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Abstract: Holey factorizations of Kv1,v2,...,vn are a basic building block in the con-
struction of Room frames. In this paper we give some necessary conditions for the
existence of holey factorizations and give a complete enumeration for nonisomorphic
sets of orthogonal holey factorizations of several special types.

1 Introduction

The use of holes in designs is one of the most powerful tools in combinatorial design
theory. The purpose of this paper is to study designs called holey factorizations.
These objects are essentially one-factorizations of Kn with holes. They have been
used implicitly in the construction of Room frames, but have never been studied
systematically. We will give some general necessary conditions for the existence of
holey factorizations, will discuss existence of holey factorizations of certain types
and will give a complete enumeration of all nonisomorphic sets of orthogonal holey
factorizations of several small types. We begin with the definitions.

Let V be a set of v vertices, and let {V1, . . . , Vn} be a partition of V , where |Vi| = vi.
Let Kv1,...,vn denote the complete multipartite graph with vertices V and with parts
{V1, . . . , Vn}. These parts are called the holes since Kv1,...,vn = Kv\

⋃n
i=1{xy|x, y ∈ Vi}.

A holey factor of Kv1,...,vn , missing hole Vi, is a one-factor of the graph Kv1,...,vn \Vi (i.e.
a set of edges such that each vertex of Kv1,...,vn \Vi is on exactly one of these edges and
there is no edge between any two vertices in the same hole). A holey factorization of
Kv1,...,vn is a partition of the edges of the graph into holey factors such that for each
1 ≤ i ≤ n there are exactly vi holey factors missing hole Vi.

The type of a holey factorization with holes {V1, V2, . . . , Vn} is the multiset {|V1|,
|V2|, . . . , |Vn|}. We will say that a holey factorization has type T = tu1

1 tu2
2 . . . tuk

k if
there are ui Vj’s of cardinality ti, 1 ≤ i ≤ k. If a holey factorization has type tn for
some t and n, then it is called uniform.

Holey factorizations represent a special case of a general object called a frame (not
to be confused with a Room frame). A frame is a group-divisible design (X, G, B)
whose block set admits a partition into holey parallel classes, each holey parallel class
being a partition of X \Gi for some group Gi ∈ G. A holey factorization is a frame
where every block has size 2. For further information pertaining to frames in general
see [12].

A holey factorization of type 1134 is given in Figure 1. Note that the holes V1 =
{1}, V2 = {2, 3, 4}, V3 = {5, 6, 7}, V4 = {8, 9, a}, and V5 = {b, c, d} are written on the
left of each holey factorization in square brackets.

1



[1] {9 c} {5 b} {2 d} {3 6} {7 a} {4 8}
[234] {8 b} {a d} {5 c} {7 9} {1 6}
[234] {1 c} {9 b} {5 d} {6 a} {7 8}
[234] {5 9} {a c} {1 b} {7 d} {6 8}
[567] {2 a} {1 8} {9 d} {4 b} {3 c}
[567] {a b} {8 d} {4 c} {1 3} {2 9}
[567] {8 c} {1 d} {2 b} {4 9} {3 a}
[89a] {6 d} {7 c} {3 b} {1 2} {4 5}
[89a] {6 b} {1 7} {2 c} {4 d} {3 5}
[89a] {3 d} {7 b} {6 c} {1 4} {2 5}
[bcd] {5 8} {1 a} {3 9} {2 7} {4 6}
[bcd] {6 9} {4 a} {2 8} {3 7} {1 5}
[bcd] {4 7} {5 a} {3 8} {1 9} {2 6}

Figure 1: A holey factorization of type 1134

Two holey factorizations F and G, both of type T , are said to be orthogonal if

1. for any two edges of the underlying graph (say e1 and e2), if e1 and e2 are in
the same holey factor in F , then they are different holey factors of G; and

2. any holey factor in F and any holey factor in G which are missing the same
hole have no edges in common.

Our interest in holey factorizations stems from their connection to Room frames. The
following theorem gives this connection. (For results on Room frames see [4] or [5]).

Theorem 1.1 The existence of a pair of orthogonal holey factorizations of type T is
equivalent to the existence of a Room frame of type T .

The proof is simple. Given a Room frame of type T , the rows and the columns
are both holey factorizations of type T . Clearly the row holey factorization and the
column holey factorization are orthogonal. This construction can be reversed also.

In Figure 2 we give a Room frame of type 1134 to help clarify the above connection.
Note that the rows of this frame contain the holey factors in the holey factorization
given in Figure 1.

Another connection which we wish to point out is given in the following theorem.
Note that in order for a holey factorization of type 1n to exist, then necessarily n
must be odd; each factor consists of (n− 1)/2 edges.

Theorem 1.2 The existence of a holey factorization of type 1n is equivalent to the
existence of a one-factorization of Kn+1.

Proof. Given the holey factorization F , say each holey factor fi is missing the vertex
xi. Add the new vertex∞ to the graph and let hi = fi∪{xi,∞}. Then {h1, h2, . . . , hn}
is a one-factorization of the graph Kn+1. This construction is easily reversed.
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9c 5b 2d 36 7a 48
8b ad 5c 79 16
1c 9b 5d 6a 78

59 ac 1b 7d 68
2a 18 9d 4b 3c

ab 8d 4c 13 29
8c 1d 2b 49 3a

6d 7c 3b 12 45
6b 17 2c 4d 35
3d 7b 6c 14 25

58 1a 39 27 46
69 4a 28 37 15

47 5a 38 19 26

Figure 2: A Room frame of type 1134

Results on one-factorizations of Kn can be found in [10] or [20].
This paper is organized a follows: Section 2 describes some necessary conditions

for the existence of a holey factorization of type T , in Section 3 we prove the existence
of many types of holey factorizations, and in Section 4 we discuss some results on
the enumeration of nonisomorphic holey factorizations with small types, and of sets
of orthogonal holey factorizations of types 24 and 25.

2 Necessary conditions for existence

A holey factorization must have at least three holes; if a holey factorization had two
holes, then a factor missing hole Vi would need to contain edges connecting pairs of
vertices in the other hole. The following theorem applies to holey factorizations with
exactly three holes.

Theorem 2.1 If a holey factorization has exactly three holes then necessarily all the
holes must be of the same size.

The proof follows immediately from the observation that the edges in any of the
factors missing hole Vi must form a matching between the vertices in the remaining
two holes. The following is a necessary parity condition.

Theorem 2.2 If there exists a holey factorization of type tu1
1 tu2

2 . . . tun
n , then ti ≡ v

(mod 2) for each i where v =
∑n

i=1(ti×ui) is the number of vertices in the underlying
graph.
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Proof. Since for each i there must be a holey factor on v − ti vertices, then v − ti
must be even. Thus ti ≡ v (mod 2).

The next theorem gives a condition on the sizes of the holes.

Theorem 2.3 If there exists a holey factorization on v vertices of type T = t1t2t3 . . . tn,
then v ≥ 2ti + tj, for any i and j,

Proof. Let Vi be a hole of size ti and let Vj be a hole of size tj. A holey factor missing
Vj must pair up the vertices in Vi with a subset of vertices from G − Vi − Vj. Thus
ti ≤ v − ti − tj.

Theorems 2.2 and 2.3 are probably close to being sufficient conditions for the
existence of holey factorizations. However we exhibit below an infinite class of holey
factorizations that is allowed by the previous three theorems yet can not exist. We
thank R. M. Wilson for helpful discussions concerning the next theorem.

Theorem 2.4 There exists a holey factorization of type a2t1t2t3 . . . tk where a =
t1 + t2 + t3 + . . .+ tk if and only if there exists a holey factorization of type t1t2t3 . . . tk.

Proof. Let U1 and U2 be the two holes of size a and let V1, V2, V3, . . . Vk be the holes of
sizes t1, t2, t3, . . . , tk, respectively. Now note that the 2a holey factors missing either
U1 or U2 must contain every edge from V1, V2, V3, . . . Vk to U1 and U2. Thus, ignoring
the edges between U1 and U2, the holey factors missing the holes V1, V2, V3, . . . Vk

constitute a holey factorization of type t1t2t3 . . . tk. Thus, if there exists a holey
factorization of type a2t1t2t3 . . . tk, then there exists a holey factorization of type
t1t2t3 . . . tk.

Conversely, begin with a holey factorization of type a3 which exists by Theorem
3.1 below. Use Theorem 3.6 to fill in one hole of size a with a holey factorization of
type t1t2t3 . . . tk. The resulting frame has type a2t1t2t3 . . . tk.

Corollary 2.5 There does not exist a holey factorization of type a2b1c1 if b + c ≤ a.

Proof. If b + c < a, then this holey factorization does not exist by Theorem 2.3. If
b+c = a, the frame does not exist by Theorem 2.4 since there is no holey factorization
of type b1c1.

Theorem 2.4 provides an infinite class of nonexistent holey factorizations which
satisfy the necessary conditions of Theorems 2.2 and 2.3. Essentially, given a type T
(|T | = t) for which no holey factorization exists, Theorem 2.4 states that there also
does not exist a holey factorization of type t2T . This process can then be repeated to
show that there does not exist a holey factorization of type (3t)2t2T , etc. For example,
since there is no holey factorization of type 22, there is no holey factorization of type
4222. This in turn implies that there is no holey factorization of type 1224222. There
is also never a holey factorization of type t2abc where a + b + c = t and a 6= b, since
holey factorizations of type abc exist only if a = b = c (Theorem 2.1).

The next theorem extends Theorem 2.3 to the case of d orthogonal holey factor-
izations. The case of d = 2 was originally proven in [17].

Theorem 2.6 If there exists a set of d orthogonal holey factorization on v vertices
of type T = t1t2t3 . . . tn, then v ≥ (d + 1)ti + tj, for any i and j.
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Proof. Let Vi be a hole of size ti and let Vj be a hole of size tj (containing the vertex
x). Also let {F1, F2, . . . Fd} be a set of d pairwise orthogonal holey factorizations.
Since the holey factors missing Vi must contain an edge on the vertex x, and since all
of the holey factors in F1, F2, . . . and Fd which are missing hole Vi contain no edges in
common, we deduce that there must be at least d× ti vertices other than the vertices
in Vi or Vj. So d× ti ≤ v − ti − tj and hence v ≥ (d + 1)ti + tj.

3 Existence of holey factorizations

In this section we will briefly discuss the existence of holey factorizations of certain
specified types. Two particular types of Room frames have been extensively studied
by researchers; these are frames of type hu and of type 1u−vv1. There have been
numerous papers concerning the existence of these frames over the past 15 years.
Recently, both spectra (for Room frames) have been essentially determined [19]. In
contrast to the apparent difficulty in finding the spectra of the frames of these types,
the first two theorems of this section give complete answers to the spectra of holey
factorizations of these types. The remainder of this section will discuss some holey
factorizations of other types.

The first result concerns uniform holey factorizations (type hu). The proof can be
found in [12] (Theorem 1.4). Note that the conditions are necessary by Theorem 2.2.

Theorem 3.1 (Rees-Stinson) There exists a holey factorization of type hu if and
only if u ≥ 3 and h(u− 1) ≡ 0 mod 2.

Holey factorizations of type 1u−vv1 correspond to one-factorizations of Ku+1 which
contain sub one-factorizations of Kv+1. This problem has also been solved completely.

Theorem 3.2 (Cruse [1]) There exists a holey factorization of type 1u−vv1 if and
only if u and v are odd and u ≥ 2v + 1.

Since the existence of a Room frame of type T implies the existence of a holey
factorization of type T (via Theorem 1.1), results on the existence of Room frames
apply to holey factorizations also. We summarize the list of known frames in the
following theorem.

Theorem 3.3 There exist frames (and hence holey factorizations) of the following
types

1. 1a3b for all a + b = 5, 7 or 9, except for (a, b) = (2, 3), (3, 2), (4, 1), (5, 0), (5, 2)
or (6, 1), [5]

2. 2a4b for all a + b ∈ {6, 7, . . . , 14, 31, 42, 43, 44} or if a + b ≥ 48, [5]

3. 2nu1 if and only if u is even and n ≥ u + 1, except possibly for 219181. [6] [19]
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The following three constructions are recursive constructions for holey factoriza-
tions.

If T is the type tu1
1 tu2

2 . . . tun
n and m is an integer, then mT is defined to be the

type (mt1)
u1(mt2)

u2 . . . (mtn)un . The following recursive construction is referred as
the Inflation Construction. It essentially “blows up” every hole by use of a Latin
square of order m (thought of as a one-factorization of Kn,n). We leave the details to
the reader.

Construction 3.4 Suppose there exists a holey factorization of type T and suppose
that m is a positive integer, then there exists a holey factorization of type mT .

An interesting fact to note in the above construction is that m can be any positive
integer. In the analogous theorem for frames there is a restriction that m 6= 2 or 6.

The Fundamental Holey Factorization Construction follows immediately from the
Fundamental Frame Construction [17].

Construction 3.5 (Fundamental Holey Factorization Construction) Let
(X,G,A) be a group divisible design having type T , and let w : X → Z+∪{0} (we say
that w is a weighting). For every A ∈ A, suppose there is a holey factorization having
type {w(x) : x ∈ A}. Then there is a holey factorization of type {∑x∈G w(x) : G ∈ G}.

The final recursive construction that we present here is a Filling in the Hole
Construction. The proof is immediate.

Construction 3.6 Suppose that there exists a holey factorization of type T = tu1
1 tu2

2 . . . tun
n

and a holey factorization of type S = sv1
1 sv2

2 . . . svm
m where t1 =

∑m
i=1(si×vi), then there

exists a holey factorization of type tu1−1
1 (sv1

1 sv2
2 . . . svm

m )tu2
2 . . . tun

n .

There are many more recursive constructions that can be used to construct holey
factorizations. Essentially, any recursive construction for Room frames will work for
holey factorizations. This includes the Filling in the Holes and Fundamental Con-
struction above, as well as the use of holey transversals, and the use of frame starters
and intransitive frame starters. It is beyond our scope to discuss these additional
constructions here. The interested reader is referred to [5], [17], [18], and [19].

The next two theorems follow from Theorem 3.3, where the missing cases were
constructed using a modification of the hill-climbing algorithm for one-factorizations
(described in [4]) to holey factorizations. This algorithm is extremely fast and effective
in constructing holey factorizations. Files containing these factorizations are available
from the authors.

Theorem 3.7 There exists a holey factorization of type 1a3b for all a+ b ∈ {5, 7, 9}.

Theorem 3.8 There exists a holey factorization of type 2a4b if and only if a + b ≥ 4
with (a, b) 6= (2, 2) or if (a, b) = (3, 0) or (0, 3).
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Note that the conditions in Theorem 3.8 are necessary by Theorems 2.1 and 2.2.
The holey factorizations of types 23 and 43 exist by Theorem 3.1. The remaining
holey factorizations which were missing from Theorem 3.3(2) were again constructed
by the authors using the hill-climbing algorithm for holey factorizations.

We have also generated holey factorizations for other small orders by use of the
hill-climbing algorithm for holey factorizations. We record these in the next theorem.

Theorem 3.9 There exist holey factorizations of the following types: 2461, 2362, 2263,
2164, and 234161.

In the next theorem we will be concerned with holey factorizations of type 2nu1.
From Theorems 2.2 and 2.3 we have that necessarily u must be even and n ≥ 1

2
u + 1.

From Theorem 3.3(3) there is a holey factorization of type 2nu1 if n ≥ u + 1. In
the theorem below we will show essentially that if n ≥ 2

3
u, then there exists a holey

factorization of type 2nu1.

Theorem 3.10 There exists a holey factorization of type 2nu1 if

1. n ≥ 1
2
u + 1, u ≡ 2 mod 4 and n is even,

2. n ≥ 2
3
u and u ≡ 0 mod 6,

3. n ≥ 2
3
(u + 2) and u ≡ 4 mod 6, and

4. n ≥ 2
3
(u + 4) and u ≡ 2 mod 6.

Proof. Statement 1 follows from Theorem 3.2 and Theorem 3.4 with m = 2.
To prove statement 2, give weight 2 to every point in the first three groups of a

transversal design TD(5,t), give weights 2, 4 or 6 to every point in the fourth group
and give weight 6 to every point in the last group. (Note that t 6= 2, 3, 6, 10). Apply
Construction 3.5, using the fact that holey factorizations of type 2461, 234161 and 2362

all exist by Theorem 3.9. Now fill in the first three groups with holey factorizations
of type 2t. Also fill in the fourth group with a holey factorization of type 2a for
t ≤ a ≤ 3t. Thus for every 4t ≤ s ≤ 6t we have constructed a holey factorization of
type 2s(6t)1. Let u = 6t to get that there is a holey factorization of type 2su1 for all
2
3
u ≤ s ≤ u, except for the cases 2i121 for 8 ≤ i ≤ 12, 2i181 for 12 ≤ i ≤ 18, 2i361 for

24 ≤ i ≤ 36, and 2i601 for 40 ≤ i ≤ 60.
To handle the case u = 36, first begin with transversal designs TD(5,12). Give

weight 1 to every point in the first three groups, give weight either 1 or 3 to the
points in the fourth group and give weight 3 to every point in the last group. Apply
Construction 3.5, using the fact that holey factorizations of type 1a35−a exist for
a = 3, 4 by Theorem 3.7. The construction now proceeds as above by filling in the
first four groups with holey factorizations of type 2a for 6 ≤ a ≤ 18. The case u = 60
is done similarly beginning with a TD(5, 20). All of the missing cases for u = 12 and
u = 18 (including 219181) were constructed on the computer by use of the hill-climbing
algorithm. The final result now follows from Theorem 3.3(3).

Statement 3 is proven in a similar manner. Now give all the points in the last
group of the TD(5,t) weight 6 except for one point which receives weight 4. The proof
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is then the same as above. Again the exceptional cases occur when t = 2, 3, 6, 10.
The cases for t = 2 and t = 3 (u = 10 and u = 16, respectively) were handled by
the computer. For t = 6 and t = 10 (u = 34 and u = 58, respectively) use the same
construction as above for u = 36 and u = 60 except in the last group give weight 1
to exactly one point.

Statement 4 follows this same pattern. Here we give all the points in that last
group weight 6 except for one point which receives weight 2. The proof is again the
same as above where once more the exceptional cases occur when t = 2, 3, 6, 10. The
cases for t = 2 and t = 3 (u = 8 and u = 14, respectively) were handled by the
computer. For t = 6 and t = 10 (u = 32 and u = 56, respectively) use the same
construction as above for u = 36 and u = 60 except in the last group give weight 1
to exactly two points.

4 Enumerating nonisomorphic holey factorizations

In this section we will enumerate the nonisomorphic holey factorizations of types
23, 33, 24 and 25. In addition we will enumerate nonisomorphic sets of orthogonal
holey factorizations of type 25. We begin by defining isomorphic holey factorizations.

Two holey factorizations F and H of a graph G, say F = {f1, f2, . . . , fk}, H =
{h1, h2, . . . , hk}, are called isomorphic if there exists a map φ from the vertex-set of
G onto itself such that {f1φ, f2φ, . . . , fkφ} = {h1, h2, . . . , hk}. Here fiφ is the set of
all the edges {xφ, yφ} where {x, y} is an edge in fi.

The exact number of nonisomorphic one-factorizations (OFs) of Kn is known only
for even n ≤ 12. It is easy to see that there is a unique one-factorization of K2, K4,
and K6. There are exactly six for K8; these were found by Dickson and Safford [2]
and a full exposition is given in [21]. In 1973, Gelling [7] proved that there are exactly
396 isomorphism classes of OFs of K10. Recently, Dinitz, Garnick, and McKay [3]
determined that there are 526,915,620 nonisomorphic OFs of K12.

It is easy to check that there is a unique holey factorization of each of the types
11, 13 and 15. The automorphism group of each of the six one-factorizations of K8 is
transitive on points (see [21]). Thus by deleting a point to form a holey factorization
of type 17, we see that there are also exactly six nonisomorphic holey factorizations
of this type.

In the next theorem we will count the number of distinct holey factorizations of
type t3. The underlying graph here is Kt,t,t. Let V1, V2, and V3 be the three holes.
The number of distinct ways to pick the holey factors missing hole Vi is obviously the
number of distinct one-factorizations of Kt,t. This in turn is the number of distinct
latin squares of side t with the first column fixed. We get the following theorem.

Theorem 4.1 The number of distinct holey factorizations of type t3, with fixed holes,
is [L(t)]3, where L(t) is the number of distinct Latin squares of order t with the first
column fixed.

Since L(2) = 1 and L(3) = 2, then it follows that there is a unique holey factor-
ization of 23 and 8 distinct holey factorizations of type 33.
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Theorem 4.2 There are 2 nonisomorphic holey factorizations of type 33.

Proof. Without loss of generality, one can fix the first six factors, as well as one
edge in the seventh factor, in a holey factorization of type 33. There are two choices
for the second edge in the seventh factor, and that choice determines the rest of the
factorization. Thus, there are at most two isomorphism classes of holey factorizations
of type 33; representatives, A and B, of the classes are shown in Figure 3, where
the holes are indicated as triples in square brackets. If we choose any three holey

A: [123] 47 58 69 B: [123] 47 58 69
[123] 48 59 67 [123] 48 59 67
[123] 49 57 68 [123] 49 57 68
[456] 17 28 39 [456] 17 28 39
[456] 18 29 37 [456] 18 29 37
[456] 19 27 38 [456] 19 27 38
[789] 14 25 36 [789] 14 26 35
[789] 15 26 34 [789] 15 24 36
[789] 16 24 35 [789] 16 25 34

Figure 3: The two nonisomorphic holey factorizations of type 33

factors f , g, and h from A such that each of the three is missing a different hole,
then f

⋃
g

⋃
h forms either three disjoint triangles, or a single 9-cycle. However, if we

choose any three holey factors f , g, and h from B, again such that each is missing a
different hole, then f

⋃
g

⋃
h forms a triangle and a disjoint 6-cycle. Thus, A and B

are nonisomorphic, and there are two equivalence classes of 33 holey factorizations.
In order to count holey factorizations on a larger number of holes we use the

computer. We construct nonisomorphic holey factorizations by use of an orderly
algorithm; it generates the nonisomorphic holey factorizations of type T in a lex-
icographic order defined in the following way. First, if F = {f1, f2, . . . , fn} is a
holey factorization, then we must have fi < fj for all i < j. Then we say that
F > H = {h1, h2, . . . , hn} if there is some k, 1 ≤ k ≤ n, such that fi = hi for all i < k
and fk > hk. We define a similar ordering on partial holey factorizations consisting
of fewer than n factors.

The algorithm builds up each factorization by adding one factor at a time and
rejects a partial factorization if it is not the lowest representative (lexicographically)
of all the partial factorizations in its isomorphism class. In this way, the algorithm
generates only the lowest representative of any isomorphism class of factorizations
and as such never generates any holey factorizations which are isomorphic to each
other. This approach saves both time and space over algorithms which first generate
distinct (but possibly isomorphic) factorizations and then use methods to winnow
isomorphs.

This type of algorithm has been used in other combinatorial searches including
enumerating Latin squares [11], strong starters [8], one-factorizations of small graphs
[13, 15], perfect one-factorizations of K14 [14], and Howell designs of small order
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[13]. Our algorithm below is essentially the one that was described in [3] to count
the nonisomorphic one-factorizations of K12. However, our algorithm here reduces
the search space by assuming a first fixed factor consisting of the hyper-edges that
correspond to the holes.

Theorem 4.3 There are 2 nonisomorphic holey factorizations of type 24 and, for a
fixed set of holes, there are 40 distinct holey factorizations of type 24.

Using the orderly algorithm we generated the lexicographically lowest representa-
tives of the two isomorphism classes of holey factorizations of type 24. The computa-
tion required about .1 seconds at a rate of 20 mips. The two factorizations are shown
in Figure 4.

1: [1 2] 35 47 68 2: [1 2] 35 47 68
|Aut| = 12 [1 2] 36 48 57 |Aut| = 48 [1 2] 38 46 57

[3 4] 15 28 67 [3 4] 15 28 67
[3 4] 17 26 58 [3 4] 17 26 58
[5 6] 14 27 38 [5 6] 13 27 48
[5 6] 18 24 37 [5 6] 18 24 37
[7 8] 13 25 46 [7 8] 14 25 36
[7 8] 16 23 45 [7 8] 16 23 45

Figure 4: The two nonisomorphic holey factorizations of type 24

We determined the orders of the automorphism groups by counting the number of
permutations that mapped a factorization onto itself while checking that the factor-
ization was the lexicographically lowest representative of its isomorphism class. We
checked the results by using nauty [9] to determine the order of the automorphism
group of the line graph corresponding to the factorization. If we label the noniso-
morphic holey factorizations of type 24 as Fi, 1 ≤ i ≤ 2, then the number of distinct
holey factorizations of type 24, with fixed holes, can be computed as

2∑
i=1

4! 24

|Aut(Fi)|
= 40

We checked this result by fixing the holes, and using backtracking to generate all
distinct factorizations.

Theorem 4.4 There are 747 nonisomorphic holey factorizations of type 25 and, for
a fixed set of holes, there are 2, 253, 312 distinct holey factorizations of type 25.

Again, we used the orderly algorithm to generate the lexicographically lowest
representatives of the isomorphism classes of holey factorizations of type 25. The
computation required about 20 minutes at a rate of 20 mips. The file containing
these 747 holey factorizations is available from the authors.
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We computed the orders of the automorphism groups in the same ways as for the
24 factorizations. We computed the number of distinct holey factorizations of type
25, with fixed holes, as

747∑
i=1

5! 25

|Aut(Fi)|
= 2, 253, 312

where {Fi|1 ≤ i ≤ 747} is the set of nonisomorphic holey factorizations of type 25.
Checking this result with backtracking required 5.5 hours of cpu time at 20 mips.

We now turn our attention to nonisomorphic sets of orthogonal holey factoriza-
tions. There does not exist a pair of orthogonal holey factorizations of type 24 [16].
We will show below that there are pairs (in fact triples) of orthogonal holey one-
factorizations of type 25.

Two sets of orthogonal holey factorizations F̄ and H̄ of type T , say F̄ = {F1, F2,
. . . , Fs}, H̄ = {H1, H2, . . . , Hs}, are called isomorphic if there exists a map φ from the
vertex-set of G onto itself such that {F1φ, F2φ, . . . , Fsφ} = {H1, H2, . . . , Hs}. When
s = 2, this corresponds to the notion of isomorphic Room frames of type T .

We extend the ordering used for holey factorizations to an ordering of sets of holey
factorizations. First, if F̄ = {F1, F2, . . . , Fs} is a set of orthogonal holey factorizations,
then we must have Fi < Fj for all i < j. Then we say that F̄ > H̄ if there is some
t, 1 ≤ t ≤ s, such that Fi = Hi for all i < t and Ft > Ht. Using this ordering we
obtained the following results.

Theorem 4.5 1. There are 64 nonisomorphic sets of two orthogonal holey factor-
izations of type 25.

2. There are 28 nonisomorphic sets of three orthogonal holey factorizations of type
25.

3. There are no nonisomorphic sets of four orthogonal holey factorizations of type
25.

We generated the 64 mutually orthogonal pairs of factorizations in the following
way. Let Fi, 1 ≤ i ≤ 747 be the lexicographically lowest nonisomorphic factorizations
as described in Theorem 4.4. We attempted to pair each Fi, 1 ≤ i ≤ 747, with each
possible permutation of Fj, i ≤ j ≤ 747. We checked each successful pairing to see if
it was the lexicographically lowest such pair in its isomorphism class.

The Appendix displays the 64 pairs as Room frames of type 25. We counted the
sets of three and four orthogonal holey factorizations in a similar way. The Appendix
also lists the sets of three orthogonal factorizations of type 25.
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Appendix: Nonisomorphic sets of orthogonal holey

factorizations of type 25

The 64 sets of two orthogonal holey factorizations of type 25 are displayed below as
Room frames. Beneath the index of each Room frame is the pair of indices of the
constituent holey factorizations. For example, Room frame 1 is derived from holey
factorizations 1 and 690. The first holey factorization of each pair, which yields the
rows of the Room frame, is always in canonical (lexicographically lowest) form; the
second holey factorization, yielding the columns, is not necessarily in canonical form.

1:
1

690

79 68 35 24
69 78 34 25

59 48 17 06
16 07 58 49

26 19 08 37
27 18 09 36
39 04 15 28

38 29 05 14
57 46 13 02

47 56 03 12

2:
1

690

68 79 35 24
69 78 34 25

59 48 17 06
58 49 16 07

26 19 08 37
27 18 09 36
39 04 15 28

38 29 05 14
57 46 13 02

47 56 03 12

3:
1

690

68 79 35 24
78 69 34 25

59 48 17 06
16 07 49 58

26 19 08 37
27 18 09 36
39 04 15 28

38 29 05 14
57 46 13 02

47 56 03 12

4:
1

690

79 68 35 24
78 69 34 25

59 48 17 06
16 07 58 49

26 19 08 37
27 18 09 36
39 28 04 15

38 05 14 29
46 57 13 02

47 56 03 12

5:
1

690

79 68 35 24
78 69 34 25

59 48 17 06
16 07 49 58

26 19 08 37
27 18 09 36
39 28 04 15

38 05 14 29
46 57 13 02

47 56 03 12

6:
1

690

68 79 35 24
78 69 34 25

59 48 17 06
49 58 16 07

26 19 08 37
27 18 09 36
39 28 04 15

38 05 14 29
46 57 13 02

47 56 03 12

7:
1

690

79 68 24 35
69 78 34 25

59 17 06 48
49 58 16 07

26 37 08 19
18 09 27 36

28 04 15 39
38 29 05 14

57 46 02 13
47 56 03 12

8:
1

746

68 79 24 35
69 78 34 25

59 48 17 06
58 49 16 07

26 37 19 08
18 09 27 36
04 15 39 28

38 29 05 14
57 46 02 13

47 56 03 12

9:
1

746

79 68 24 35
69 78 34 25

59 48 17 06
16 07 58 49

26 37 19 08
18 09 36 27
04 15 28 39

38 29 05 14
57 46 02 13

47 56 03 12
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10:
1

690

79 68 35 24
69 78 25 34

59 17 06 48
49 58 16 07
26 37 08 19

18 09 27 36
28 39 04 15

38 05 14 29
57 46 02 13

47 56 03 12

11:
1

746

68 79 24 35
78 69 34 25

17 06 59 48
49 58 16 07
26 37 19 08

18 09 27 36
04 15 39 28

38 29 05 14
57 46 02 13

56 47 03 12

12:
1

746

68 79 24 35
78 69 25 34

59 48 17 06
49 58 16 07
26 37 19 08

18 09 36 27
39 28 04 15

38 29 05 14
57 46 02 13

47 56 03 12

13:
2

690

79 68 35 24
69 78 34 25

59 48 17 06
16 07 58 49

26 19 08 37
27 18 09 36
39 04 15 28

38 29 05 14
47 56 13 02

57 46 03 12

14:
2

690

68 79 35 24
78 69 34 25

59 48 17 06
16 07 49 58

26 19 08 37
27 18 09 36
39 04 15 28

38 29 05 14
47 56 13 02

57 46 03 12

15:
2

690

68 79 35 24
69 78 34 25

59 48 17 06
49 58 16 07

26 19 08 37
27 18 09 36
39 04 15 28

38 29 05 14
47 56 13 02

57 46 03 12

16:
2

690

79 68 35 24
78 69 34 25

59 48 17 06
16 07 58 49

26 19 08 37
27 18 09 36
39 28 04 15

38 05 14 29
47 56 13 02

46 57 03 12

17:
2

690

79 68 35 24
69 78 34 25

59 48 17 06
58 49 16 07

26 19 08 37
27 18 09 36
39 28 04 15

38 05 14 29
47 56 13 02

46 57 03 12

18:
2

690

68 79 35 24
78 69 34 25

59 48 17 06
49 58 16 07

26 19 08 37
27 18 09 36
39 28 04 15

38 05 14 29
47 56 13 02

46 57 03 12

19:
2

690

79 68 24 35
69 78 34 25

59 17 06 48
49 58 16 07

26 37 08 19
18 09 27 36

28 04 15 39
38 29 05 14
47 56 02 13

57 46 03 12

20:
2

690

79 68 24 35
69 78 25 34

59 48 17 06
49 16 07 58

26 37 08 19
18 09 36 27

28 39 04 15
38 05 14 29
47 56 02 13

46 57 03 12

21:
2

746

68 79 24 35
69 78 34 25

59 48 17 06
58 49 16 07

26 37 19 08
18 09 27 36
04 15 39 28

38 29 05 14
47 56 02 13

57 46 03 12

22:
2

746

79 68 24 35
69 78 34 25

59 48 17 06
16 07 58 49

26 37 19 08
18 09 36 27
04 15 28 39

38 29 05 14
47 56 02 13

57 46 03 12

23:
2

746

68 79 24 35
78 69 25 34

59 48 17 06
16 07 49 58

26 37 19 08
18 09 36 27

04 15 39 28
38 29 05 14
47 56 02 13

57 46 03 12

24:
2

746

68 79 35 24
78 69 25 34

59 48 17 06
49 58 16 07

26 37 19 08
18 09 27 36

39 28 04 15
38 29 05 14
47 56 02 13

46 57 03 12
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25:
4

312

79 68 35 24
69 78 34 25

06 59 48 17
49 56 07 18

08 19 26 37
27 38 09 16
58 29 13 04

14 28 39 05
36 47 15 02

57 46 12 03

26:
6

312

79 68 35 24
69 78 34 25

06 59 48 17
49 56 07 18

08 19 27 36
37 28 09 16
58 39 12 04

14 38 29 05
57 46 13 02

26 47 15 03

27:
7

670

79 68 35 24
69 78 34 25

48 17 59 06
57 19 08 46

39 16 28 07
26 18 09 37
49 58 02 13
38 04 29 15

56 47 03 12
27 05 36 14

28:
7

673

79 68 35 24
69 78 34 25

48 17 59 06
57 19 08 46
39 16 28 07
26 18 09 37

49 58 02 13
38 04 29 15
56 47 03 12
27 05 36 14

29:
9

746

68 79 35 24
78 69 25 34

59 48 17 06
19 08 46 57

16 07 39 28
26 37 18 09

49 58 02 13
38 29 05 14
47 56 03 12

27 36 04 15

30:
19
746

68 79 35 24
69 78 25 34

17 06 48 59
57 46 19 08
38 29 16 07

18 09 27 36
49 58 02 13

39 28 04 15
47 56 03 12

26 37 05 14

31:
20
670

79 68 35 24
78 69 34 25

59 17 48 06
46 19 08 57

38 16 29 07
27 18 09 36
58 49 02 13
39 05 28 14

47 56 03 12
26 04 37 15

32:
20
673

79 68 35 24
78 69 34 25

59 17 48 06
46 19 08 57
38 16 29 07
27 18 09 36

58 49 02 13
39 05 28 14
47 56 03 12
26 04 37 15

33:
52
55

79 68 35 24
69 78 25 34

59 06 18 47
48 07 19 56

27 08 39 16
36 09 28 17
49 15 38 02
58 14 29 03

26 57 13 04
37 46 12 05

34:
52
58

79 68 35 24
69 78 34 25

59 06 18 47
48 07 19 56

27 08 39 16
36 09 28 17
49 15 38 02
58 14 29 03

26 57 13 04
37 46 12 05

35:
52
52

79 68 35 24
69 78 25 34

59 06 18 47
48 07 19 56
27 08 39 16
36 09 28 17

49 15 38 02
58 14 29 03
26 57 13 04
37 46 12 05

36:
52
58

79 68 35 24
69 78 34 25

59 06 18 47
48 07 19 56
27 08 39 16
36 09 28 17

49 15 38 02
58 14 29 03
26 57 13 04
37 46 12 05

37:
55
58

79 68 35 24
69 78 25 34

59 06 18 47
48 07 19 56
37 08 29 16
26 09 38 17

58 14 39 02
49 15 28 03
36 57 12 04
27 46 13 05

38:
55
55

79 68 35 24
69 78 34 25

59 06 18 47
48 07 19 56

37 08 29 16
26 09 38 17
58 14 39 02
49 15 28 03

36 57 12 04
27 46 13 05

39:
55
58

79 68 35 24
69 78 25 34

59 06 18 47
48 07 19 56

37 08 29 16
26 09 38 17
58 14 39 02
49 15 28 03

36 57 12 04
27 46 13 05
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40:
58
58

79 68 35 24
69 78 34 25

59 06 18 47
48 07 19 56
26 08 39 17
37 09 28 16

49 15 38 02
58 14 29 03
36 57 12 04
27 46 13 05

41:
58
58

79 68 35 24
78 69 25 34

59 06 18 47
48 07 19 56
26 08 39 17
37 09 28 16

49 15 38 02
58 14 29 03
36 57 12 04
27 46 13 05

42:
58
58

79 68 35 24
69 78 34 25

59 06 18 47
48 07 19 56

26 08 39 17
37 09 28 16
49 15 38 02
58 14 29 03

36 57 12 04
27 46 13 05

43:
58
58

79 68 24 35
78 69 34 25

47 18 59 06
56 19 48 07
39 17 08 26
28 16 09 37

38 49 02 15
29 58 03 14
57 04 36 12
46 05 27 13

44:
188
208

68 79 35 24
49 78 36 25

57 18 69 04
19 58 46 07

39 17 06 28
38 09 27 16

48 59 12 03
29 08 15 34
56 14 02 37

26 47 05 13

45:
217
304

68 79 24 35
49 78 36 25

57 69 18 04
58 09 16 47
19 38 27 06

26 39 17 08
59 28 14 03
48 05 29 13
37 46 02 15

56 12 07 34

46:
268
746

79 68 35 24
48 59 26 37

78 69 04 15
19 08 46 57

39 28 17 06
27 36 18 09
49 58 02 13
38 29 05 14
56 47 03 12

16 07 25 34

47:
269
746

79 68 35 24
48 59 26 37

78 69 04 15
19 08 46 57

39 28 17 06
27 36 18 09
49 58 02 13
38 29 05 14

47 16 03 25
56 07 12 34

48:
282
746

79 68 24 35
26 37 48 59

78 69 15 04
19 08 56 47

39 28 17 06
36 27 18 09
49 58 03 12

05 14 38 29
46 57 02 13

25 34 07 16

49:
282
705

68 79 35 24
59 26 48 37

69 78 15 04
47 08 19 56

39 06 28 17
27 18 09 36
58 49 03 12

38 14 29 05
46 57 13 02

25 07 16 34

50:
283
746

79 68 24 35
26 37 48 59

78 69 15 04
19 08 56 47

39 28 17 06
36 27 18 09
49 58 03 12

05 14 38 29
34 57 16 02

25 46 07 13

51:
283
705

68 79 35 24
59 26 48 37

69 78 15 04
47 08 19 56

39 06 28 17
27 18 09 36
58 49 03 12

38 14 29 05
57 16 02 34

25 46 07 13

52:
284
746

79 68 24 35
26 37 48 59

78 69 15 04
19 08 56 47

39 28 17 06
36 27 18 09

58 14 29 03
49 05 38 12

34 57 16 02
25 46 07 13

53:
285
746

79 68 24 35
26 37 48 59

78 69 15 04
19 08 56 47

27 18 39 06
36 09 28 17
49 58 03 12

05 14 38 29
34 57 16 02

25 46 07 13

54:
286
746

79 68 24 35
26 37 48 59

78 69 15 04
19 08 56 47

27 18 39 06
36 09 28 17

58 14 29 03
49 05 38 12

34 57 16 02
25 46 07 13
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55:
287
746

79 68 35 24
37 26 48 59

78 69 15 04
19 08 47 56

36 18 29 07
27 09 38 16
58 14 39 02

49 05 28 13
25 46 17 03

34 57 06 12

56:
312
312

79 68 35 24
37 26 59 48

69 18 04 57
78 19 05 46

27 08 39 16
36 09 28 17
49 15 38 02
58 14 29 03

25 47 06 13
34 56 07 12

57:
312
690

79 68 35 24
37 26 59 48

69 18 04 57
78 19 05 46

27 08 39 16
36 09 28 17
49 15 38 02

58 14 29 03
25 47 06 13

34 56 07 12

58:
319
319

68 79 35 24
26 37 48 59

69 18 04 57
78 09 15 46

27 19 38 06
36 08 29 17
58 14 39 02
49 05 28 13

25 47 16 03
34 56 07 12

59:
319
746

68 79 35 24
26 37 48 59

69 18 04 57
78 09 15 46

27 19 38 06
36 08 29 17

58 14 39 02
49 05 28 13
25 47 16 03

34 56 07 12

60:
342
342

79 68 35 24
37 26 58 49

69 18 04 57
78 19 05 46

27 08 39 16
36 09 28 17
59 14 38 02
48 15 29 03

25 47 06 13
34 56 07 12

61:
342
342

79 68 35 24
49 58 37 26

69 04 18 57
78 19 05 46

27 08 16 39
36 17 09 28
59 38 02 14
48 29 15 03

25 47 06 13
34 56 12 07

62:
343
347

79 68 35 24
37 26 58 49

69 18 04 57
78 19 05 46

36 08 29 17
27 09 38 16
48 15 39 02
59 14 28 03

25 47 06 13
34 56 07 12

63:
690
690

79 36 58 24
68 37 49 25

69 18 04 57
78 09 15 46

27 19 38 06
26 08 39 17
59 14 28 03

48 05 29 13
35 47 16 02

34 56 07 12

64:
746
746

79 36 58 24
68 27 49 35

69 18 04 57
78 09 15 46

37 19 28 06
26 08 39 17
59 14 38 02

48 05 29 13
25 47 16 03

34 56 07 12
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The 28 sets of three orthogonal holey factorizations of type 25 are listed below in the
following way. First, the index of the triple is given as #i, for 1 ≤ i ≤ 28. Beneath
the index of the triple is the parenthesized index of the Room frame that yields the
first two factorizations of the triple. The third holey factorization is fully listed with
the holes bracketed. Beneath the index of the Room frame are the indices of the three
factorizations; as with the Room frames, only the first factorization is necessarily in
canonical form. Thus, for example, triple number 6 consists of Room frame 8 (which
in turn consists of canonical factorization 1 together with a factorization isomorphic
to canonical factorization 746) and the fully listed factorization which is isomorphic
to canonical factorization 746.

#1:
(1)
1
690
690

[01] 28 36 49 57
[01] 29 37 46 58
[23] 05 19 47 68
[23] 08 14 56 79
[45] 02 17 38 69
[45] 06 12 39 78
[67] 03 18 24 59
[67] 09 13 25 48
[89] 04 16 27 35
[89] 07 15 26 34

#2:
(2)
1
690
690

[01] 28 36 49 57
[01] 29 37 46 58
[23] 05 19 47 68
[23] 08 14 56 79
[45] 02 16 39 78
[45] 07 12 38 69
[67] 03 18 24 59
[67] 09 13 25 48
[89] 04 17 26 35
[89] 06 15 27 34

#3:
(3)
1
690
690

[01] 28 36 49 57
[01] 29 37 46 58
[23] 05 18 47 69
[23] 09 14 56 78
[45] 02 17 39 68
[45] 06 12 38 79
[67] 03 19 25 48
[67] 08 13 24 59
[89] 04 16 27 35
[89] 07 15 26 34

#4:
(4)
1
690
690

[01] 28 36 49 57
[01] 29 37 46 58
[23] 04 19 56 78
[23] 08 15 47 69
[45] 02 17 39 68
[45] 06 12 38 79
[67] 03 18 24 59
[67] 09 13 25 48
[89] 05 16 27 34
[89] 07 14 26 35

#5:
(5)
1
690
690

[01] 28 36 49 57
[01] 29 37 46 58
[23] 04 18 56 79
[23] 09 15 47 68
[45] 02 17 38 69
[45] 06 12 39 78
[67] 03 19 25 48
[67] 08 13 24 59
[89] 05 16 27 34
[89] 07 14 26 35

#6:
(8)
1
746
746

[01] 27 39 46 58
[01] 28 36 49 57
[23] 05 19 47 68
[23] 08 14 56 79
[45] 03 16 29 78
[45] 07 12 38 69
[67] 02 18 34 59
[67] 09 13 25 48
[89] 04 17 26 35
[89] 06 15 24 37

#7:
(9)
1
746
746

[01] 27 39 46 58
[01] 28 36 49 57
[23] 05 19 47 68
[23] 08 14 56 79
[45] 02 17 38 69
[45] 06 13 29 78
[67] 03 18 24 59
[67] 09 12 35 48
[89] 04 16 25 37
[89] 07 15 26 34

#8:
(10)
1
690
690
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[01] 27 39 48 56
[01] 29 36 47 58
[23] 04 19 57 68
[23] 09 15 46 78
[45] 03 16 28 79
[45] 07 12 38 69
[67] 02 18 35 49
[67] 08 13 24 59
[89] 05 17 26 34
[89] 06 14 25 37

#9:
(11)
1
746
746

[01] 27 39 48 56
[01] 28 36 47 59
[23] 05 18 46 79
[23] 09 14 57 68
[45] 03 16 29 78
[45] 07 12 38 69
[67] 02 19 34 58
[67] 08 13 25 49
[89] 04 17 26 35
[89] 06 15 24 37

#10:
(12)
1
746
746

[01] 27 39 48 56
[01] 28 36 47 59
[23] 04 18 57 69
[23] 09 15 46 78
[45] 03 17 29 68
[45] 06 12 38 79
[67] 02 19 34 58
[67] 08 13 25 49
[89] 05 16 24 37
[89] 07 14 26 35

#11:
(13)
2
690
690

[01] 28 36 49 57
[01] 29 37 46 58
[23] 05 19 47 68
[23] 08 14 56 79
[45] 02 17 38 69
[45] 06 12 39 78
[67] 03 18 24 59
[67] 09 13 25 48
[89] 04 16 27 35
[89] 07 15 26 34

#12:
(14)
2
690
690

[01] 28 36 49 57
[01] 29 37 46 58
[23] 05 18 47 69
[23] 09 14 56 78
[45] 02 17 39 68
[45] 06 12 38 79
[67] 03 19 25 48
[67] 08 13 24 59
[89] 04 16 27 35
[89] 07 15 26 34

#13:
(15)
2
690
690

[01] 28 36 49 57
[01] 29 37 46 58
[23] 05 18 47 69
[23] 09 14 56 78
[45] 02 16 38 79
[45] 07 12 39 68
[67] 03 19 25 48
[67] 08 13 24 59
[89] 04 17 26 35
[89] 06 15 27 34

#14:
(16)
2
690
690

[01] 28 36 49 57
[01] 29 37 46 58
[23] 04 19 56 78
[23] 08 15 47 69
[45] 02 17 39 68
[45] 06 12 38 79
[67] 03 18 24 59
[67] 09 13 25 48
[89] 05 16 27 34
[89] 07 14 26 35

#15:
(18)
2
690
690

[01] 28 36 49 57
[01] 29 37 46 58
[23] 04 18 56 79
[23] 09 15 47 68
[45] 02 16 39 78
[45] 07 12 38 69
[67] 03 19 25 48
[67] 08 13 24 59
[89] 05 17 26 34
[89] 06 14 27 35

#16:
(20)
2
690
690

20



[01] 27 39 46 58
[01] 29 36 48 57
[23] 04 19 56 78
[23] 09 15 47 68
[45] 03 17 28 69
[45] 06 12 38 79
[67] 02 18 34 59
[67] 08 13 25 49
[89] 05 16 24 37
[89] 07 14 26 35

#17:
(21)
2
746
746

[01] 27 39 46 58
[01] 28 36 49 57
[23] 05 19 47 68
[23] 08 14 56 79
[45] 03 16 29 78
[45] 07 12 38 69
[67] 02 18 34 59
[67] 09 13 25 48
[89] 04 17 26 35
[89] 06 15 24 37

#18:
(22)
2
746
746

[01] 27 39 46 58
[01] 28 36 49 57
[23] 05 19 47 68
[23] 08 14 56 79
[45] 02 17 38 69
[45] 06 13 29 78
[67] 03 18 24 59
[67] 09 12 35 48
[89] 04 16 25 37
[89] 07 15 26 34

#19:
(23)
2
746
746

[01] 27 39 46 58
[01] 28 36 49 57
[23] 05 18 47 69
[23] 09 14 56 78
[45] 03 17 29 68
[45] 06 12 38 79
[67] 02 19 35 48
[67] 08 13 24 59
[89] 04 16 25 37
[89] 07 15 26 34

#20:
(24)
2
746
746

[01] 27 39 46 58
[01] 28 36 49 57
[23] 04 18 56 79
[23] 09 15 47 68
[45] 03 16 29 78
[45] 07 12 38 69
[67] 02 19 35 48
[67] 08 13 24 59
[89] 05 17 26 34
[89] 06 14 25 37

#21:
(33)
52
55
58

[01] 28 39 46 57
[01] 29 38 47 56
[23] 04 16 58 79
[23] 05 17 49 68
[45] 02 18 37 69
[45] 03 19 26 78
[67] 08 13 24 59
[67] 09 12 35 48
[89] 06 15 27 34
[89] 07 14 25 36

#22:
(33)
52
55
58

[01] 28 39 47 56
[01] 29 38 46 57
[23] 04 16 58 79
[23] 05 17 49 68
[45] 02 18 37 69
[45] 03 19 26 78
[67] 08 13 24 59
[67] 09 12 35 48
[89] 06 15 27 34
[89] 07 14 25 36

#23:
(34)
52
58
52

[01] 28 39 47 56
[01] 29 38 46 57
[23] 04 16 58 79
[23] 05 17 49 68
[45] 02 18 37 69
[45] 03 19 26 78
[67] 08 12 34 59
[67] 09 13 25 48
[89] 06 14 27 35
[89] 07 15 24 36

#24:
(37)
55
58
55

21



[01] 28 39 47 56
[01] 29 38 46 57
[23] 04 16 58 79
[23] 05 17 49 68
[45] 02 19 36 78
[45] 03 18 27 69
[67] 08 13 24 59
[67] 09 12 35 48
[89] 06 14 25 37
[89] 07 15 26 34

#25:
(40)
58
58
58

[01] 28 39 46 57
[01] 29 38 47 56
[23] 04 16 58 79
[23] 05 17 49 68
[45] 02 19 36 78
[45] 03 18 27 69
[67] 08 12 34 59
[67] 09 13 25 48
[89] 06 15 24 37
[89] 07 14 26 35

#26:
(40)
58
58
58

[01] 28 39 47 56
[01] 29 38 46 57
[23] 04 16 58 79
[23] 05 17 49 68
[45] 02 19 36 78
[45] 03 18 27 69
[67] 08 12 34 59
[67] 09 13 25 48
[89] 06 15 24 37
[89] 07 14 26 35

#27:
(41)
58
58
58

[01] 28 39 46 57
[01] 29 38 47 56
[23] 04 17 58 69
[23] 05 16 49 78
[45] 02 18 36 79
[45] 03 19 27 68
[67] 08 13 24 59
[67] 09 12 35 48
[89] 06 14 25 37
[89] 07 15 26 34

#28:
(41)
58
58
58

[01] 28 39 47 56
[01] 29 38 46 57
[23] 04 17 58 69
[23] 05 16 49 78
[45] 02 18 36 79
[45] 03 19 27 68
[67] 08 13 24 59
[67] 09 12 35 48
[89] 06 14 25 37
[89] 07 15 26 34
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