
SIAM J. ALG. DISC. METH.
Vol. 8, No. 3, July 1987

(C) 1987 Society for Industrial and Applied Mathematics
010

A HILL-CLIMBING ALGORITHM FOR THE CONSTRUCTION OF
ONE-FACTORIZATIONS AND ROOM SQUARES*

J. H. DINITZf AND D. R. STINSON$

Abstract. In this paper we describe and discuss hill-climbing algorithms for the construction of one-
factorizations of complete graphs, and orthogonal one-factorizations of complete graphs (i.e., Room squares).

Key words, hill-climbing, algorithm, Room squares, one-factorizations

AMS(MOS) subject classifications. 05B15, 68E10

1. Introduction. In this paper, we study hill-climbing algorithms for certain types
ofcombinatorial designs. In the past, combinatorial designs have usually been constructed
using backtracking algorithms (see [2] and [6], for example). Recently, however, hill-
climbing algorithms have enjoyed some success in certain cases.

First, we briefly describe hill-climbing algorithms in a general setting. Suppose that
we have some particular combinatorial optimization problem for which we want to
design an algorithm. For any problem instance I, there is a set offeasible solutions F(I);
each feasible solution X has a cost c(X). The optimal solution is the feasible solution X
having the minimum cost. (Alternatively, we could associate a profit with each feasible
solution, and ask for the feasible solution with maximum profit.)

We define a hill-climbing algorithm for a combinatorial optimization problem in
terms of one or more heuristics H. Each heuristic is based on a neighbourhood system,
as follows. A neighbourhood ofX is any collection of feasible solutions N(X) such that
X N(X). If, for every feasible solution X, we define a neighbourhood N(X) of X, then
we obtain a neighbourhood system. Given a neighbourhood system and a feasible solution
X, the heuristic H nondeterministically chooses any feasible solution Y N(X) such that.
c(Y) <- c(X). If there is no such Y, then the heuristic fails, and we say that X is a local
minimum (with respect to the heuristic H). We can define several different types of
neighbourhoods and associate a different heuristic with each.

Suppose we have defined a heuristic H. Suppose also that we have some method of
generating an "initial" feasible solution X. Then, the hill-climbing algorithm proceeds
as follows:

generate initial feasible solution X;
while X is not a local minimum do

begin
choose any Y N(X) such that c(Y) _-< c(X);
X:= Y

end;

Our hope is that the final value ofX is optimal, or close to optimal.
Depending on how we define neighbourhoods, it may take a lot of time to search

the entire neighbourhood for a feasible solution Y such that c(Y) <= c(X). It is often

Received by the editors April 28, 1986; accepted for publication November 20, 1986.

f Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont 05405.
$ Department of Computer Science, University of Manitoba, Manitoba, Canada R3T 2N2.

430

D
ow

nl
oa

de
d 

07
/0

6/
17

 to
 1

32
.1

98
.4

0.
10

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



HILL-CLIMBING ALGORITHM 431

easier to first choose Y N(X) nondeterministically and then check if c(Y) <= c(X). At
any given stage of the algorithm, it may be necessary to choose many such Y’s before
finding one with c(Y) <= c(X).

If we take this approach, we would have to specify how many attempts we allow at
each stage before we abandon the search. We would define some integer "threshold
function"f(c, I), which is a function ofthe instance I and the cost c ofa feasible solution,
to accomplish this. Then, we obtain the following algorithm:

generate initial solution X;
count:= 0;
repeat

count:= count / 1;
choose any Y e N(X);
if c(Y) <= c(X) then

begin
if c(Y) < c(X) then

count: 0;
X:= Y

end
until count > f((X), 1).

If this approach is used, it is important to choose a suitable threshold function.
Our interest is in constructing combinatorial designs using hill-climbing algorithms.

In the past, hill-climbing algorithms have been employed to successfully construct Steiner
triple systems, Latin squares and strong starters. We refer the interested reader to [3],
[4], [13] and [14]. Hill-climbing has been less successful in investigating other problems
(see, for example, ], 11 and 16]).

In this paper, we present new hill-climbing algorithms for some other classes of
designs, namely, one-factorizations ofcomplete graphs and Room squares. Room squares
are the most "complicated" type of design for which a practical hill-climbing algorithm
has been found.

2. A hill-climbing algorithm for finding one-factorizations of complete graphs. The
complete graph Kn is the graph on n vertices in which every pair of points is joined by
an edge. A one-factor ofKn is a set of n/2 edges that partitions the vertex set (this requires
than n be even). A one-factorization ofK is a set of n one-factors that partitions the
edge set. It is well known that K has a one-factorization if and only if n is even. Many
constructions for one-factorizations are known; a good survey is presented in [8].

In order to use a hill-climbing approach, we formulate the problem as an optimization
problem. A problem instance consists only of the (even) integer n for which we want to
construct the one-factorization of Kn and the set of vertices V on which K is defined.
We will represent a one-factorization of K as a set F of pairs, each having the form
(f, {x, y}), where =< =< n 1, and x and y are distinct vertices of Kn. There will be
n(n 1)/2 such pairs and the following properties must be satisfied:

1) Every edge {x, y} of Kn occurs in a unique pair (f, {x, y});
2) For every one-factor j, and for every vertex x, there is a unique pair ofthe form

{x, y}).
Property 1) says that every edge occurs in a unique one-factor, and property 2) says

that every one-factor consists of a perfect matching.

D
ow

nl
oa

de
d 

07
/0

6/
17

 to
 1

32
.1

98
.4

0.
10

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



432 J. H. DINITZ AND D. R. STINSON

Now, we can describe feasible solutions as being partial one-factorizations: in the
representation above, we have a set F of pairs, each of which has the form (f, {x, y}),
which satisfies the properties:

1) Every edge {x, y} of Kn occurs in at most one pair (f, {x, y});
2) For every one-factor, and for every vertex x, there is at most one pair of the

form (f, {x, y}).
We define the cost c(F) of a feasible solution F to be n(n 1)/2 IF I, where

denotes the number of pairs in F. Then, it is easy to see that F is a one-factorization if
and only if c(F) 0.

We must now define a heuristic. First, we construct a graph which tells us what is
missing from a partial one-factorization. Given a feasible solution F, we define d(F), the
defect graph of F, to be the graph having vertex set V U {f, =< =< n }, where V is
the vertex set of K,, and having the following edges:

1) For every edge {x, y} ofKn which does not occur in a pair of F, {x, y} is an edge
of d(F);

2) For every f, =< =< n 1, {f/, x} is an edge old(F) if and only if there is no
pair of the form (f, {x, y}).

In fact, we define two heuristics, H and H, based on the defect graph. We say that
a vertex or one-factor is live if it has positive degree in the defect graph. Note that, since
n is odd, ifa vertex or one-factor is live, then its degree must be at least two. The heuristic
H is defined as follows:

Given a partial one-factorization F with defect graph d(F), perform the following
operations:

1) choose any live point x (nondeterministically)
2) choose any one-factorf such that {x,f} is an edge ofd(F) (nondeterministically)
3) choose any point y such that {x, y} is an edge of d(F) (nondeterministically)
4) if {y, f } is an edge of the defect graph, then

replace F by F to (f, {x, y})
else

there is a pair in F of the form (f, { z, y}) (z 4: x)
replace F by F tO (f, {x, y})\(f, { z, y}).

If we apply the heuristic HI, then we obtain a new feasible solution in which the
cost either remains the same, or is reduced by one. Also, observe that the heuristic never
"fails," since steps 1), 2) and 3) can always be performed. The heuristic H2 is a slight
variation:

Given a partial one-factorization F with defect graph d(F), perform the following
operations:

1) choose any one-factorf (nondeterministically)
2) choose any two live points x and y such that {x,f} and {y,f} are both edges of

d(F) (nondeterministically);
3) if {x, y} is an edge of the defect graph, then

replace F by F tO (f, {x, y})
else

there is a pair of F of the form (, {x, y}) (J) 4: f)
replace F by F tO (f, {x, y})\(j, {x, y}).

As was the case with H, the heuristic H2 can always be applied, and it yields a new
feasible solution with either the same cost or a cost of one unit lower.

D
ow

nl
oa

de
d 

07
/0

6/
17

 to
 1

32
.1

98
.4

0.
10

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



HILL-CLIMBING ALGORITHM 433

There is no guarantee that these two heuristics are sufficient to always enable us to
construct a one-factorization. It seems possible that one could reach a local minimum
where no application of H1 or I-I2 produces a feasible solution of lower cost. However,
this does not seem to happen in practice (though we cannot prove that it will never
happen). In over 1000000 trials, the desired one-factorizations were always constructed.
Thus, as a threshold function we can define

f(c, I) o if c > 0, f(0, I) 0.

We can compare this hill-climbing algorithm to the algorithm to construct Steiner
triple systems described in 14]. The algorithm in 14] also appears very unlikely to "fail"
in practice, though it can conceivably do so [10].

We also want to note that it can be implemented so that each iteration requires
only constant time. The method is similar to the hill-climbing algorithm described in
[14]; so we do not describe the details here.

3. A hill-climbing algorithm for constructing Room squares. Suppose we have two
one-factorizations of Kn, say F (J, ,fn } and G (g, gn }. We say that
F and G are orthogonal if any j and any gj (1 _-< -< n l, =< j _-< n l) contain at
most one edge in common. A Room square of side n is defined to be a square array
R of side n l, in which every cell either is empty or contains an edge of Kn, such that
the filled cells in every row and every column ofR form a one-factor, and such that every
edge of Kn occurs in exactly one cell of R. Clearly, the rows of R will induce a one-
factorization ofKn, as will the columns. Also, these two one-factorizations are orthogonal
(this is equivalent to saying that no cell of R contains more than one edge of Kn). Con-
versely, a pair of orthogonal one-factorizations F and G give rise to a Room square in a
very natural way: index the rows of a square array R by the one-factors of F, and index
the columns by the one-factors ofG, and place every edge {x, y} in the cell (j, g), where
(x, y)

Room squares were introduced by T. G. Room in 1957, though examples can be
found in the literature as early as 1851 [7]. Room squares were studied extensively, but
the existence question was not solved until 1975, when it was shown that there is a Room
square of side n if and only if n is odd and n q: 3, 5. A condensed proof is presented in
Mullin and Wallis [9]. However, some ofthe constructions for constructing Room squares
are quite complicated, and it seems worthwhile to have an algorithm for producing
(many) different Room squares.

We have already noted that a Room square of side n is equivalent to a pair of
orthogonal one-factorizations of order n + 1, and that we have a practical method for
constructing one-factorizations. Our strategy now is to construct a one-factorization or-
thogonal to a given one-factorization, thereby producing a Room square. So, suppose
we have a one-factorization F, and we wish to construct G orthogonal to F. (As we
construct G, F remains fixed.) In terms of the Room square, we have determined the
rows (say), and we are attempting to "sort out" the columns.

Let us first consider how we should modify the hill-climbing algorithm to construct
a G orthogonal to a given F. We will maintain the array R, in which the rows are indexed
by the one-factors of F and the columns are indexed by the one-factors of G, as
we proceed. At any stage of the algorithm, R(J, gj) {x, y} if {x, y} j f3 g, and
R(J, g)) , otherwise.

We use the same two heuristics H1 and H2, as before, except now they may possibly
fail, if the added constraint of orthogonality is violated. Our modified heuristic H is as
follows:

D
ow

nl
oa

de
d 

07
/0

6/
17

 to
 1

32
.1

98
.4

0.
10

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



434 J. H. DINITZ AND D. R. STINSON

1) choose any live point x (nondeterministically)
2) choose any one-factor gi such that {x, gi} is an edge ofd(G) (nondeterministically)
3) choose any point y such that {x, y} is an edge of d(G) (nondeterministically)
4) letj be the one-factor off which contains the edge {x, y}
5) if R(f, gi) is not empty then

H fails
else if {y, gi} is an edge of the defect graph, then

replace G by G kJ (gi, {x, y})
define R(f, gi):= {x, y}

else
there is a pair in G of the form (gi, { z, y})
replace G by G t.J (gi, {x, y})\(gi, {z, y})
define R(, g):= {x, y}.

The heuristic Hz becomes:

1)
2)

3)
4)

choose any one-factor gi (nondeterministically)
choose any two live points x and y such that {x, gi} and {y, gi} are both edges
of d(G) (nondeterministically);
letJ be the one-factor off which contains the edge {x, y}
if R(f, gi) is not empty then
H2 fails

else if {x, y} is an edge of d(G), then
replace G by G tA (gi, {x, y})
define R(f, gi):= {x, y}

else
there is a pair in G of the form (gk, {X, y})
replace G by G (gi, {x, y})\(gk, {x, y})
define R(f, gi):= {x, y}
define R(, g) := .

When we try to construct a one-factorization G orthogonal to a given one-factori-
zation F, it often does happen that we reach dead ends. For example, consider the situation
when we have a feasible solution G with c(G) 1. The defect graph d(G) consists of a
triangle, of the form gi x y. No matter which heuristic we apply, we will attempt to add
this triangle to G. However, this may violate the orthogonality constraint, as there may
already be an edge { u, v } gi I"l fj, where {x, y} . Such a situation is a local minimum

(with respect to H and H2). Many other types of local minima can also arise, so we must

define a threshold function to allow for these eventualities.
After doing some experimenting, we chose the following threshold function:

f(c, I) 100. n if c > 0 (where the instance I consists of the graph Kn),

f(0, I) 0.

Given this choice ofthreshold function, we were interested in determining the prob-
ability p(n) of success of the algorithm, as a function of n (the size of the instance). This
probability seems impossible to estimate theoretically, so we performed a large number
of experimental runs, in order to obtain an empirical result. As n varied over several
values between 12 and 102, the probability p(n) varied between .083 and .143, in a
random fashion. The average value ofp appears to be between. 10 and. 11, and there is

D
ow

nl
oa

de
d 

07
/0

6/
17

 to
 1

32
.1

98
.4

0.
10

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



HILL-CLIMBING ALGORITHM 435

no trend for p(n) to increase or decrease as a function of n. We also calculated the average
cost of the local minima generated. Our results are presented in Table 1.

4. Constructing Room squares with subsquares. In this section, we mention an
application of our hill-climbing algorithm to an as yet unsolved problem, where we
expect to be able to prove some new results. This problem concerns the existence of
subsquares in Room squares. If R is a Room square of side n- 1, and we can find
m rows and columns ofR whose intersection, S, is a Room square in its own right
(of side m 1) then we say that S is a subsquare (of R) of side rn 1. Observe that we
can "unplug" S and replace it by any other Room square of side m on the same set
of vertices as S and obtain another Room square. Ifwe unplug S from R, we refer to the
resulting array as an (n 1, m 1) incomplete Room square.

Observe that there can exist no Room square which contains a subsquare of side 3
or 5, but it is possible for (s, 3) or (s, 5) incomplete Room squares to exist. Of course,
these cannot be completed.

We are interested in the following question: for what ordered pairs (s, t) does there
exist an (s, t) incomplete Room square? The following necessary conditions are not
difficult to prove; we refer the reader to 12] for details.

THEOREM 4.1. Ifthere exists an (s, t) incomplete Room square, where t >-_ O, then
s and are odd positive integers, s >= 3t + 2, and (s, t) (5, 1).

We suspect that these conditions are also sufficient, but this has not yet been proved.
The best known results concerning this problem can be found in [12].

We want to modify our hill-climbing algorithm to construct (s, t) incomplete sub-
squares. To do this, we need to reformulate the definitions in terms of one-factorizations
and modify our heuristics accordingly. This is quite straightforward.

Let F {j], f_ 1} be a one-factorization of Kn. Given any m vertices, Y, of
the Kn, there is an induced subgraph of Km of Kn. If there are m one-factors in F

TABLE
Construction ofRoom squares.

n # trials # successes Probability of success Average time per trial* Average cost

12 1000 126 .126 0.09 1.289
16 1000 118 .118 0.16 1.316
22 1000 97 .097 0.32 1.433
26 1000 101 .101 0.57 1.512
32 1000 99 .099 0.67 1.561
36 1000 83 .083 1.2 1.563
42 1000 103 .103 1.2 1.598
46 1000 108 .108 1.6 1.526
52 1000 98 .098 1.8 1.670
56 1000 120 .120 2.1 1.573
62 1000 89 .089 2.1 1.630
66 1000 90 .090 2.1 1.684
72 500 45 .090 3.7 1.670
76 500 50 .100 4.9 1.680
82 500 56 .112 6.2 1.680
86 500 55 .110 5.2 1.582
92 300 43 .143 5.8 1.550
96 300 35 .117 8.0 1.623
102 300 25 .083 7.3 1.707

We implemented our algorithm in Pascal/VS and ran it on the University of Manitoba Amdahl 5850
computer.

D
ow

nl
oa

de
d 

07
/0

6/
17

 to
 1

32
.1

98
.4

0.
10

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



436 J. H. DINITZ AND D. R. STINSON

whose intersection with produces a one-factorization of order m, then we say we have
a sub-one-factorization of order m. If we remove the sub-one-factorization of order m,
we obtain an incomplete one-factorization. We can formally define this concept as follows.
We start with the graph Kn Km, where m and n are both even. A short one-factor is
defined to be a set of (n m)/2 edges that partitions the vertices not in the Km. Then,
we can define an incomplete (n, m) one-factorization to be a set of n m one-factors
and m short one-factors of Kn Km, whose union contains every edge of Kn Km
exactly once.

Now, we can relate incomplete one-factorizations to incomplete Room squares.
Suppose we have two incomplete (n, m) one-factorizations, say F {f, fn- } and
G {gl, gn- }, where the short one-factors areJ, fm- and g, gm- 1.

We say that F and G are orthogonal if anyj and any gj (1 =< =< n 1, =< j =< n 1)
contain at most one edge in common, and further, anyJ and any gj (1 =< =< m 1,

=< j =< m 1) contain no edges in common. It is not difficult to see that a pair of
orthogonal incomplete (n, m) one-factorizations are equivalent to an incomplete
(n 1, m 1) Room square.

Hence, it is necessary only to modify the hill-climbing algorithm for one-factori-
zations and Room squares to handle incomplete one-factorizations. This is very simple.
When we nondeterministically generate a triple (J, (x, y}), say, we must first check that
this triple is permissible as part of an incomplete one-factorization. That is, x and y
cannot both be points in the Km, and if3 is a short one-factor, then neither x nor y can
be in the Km. If either of these two situations arises, then the relevant heuristic fails, and
we must try again.

When constructing these incomplete designs, there is a much greater probability
that a heuristic will fail, so we should adjust the threshold function accordingly, allowing
more tries at each level before we give up. We have run some experiments to test how
the probability of success changes with different threshold functions. For each (n, m)-
incomplete Room square considered, we tried several different threshold functions, of
the formf(c, I) K.(n + 1), if c > 0,f(0, I) 0. We tried K 100, 500, 1000 and
2000, as indicated.

We obtained the following data, which we present in Table 2. Note that, for fixed
n and m, the probability of success tends to decrease as the threshold is increased.

5. Applications. The main application ofa hill-climbing algorithm, such as the one
we describe, is to produce many different designs very quickly. In [13], a hill-climbing
algorithm was used to construct 21 7600 Steiner triple systems of order 19. These were
then tested for isomorphism using invariants, and 2111276 of the designs were noniso-
morphic.

We expect that a similar approach could successfully be used to construct large
numbers of nonisomorphic one-factorizations and Room squares. Modifications of the
invariants used in [! 3] can be used to test isomorphism in these cases, as well.

We should also mention that the time and memory requirements for these algorithms
are modest enough so that they can be implemented very successfully on most micro-
computers. The algorithms can very easily be animated, so an observer can watch the
designs being constructed. This also makes it possible to detect when the algorithm is
caught in a "vicious circle." In an interactive environment, the observer could determine
when a particular run has reached a "dead end," thus obviating the need for an objective
function.

The other main application of hill-climbing is to construct previously unknown
designs. Since the subsquare problem for Room squares is unsolved, the hill-climbing
algorithm will enable us to produce new examples of Room squares with subsquares. It

D
ow

nl
oa

de
d 

07
/0

6/
17

 to
 1

32
.1

98
.4

0.
10

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



HILL-CLIMBING ALGORITHM 437

TABLE 2
Construction of(n, m) incomplete Room squares.

(500 trials ofeach example.)

n m Threshold # successes Probability of success Average cost

19 0 K 100 43 0.086 1.64
19 0 K= 500 46 0.092 1.57
19 0 K= 1000 52 0.104 1.49
19 0 K 2000 58 0.116 1.46

19 K 100 41 0.082 1.75
19 K= 500 50 0.100 1.37
19 K 1000 51 0.102 1.39
19 K 2000 49 0.098 1.40

19 3 K= 100 2 0.004 3.89
19 3 K 500 14 0.028 2.49
19 3 K= 1000 14 0.028 2.57
19 3 K 2000 11 0.022 2.43

19 5 K= 100 0 0.000 4.57
19 5 K 500 0 0.000 4.82
19 5 K 1000 0 0.000 4.68
19 5 K 2000 0.002 4.30

29 0 K 100 35 0.070 1.55
29 0 K 500 60 0.120 1.33
29 0 K= 1000 58 0.126 1.35
29 0 K 2000 53 0.106 1.35

29 K= 100 26 0.052 1.93
29 K= 500 46 0.092 1.47
29 K= 1000 38 0.076 1.50
29 K 2000 56 0.112 1.41

29 3 K= 100 0.002 4.15
29 3 K 500 10 0.020 2.69
29 3 K 1000 15 0.030 2.32
29 3 K 2000 31 0.062 1.85

29 5 K= 100 0 0.000 5.85
29 5 K 500 0 0.000 5.13
29 5 K 1000 0.002 4.39
29 5 K 2000 3 0.006 4.93

39 0 K 100 33 0.066 1.67
39 0 K= 500 61 0.122 1.44
39 0 K 1000 54 0.108 1.46
39 0 K 2000 46 0.092 1.39

39 3 K= 100 3 0.006 3.95
39 3 K= 500 29 0.058 2.10
39 3 K= 1000 39 0.078 1.74
39 3 K 2000 42 0.084 1.70

should not be difficult to find an example of any particular order. Hopefully, recursive
techniques will then lead to a complete solution of this problem.

For other applications of hill-climbing algorithms in obtaining new results in design
theory, we refer the reader to [3], [4], [14] and [15].

D
ow

nl
oa

de
d 

07
/0

6/
17

 to
 1

32
.1

98
.4

0.
10

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



438 J. H. DINITZ AND D. R. STINSON

REFERENCES

C. J. COLBOURN AND E. MENDELSOHN, Kotzigfactorizations: existence and computational results, Ann.
Discrete Math., 12 (1982), 10p. 65-78.

[2] M. J. COLBOURN, Algorithmic aspects ofcombinatorial designs: a survey, Ann. Discrete Math., 26 (1985),
pp. 67-136.

[3] J. H. DINITZ AND D. R. STINSON, A note on Howell designs ofodd side, Utilitas Math., 18 (1980), pp.
207-216.

[4] A fast algorithm forfinding strong starters, this Journal, 2 (1981), pp. 50-56.
[5] ., The spectrum ofRoom cubes, European J. Combin., 2 (1981), pp. 221-230.
[6] P. B. GmBONS, Computing techniques for the construction and analysis of block designs, Ph.D. thesis,

University of Toronto, Toronto, Ontario, Canada, 1976.
[7] T. P. KRKMAN, Note on an unanswered prize question, Cambridge and Dublin Math. J., 5 (1850), pp.

255-262.
[8] E. MENDELSOHN AND A. ROSA, One-factorizations ofthe complete graph--A survey, J. Graph Theory, 9

(1985), pp. 43-65.
[9] R. C. MULLN AND W. D. WALL,S, The existence ofRoom squares, Aequationes Math., 13 (1975), pp. 1-

7.
[10] K. T. PHELPS, Private communication.
[11 D. P. SHAVER, Construction of(v, k, ,) configurations using a non-enumerative search technique, Ph.D.

thesis, Syracuse University, Syracuse, NY, 1973.
12] D. R. STINSON, Room squares and subsquares, Proc. Combinatorial Mathematics X, Adelaide, Australia,

1982, pp. 86-95.
[13] D. R. STNSON AND H. FERCH, 2000000 Steiner triple systems oforder 19, Math. Comp., 44 (1985), pp.

533-535.
[14] D. R. STNSON, Hill-climbing algorithms for the construction of combinatorial designs, Ann. Discrete

Math., 26 (1985), pp. 321-334.
15] D. R. STINSON AND S. A. VANSTONE, A few more balanced Room squares, J. Austral. Math. Soc. Ser. A,

39 (1985), pp. 344-352.
[16] M. TOMPA, Hill-climbing: afeasible search techniquefor the construction ofcombinatorial configurations,

M.Sc. thesis, University of Toronto, Toronto, Ontario, Canada, 1975.

D
ow

nl
oa

de
d 

07
/0

6/
17

 to
 1

32
.1

98
.4

0.
10

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


