, y, z) to this long cycle to get a 2-factor consisting of a triangle and a
12(4n + k1 + k2)-cycle.

Let gi be a group in the master design. To form a triangle factor, take one of the
triangle factors from the HW that was placed on the inflated points of gi ∪ {x, y, z}
and add to that a triangle-factor that arises from a parallel class of blocks missing gi.
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It is straightforward to check that this is indeed a triangle factor of the entire design.
It can also be checked that the union of these 2-factors is indeed a 2-factorization.

Now we deal with the case where k2 = 2 or 4. Proceed exactly as above except
now on the points of the inflated b1 put a 2-factorization of K15 with one 2-factor
consisting of a C9 and 2 C3’s and where all other 2-factors are triangle-factors [8]. This
factorization should be placed so that the 9-cycle C is in the first three groups and each
of the remaining two 3-cycles is in a different group. Nothing else changes. Obviously
every 2-factor except the one with the long cycle will be exactly as above.

Now we construct the long cycle of length 12(4n+k1+k2). Let H0 and L1, L3, . . .L6

be as above. Let the two long cycles of the HW(12k2+3 : 6k2, 6k2, 3) which was placed
in the second group be called M0 and M1. Assume that M0 intersects the inflated b0 in
precisely three points and M1 intersects the inflated b1 in precisely three points. The
long cycle is then constructed by sewing L1 to C then sewing C to M1, then C to L3,
then L3 to H0, then H0 to M0, then H0 in turn to each of L6, L5, L4. The result is a
cycle containing 12(4n + k1 + k2) points. Add the cycle (x, y, z) to this long cycle to
get a 2-factor consisting of a triangle and a 12(4n + k1 + k2)-cycle.

Proof of b) This is identical to the above except the cycle L1 in the first group now
contains the points x, y, z.

The following construction is very similar to Construction 4.2 and most of the
details will be omitted.

Construction 4.2 Assume there exist a TD(6, n), a HW (6n + 9 : 6n + 6, 3) and
assume 1 ≤ i ≤ n.

(a) If there exists an HW(6n + 6i + 9), then there exists an HW(36n + 6i + 39).
(b) If there exists an HW(6n+6i+9 : 6n+6i+6, 3), then there exists an HW(36n+

6i + 39 : 36n + 6i + 36, 3).

Proof. Begin with the master design D, a TD(6,n). Give weight 12 to all the points
in one designated block b and give weight 6 to all the points in the first five groups
(except those points in b). Finally in the last group give weight 12 to i additional points
and weight 6 to n − i− 1 of the points. Again we add three infinite points {x, y, z}.

Now, in each inflated block of D (except b) put the blocks of a 3-frame of type
either 65121, 66, or 64122 (respecting the groups). The existence of these frames was
discussed in Section 2.

On the points of the last five groups put the blocks of an HW(6n+9 : 6n+6, 3) where
the 3-cycle in the non-triangle 2-factor is (x, y, z). In the first group plus the points
{x, y, z} put the blocks of a HW(6n+6i+9) for part a or an HW(6n+6i+9 : 6n+6i+6, 3)
for part b, where again the 3-cycle in the non-triangle 2-factor is (x, y, z).

Now do exactly as was done in Construction 4.1, putting an HW(75:72,3) on the
points of the inflated block b plus {x, y, z} and carefully sewing together all the long
cycles.

Corollary 4.3 {18, 20} ∈ S3, 18 ∈ S and 19 ∈ M .

Proof. In Construction 4.2 let n = 5. Use i = 0, 4 to prove {18, 20} ∈ S3, i = 4 to
get 18 ∈ S and i = 3 to get that 19 ∈ M .
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We are now in position to determine the set S3 = {t | there exists an HW (12t+3 :
12t, 3)}. Recall that from Proposition 3.13 we already have that {1, 3, 5, 6, 7, 8, 11, 12,
16, 19} ⊂ S3.

Proposition 4.4 If 22 ≤ t ≤ 133, then t ∈ S3.

Proof. We will use Construction 4.1(a). The following table gives the values for
the ingredients needed in the construction. We require that there exists a TD(6,n)
and that {n, k1} ⊂ S3 and k2 ∈ S3 ∪ {2, 4} where 1 ≤ k1, k2 ≤ n. The result is that
4n + k1 + k2 ∈ S3.

n k1 ∈ k2 ∈ 4n + k1 + k2

5 {1, 5} {1, 2, 3, 4, 5} 22 − 30
7 {1, 7} {1, . . . , 7} 30 − 42
8 {1, 8} {1, . . . , 8} 34 − 48
11 {1, 7, 11} {1, . . . , 8} 46 − 63
12 {1, 7, 12} {1, . . . , 8} 50 − 68
16 {1, 7, 12, 16} {1, . . . , 8} 66 − 88
19 {1, 7, 12, 19} {1, . . . , 8} 78− 103
25 {1, 7, 12, 19, 25} {1, . . . , 8} 102 − 133

We are now able to finish the spectrum of S3.

Theorem 4.5 There exists a HW (12m + 3 : 12m, 3) (i.e. m ∈ S3) for all m ≥ 1
except possibly for m ∈ {2, 4, 9, 10, 13, 14, 15, 17, 21}.

Proof. If m ≤ 133 the theorem follows from Propositions 3.13, 4.4 and Corollary
4.3. So assume now that m > 133. Assume by way of induction that k ∈ S3 for all
22 ≤ k < m. Now write m = 4n + b where b = 2, 3, 4, 5, it follows that n > 32. Since
there exists a TD(6, n) for all n > 22 we can use Construction 4.1(a) to show that
m ∈ S3, by letting k1 = 1 and k2 = b − 1.

We are now ready to determine the set S = {t | there exists an HW (12t+3)}. Re-
member, from Proposition 3.14 we already have that {1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 19,
20, 21} ⊂ S. We again use Construction 4.1 for the backbone of the work.

Proposition 4.6 If 22 ≤ t ≤ 133, then t ∈ S.

Proof. This proof is very similar to Proposition 4.6 except here we use Construction
4.1(b). The following table gives the values for the ingredients needed in the construc-
tion. We require that there exists a TD(6,n) and that {n, k2} ⊂ S3 ∪{2, 4} and k1 ∈ S

for 1 ≤ k1, k2 ≤ n. The result is that 4n + k1 + k2 ∈ S3.
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n k1 ∈ k2 ∈ 4n + k1 + k2

5 {1, 5} {1, 2, 3, 4, 5} 22 − 30
7 {1, 7} {1, . . . , 7} 30 − 42
8 {1, 8} {1, . . . , 8} 34 − 48
11 {1, 7, 11} {1, . . . , 8} 46 − 63
12 {1, 7, 12} {1, . . . , 8} 50 − 68
16 {1, 7, 12, 16} {1, . . . , 8} 66 − 88
19 {1, 7, 12, 19} {1, . . . , 8} 78− 103
25 {1, 7, 12, 19, 25} {1, . . . , 8} 102 − 133

Theorem 4.7 There exists a HW (12m+3) (i.e. m ∈ S) for all m ≥ 1, except possibly
for m ∈ {9, 10, 13, 15, 17}.

Proof. If m ≤ 133 the theorem follows from Propositions 3.14, 4.6 and Corollary
4.3. So assume now that m > 133. Assume by way of induction that k ∈ S for all
19 ≤ k < m. Now write m = 4n + b where b = 2, 3, 4, 5, it follows that n ≥ 32. Since
there exists a TD(6, n) for all n > 22 we can use Construction 4.1 to show that m ∈ S,
by letting k1 = 1 and k2 = b − 1.

5 The spectrum: the 9 modulo 12 case

To construct HW(12n + 9), we can do essentially Construction 4.1, but by giving
weight 6 to exactly to one point in the first group we get a total number of points that
is congruent to 9 modulo 12.

Lemma 5.1 Assume there exists a TD(6, n), 1 ≤ k1 ≤ n − 1 and 1 ≤ k2 ≤ n. If
{n, k2} ⊂ S3 ∪ {2, 4} and k1 ∈ M , then 4n + k1 + k2 ∈ M .

Proof. This is Construction 4.1(b), except exactly one point in the first group must
receive weight 6. Here we use the fact that there exist 3-frames of type 12461 and 12561

(see [5]).

We now can proceed as in the previous section to find the spectrum of HW(12t+9),
i.e. the set M . Remember that from Proposition 3.15 we already have that {1, 2, 3, 4, 5,
6, 8, 9, 13, 15, 18, 21} ⊂ M .

Proposition 5.2 If 22 ≤ t ≤ 132, then t ∈ M .

Proof. This proof is again very similar to Proposition 4.6 except here we use Lemma
5.1. The following table gives the values for the ingredients needed in the construction.
We require that there exists a TD(6,n), and for 1 ≤ k1, k2 ≤ n, that {n, k2} ⊂ S3∪{2, 4}
and k1 ∈ M . The result is that 4n + k1 + k2 ∈ M .
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n k1 ∈ k2 ∈ 4n + k1 + k2

5 {1, 4} {1, 2, 3, 4, 5} 22 − 29
7 {1, 6} {1, . . . , 7} 30 − 41
8 {1, 6} {1, . . . , 8} 34 − 46
11 {1, 9} {1, . . . , 8} 46 − 61
12 {1, 9} {1, . . . , 8} 50 − 65
16 {1, 9, 15} {1, . . . , 8} 66 − 87
19 {1, 9, 15, 18} {1, . . . , 8} 78− 102
25 {1, 9, 15, 23, 24} {1, . . . , 8} 102 − 132

Theorem 5.3 There exists an HW(12m + 9) (i.e. m ∈ M) for all m ≥ 1 except
possibly for m ∈ {7, 10, 11, 12, 14, 16, 17, 19, 20}.

Proof. If m ≤ 132 the theorem follows from Propositions 3.15, 5.2 and Corollary
4.3. So assume now that m > 132. Assume by way of induction that k ∈ M for all
22 ≤ k < m. Now write m = 4n + b where b = 2, 3, 4, 5, it follows that n ≥ 32. Since
there exists a TD(6, n) for all n > 22 we can use Lemma 5.1 with k1 = 1 and k2 = b−1
to show that m ∈ M .

6 Conclusion

In this paper we considered the Hamilton-Waterloo problem in the case where there
is exactly Hamilton cycle and all other 2-factors are triangle-factors. The necessary
condition for such a decomposition is that n ≡ 3 (mod 6). We have shown that this
necessary condition is sufficient except when n = 9 and possibly for 14 additional cases,
namely when n ∈ {93, 111, 123, 129, 141, 153, 159, 177, 183, 201, 207, 213, 237, 249}.

In a companion paper [7] we will extend the results of Horak, Nedela, and Rosa [9]
given in Theorem 1.2(b) in the case where n ≡ 3 (mod 18).
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