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Abstract

A Howell design of side s and order 2n+2, or more briefly an H(s, 2n+2) is
an s× s array in which each cell is either empty or contains an unordered pair
of elements from some 2n + 2 set V such that (1) every element of V occurs in
precisely one cell of each row and each column, and (2) every unordered pair
of elements from V is in at most one cell of the array. It follows immediately
from the definition of an H(s, 2n+2) that n+1 ≤ s ≤ 2n+1. A d-dimensional
Howell design Hd(s, 2n + 2) is a d-dimensional array of side s such that (1)
every cell is either empty or contains an unordered pair of elements from some
2n + 2 set V , and (2) each two-dimensional projection is an H(s, 2n + 2). The
two boundary cases are well known designs: an Hd(2n + 1, 2n + 2) is a Room
d-cube of side 2n + 1 and the existence of d mutually orthogonal latin squares
of order n + 1 implies the existence of an Hd(n + 1, 2n + 2). In this paper,
we investigate the existence of Howell cubes, H3(s, 2n + 2). We completely
determine the spectrum for H3(2n, 2n + α) where α ∈ {2, 4, 6, 8}. In addition,
we establish the existence of 3-dimensional Room frames of type 2v for all v ≥ 5
with only a few small possible exceptions for v.
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1 Introduction

A Howell design of side s and order 2n+2, or more briefly an H(s, 2n+2) is an s× s
array in which each cell is either empty or contains an unordered pair of elements
from some 2n + 2 set V such that

(1) every element of V occurs in precisely one cell of each row and each column, and

(2) every unordered pair of elements from V is in at most one cell of the array.

It follows immediately from the definition of an H(s, 2n+2) that n+1 ≤ s ≤ 2n+1.
An H(2n+1, 2n+2) is also known as a Room square of side 2n+1, an RS(2n+1). At
the lower extreme, if there exists a pair of mutually orthogonal latin squares of side
n+1, then there is an H(n+1, 2n+2). Howell designs have been studied extensively,
and the existence of these designs was established in the early 1980’s, [17, 4].

Theorem 1.1. [17, 4] Let n be a non-negative integer and let s be a positive integer
such that n + 1 ≤ s ≤ 2n + 1. Then there exists an H(s, 2n + 2) if and only if
(s, 2n + 2) 6= (2, 4), (3, 4), (5, 6), or (5, 8)

An H∗(s, 2n + 2) is an H(s, 2n + 2) in which there is a subset of V , say X, of
cardinality 2n + 2 − s, such that no pair of elements from X is in any cell of the
design. We note that there exist H∗(s, 2n + 2) for s even with two exceptions: there
is no H∗(2, 4) and there is no H∗(6, 12), [4].

It is often useful to think about a Howell design in terms of its underlying graph.
Let G be an s-regular graph on 2n + 2 vertices. A one-factor in G is a set of pair-
wise disjoint edges which between them contain each vertex exactly once. A one-
factorization of G is a partition of all of the edges of G into pairwise disjoint one-
factors. Two one-factorizations F1 and F2 are orthogonal if any one-factor in F1 and
any one-factor in F2 have at most one edge in common. It is easy to see that the rows
and columns of an H(s, 2n + 2) form a pair of orthogonal one-factorizations of the
underlying s-regular graph on 2n+2 vertices. Similarly, we can use a pair of orthogo-
nal one-factorizations F1 and F2 to construct an H(s, 2n+2). We index the rows and
columns of an s × s array by the numbers 1 through s and let Fi = {f 1

i , f2
i , . . . , f s

i }
for i = 1, 2. In the cell labeled (i, j), we place the pair of symbols (edge) from f i

1 ∩ f j
2

for each i, j = 1, 2, . . . , s. If f i
1 ∩ f j

2 = ∅, the cell is left empty. We note that in graph
theory terms an H∗(s, 2n + 2) is an H(s, 2n + 2) whose underlying graph contains a
maximal independent set of size 2n + 2− s.

We illustrate these definitions with a small example. An H(6, 8) is displayed
below.
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67 12 58 34
24 57 13 68
38 27 45 16
15 46 37 28

48 26 17 35
36 18 25 47

An H(6, 8).

The definition of Howell design can be extended to higher dimensions. A d-
dimensional Howell design Hd(s, 2n + 2) is a d-dimensional array of side s such that

(1) every cell is either empty or contains an unordered pair of elements from some
2n + 2 set V , and

(2) each two-dimensional projection is an H(s, 2n + 2).

An H2(s, 2n + 2) is just an H(s, 2n + 2). An H3(s, 2n + 2) is called a Howell
cube. A set F = {F1, F2, . . . , Fd} of d one-factorizations of a graph is called a set of d
mutually orthogonal one-factorizations if the one-factorizations of F are all pairwise
orthogonal. It is straightforward to see that Hd(s, 2n + 2) is equivalent to a set of d
mutually orthogonal one-factorizations of the underlying s-regular graph on 2n + 2
vertices. Note that each of the two dimensional projections of an Hd(s, 2n + 2) have
the rows and colums indexed by two of the orthogonal one-factorizations.

Example 1.2. The following three one-factorizations are orthogonal one-factorizations
of a 12 regular graph on 14 vertices (the cocktail party graph). Hence they yield a
H3(12, 14).

F1

f1
1 : {{4,7},{1,3},{9,2},{8,12},{10,13},{5,6},{11,14}}

f2
1 : {{12,14},{5,8},{2,4},{10,3},{9,1},{11,13},{6,7}}

f3
1 : {{1,14},{6,9},{3,5},{11,4},{10,2},{12,13},{7,8}}

f4
1 : {{8,9},{2,14},{7,10},{4,6},{12,5},{11,3},{1,13}}

f5
1 : {{9,10},{3,14},{8,11},{5,7},{1,6},{12,4},{2,13}}

f6
1 : {{3,13},{10,11},{4,14},{9,12},{6,8},{2,7},{1,5}}

f7
1 : {{2,6},{4,13},{11,12},{5,14},{10,1},{7,9},{3,8}}

f8
1 : {{3,7},{5,13},{12,1},{6,14},{11,2},{8,10},{4,9}}

f9
1 : {{5,10},{4,8},{6,13},{1,2},{7,14},{12,3},{9,11}}

f10
1 : {{6,11},{5,9},{7,13},{2,3},{8,14},{1,4},{10,12}}

f11
1 : {{11,1},{7,12},{6,10},{8,13},{3,4},{9,14},{2,5}}

f12
1 : {{12,2},{8,1},{7,11},{9,13},{4,5},{10,14},{3,6}}

F2

f1
2 : {{4,7},{12,14},{8,9},{3,13},{2,6},{5,10},{11,1}}

f2
2 : {{5,8},{1,14},{9,10},{4,13},{3,7},{6,11},{12,2}}

f3
2 : {{1,3},{6,9},{2,14},{10,11},{5,13},{4,8},{7,12}}

f4
2 : {{2,4},{7,10},{3,14},{11,12},{6,13},{5,9},{8,1}}

f5
2 : {{9,2},{3,5},{8,11},{4,14},{12,1},{7,13},{6,10}}

f6
2 : {{10,3},{4,6},{9,12},{5,14},{1,2},{8,13},{7,11}}

f7
2 : {{8,12},{11,4},{5,7},{10,1},{6,14},{2,3},{9,13}}

f8
2 : {{10,13},{9,1},{12,5},{6,8},{11,2},{7,14},{3,4}}

f9
2 : {{11,13},{10,2},{1,6},{7,9},{12,3},{8,14},{4,5}}

f10
2 : {{5,6},{12,13},{11,3},{2,7},{8,10},{1,4},{9,14}}

f11
2 : {{6,7},{1,13},{12,4},{3,8},{9,11},{2,5},{10,14}}

f12
2 : {{11,14},{7,8},{2,13},{1,5},{4,9},{10,12},{3,6}}

F3

f1
3 : {{1,3},{6,7},{10,2},{12,5},{8,11},{4,13},{9,14}}

f2
3 : {{2,4},{7,8},{11,3},{1,6},{9,12},{5,13},{10,14}}

f3
3 : {{11,14},{3,5},{8,9},{12,4},{2,7},{10,1},{6,13}}

f4
3 : {{12,14},{4,6},{9,10},{1,5},{3,8},{11,2},{7,13}}

f5
3 : {{1,14},{5,7},{10,11},{2,6},{4,9},{12,3},{8,13}}

f6
3 : {{2,14},{6,8},{11,12},{3,7},{5,10},{1,4},{9,13}}

f7
3 : {{10,13},{3,14},{7,9},{12,1},{4,8},{6,11},{2,5}}

f8
3 : {{11,13},{4,14},{8,10},{1,2},{5,9},{7,12},{3,6}}

f9
3 : {{4,7},{12,13},{5,14},{9,11},{2,3},{6,10},{8,1}}

f10
3 : {{9,2},{5,8},{1,13},{6,14},{10,12},{3,4},{7,11}}

f11
3 : {{8,12},{10,3},{6,9},{2,13},{7,14},{11,1},{4,5}}

f12
3 : {{5,6},{9,1},{11,4},{7,10},{3,13},{8,14},{12,2}}
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The three two-dimensional projections for this H3(12, 14) are:

4,7 1,3 9,2 8,12 10,13 5,6 11,14
12,14 5,8 2,4 10,3 9,1 11,13 6,7

1,14 6,9 3,5 11,4 10,2 12,13 7,8
8,9 2,14 7,10 4,6 12,5 11,3 1,13

9,10 3,14 8,11 5,7 1,6 12,4 2,13
3,13 10,11 4,14 9,12 6,8 2,7 1,5
2,6 4,13 11,12 5,14 10,1 7,9 3,8

3,7 5,13 12,1 6,14 11,2 8,10 4,9
5,10 4,8 6,13 1,2 7,14 12,3 9,11

6,11 5,9 7,13 2,3 8,14 1,4 10,12
11,1 7,12 6,10 8,13 3,4 9,14 2,5

12,2 8,1 7,11 9,13 4,5 10,14 3,6

Projection 1 of the H3(12, 14). Rows indexed by F1, columns by F2

1,3 11,14 10,13 4,7 9,2 8,12 5,6
6,7 2,4 12,14 11,13 5,8 10,3 9,1
10,2 7,8 3,5 1,14 12,13 6,9 11,4
12,5 11,3 8,9 4,6 2,14 1,13 7,10
8,11 1,6 12,4 9,10 5,7 3,14 2,13

9,12 2,7 1,5 10,11 6,8 4,14 3,13
4,13 10,1 3,8 2,6 11,12 7,9 5,14

5,13 11,2 4,9 3,7 12,1 8,10 6,14
6,13 12,3 5,10 4,8 1,2 9,11 7,14

7,13 1,4 6,11 5,9 2,3 10,12 8,14
9,14 8,13 2,5 7,12 6,10 3,4 11,1

10,14 9,13 3,6 8,1 7,11 4,5 12,2

Projection 2 of the H3(12, 14). Rows indexed by F1, columns by F3

8,9 12,14 2,6 5,10 4,7 11,1 3,13
4,13 9,10 1,14 3,7 6,11 5,8 12,2
1,3 5,13 10,11 2,14 4,8 7,12 6,9

2,4 6,13 11,12 3,14 5,9 8,1 7,10
8,11 3,5 7,13 12,1 4,14 6,10 9,2

9,12 4,6 8,13 1,2 5,14 7,11 10,3
10,1 5,7 9,13 2,3 6,14 8,12 11,4

12,5 11,2 6,8 10,13 3,4 7,14 9,1
10,2 1,6 12,3 7,9 11,13 4,5 8,14
9,14 11,3 2,7 1,4 8,10 12,13 5,6
6,7 10,14 12,4 3,8 2,5 9,11 1,13

7,8 11,14 1,5 4,9 3,6 10,12 2,13

Projection 3 of the H3(12, 14). Rows indexed by F2, columns by F2

Let ν(s, 2n+2) denote the maximum value of d such that an Hd(s, 2n+2) exists.
Information on ν(s, 2n+2) can be found in [6]. We summarize some of the known re-
sults in the next proposition. Note that in general (with 4 exceptions), from Theorem
1.1 above we have that ν(s, 2n + 2) ≥ 2.

Proposition 1.3. [2, 11, 16]Values for ν(s, 2n), 2n ≤ 12
ν(2, 4) = ν(3, 4) = ν(5, 6) = ν(5, 8) = 1.
ν(3, 6) = ν(4, 6) = ν(7, 10) = 2.
ν(4, 8) = ν(7, 8) = ν(6, 10) = 3.
ν(5, 10) = ν(8, 10) = ν(9, 10) = 4.
ν(6, 12) ≥ 3, ν(7, 12) ≥ 3, ν(11, 12) ≥ 5.
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Concerning the existence of d-dimensional Howell designs Hd(s, 2n+2), with d > 2,
there are three known infinite classes. Recall that n + 1 ≤ s ≤ 2n + 1. At the lower
extreme, if there exists a set of d mutually orthogonal latin squares of side n + 1,
then we can construct an Hd(n+1, 2n+2). So, for example, we can construct Howell
cubes, H3(n + 1, 2n + 2) for n a positive integer, n ≥ 3 and n 6= 5, 9, [3]. Since an
H3(6, 12) was constructed by E. Brickell in [2], we have the lower boundary for Howell
cubes with only one possible exception.

Theorem 1.4. Let n ≥ 3 be a positive integer. Then there exists an H3(n+1, 2n+2)
except possibly for n = 9.

At the other extreme, an Hd(2n + 1, 2n + 2) is a Room d-cube of side 2n + 1.
The asymptotic existence of Room d-cubes was established in 1971 by Gross, Mullin,
and Wallis [12] and the existence of Room 5-cubes was established in 1987 by Dinitz
[5]. The following theorem summarizes what is known about the existence of Room
d-cubes where d = 3, 4, 5. For further information on the existence of Room d-cubes,
see [7].

Theorem 1.5. [5] For all odd n ≥ 11, except possibly for n = 15, there exists a Room
5-cube of side n, an H5(n, n + 1). There exist H4(n, n + 1) for n = 9, 15 and there
exists an H3(7, 8).

In addition to the boundary cases, one infinite class of d-dimensional Howell de-
signs has been constructed for d ≥ 3. These designs are constructed using hyperovals
in finite projective planes.

Theorem 1.6. [13] Let m ≥ 2 be a positive integer, then there exists an H2m−1(2m, 2m+
2).

In this paper, we investigate the existence of Howell cubes of even side. Our main
recursive construction for Howell cubes uses 3-dimensional Room frames. In the next
section, we introduce the idea of sets of orthogonal intransitive frame starters and
we describe constructions and existence results for 3-dimensional Room frames. In
particular, we show that there exist 3-dimensional Room frames of type 2n for n
a positive integer, n ≥ 5 with at most 5 possible exceptions for n. We use direct
and recursive constructions in Section 3 to establish the existence of Howell cubes
H3(n, n + α) for α = 2, 4, 6, 8. This completes the existence of Howell cubes for the
upper end of the spectrum.

2 Room Frames

Let S be a set, and let {S1, S2, . . . , Sn} be a partition of S. An {S1, S2, . . . , Sn}-Room
frame is an |S| × |S| array, F , indexed by S, which satisfies the following properties:

(1) every cell of F is either empty or contains an unordered pair of symbols of S,
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(2) the subarrays Si × Si are empty, for 1 ≤ i ≤ n (these subarrays are referred to
as holes),

(3) each symbol x /∈ Si occurs once in row (or column) s, for any s ∈ Si,

(4) the pairs occurring in F are {s, t}, where (s, t) ∈ (S × S) \ ∪n
i=1(Si × Si).

An {S1, S2, . . . , Sn}-Room frame F is said to be skew if at most one of the cells
(i, j) and (j, i) (i 6= j) is nonempty. The type of a Room frame is defined to be the
multiset {|Si| : 1 ≤ i ≤ n}. We usually use an “exponential” notation to describe
types: a type tu1

1 tu2
2 . . . tuk

k denotes that there are ui holes of size ti, 1 ≤ i ≤ k. The
order of a Room frame is |S|.

To illustrate these definitions, we display a Room frame of type 25 in Example 2.1.
The design is defined on Z5 × Z2. We use an abbreviated notation in the figure: an
element (x, y) in Z5×Z2 is written xy. (So for example, the pair 21, 41 is (2, 1), (4, 1).)
Note that the holes Si = {(i, 0), (i, 1)} for i = 0, 1, . . . , 4.

Example 2.1. A (skew) Room frame of type 25 defined on Z5 × Z2, [20] .

21 40 10 30
41 31 20 11

20 41 11 31
40 30 21 10

40 31 00 20
21 01 21 30

41 30 01 21
20 00 40 31
30 00 41 10
40 31 11 01

31 01 40 11
41 30 10 00
20 40 10 01
11 00 41 21

21 41 11 00
10 01 40 20
11 30 00 20
31 21 10 01

10 31 01 21
30 20 11 00

A d-dimensional {S1, S2, . . . , Sn}-Room frame F of order |S| is a d-dimensional
array of side |S| which satisfies the following properties:

(1) every cell of F is either empty or contains an unordered pair of symbols of S,

(2) each two-dimensional projection is a {S1, S2, . . . , Sn}-Room frame.
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For convenience, we will call a d-dimensional Room frame a Room d-frame.
It will be helpful to think of a Room frame in terms of an underlying graph and

a set of factorizations of that graph. We give this equivalence for a Room frame
of type 2n – it is easy to generalize to any type. A holey one-factor in the graph
K2n − nK2 is a matching consisting of n − 1 edges (on 2n − 2 vertices) that does
not contain a vertex in one of the missing K2’s (these are called the ”holes”). A
holey one-factorization of the graph K2n − nK2 is a partition of the edges into 2n
holey one-factors. Two holey one-factorizations F and G are orthogonal if two edges
which appear in the same holey one-factor of F appear in different holey one-factors
of G. It is straightforward to see that the existence of d pairwise orthogonal holey
one-factorizations of K2n −nK2 is equivalent to a d-dimensional Room frame of type
2n.

The Room frame displayed in Example 2.1 has a third orthogonal holey one-
factorization (sometimes called an orthogonal resolution). Recall that the holes are
Si = {i0, i1} for i = 0, 1, 2, 3, 4. We list the orthogonal resolution by listing the holey
one-factors associated with Si for i = 0, 1, 2, . . . , 4 below. So this example yields a
Room 3-frame of type 25, or equivalently three orthogonal holey one-factorizations of
the graph K10 − 5K2.

hole resolutions

00,01
20,30 21,31 41,11 40,10
30,21 31,20 11,40 10,41

10,11
30,40 31,41 01,21 00,20
40,31 41,30 21,00 20,01

20,21
40,00 41,01 11,31 10,30
00,41 01,40 31,10 30,11

30,31
00,10 01,11 21,41 20,40
10,01 11,00 41,20 40,21

40,41
10,20 11,21 31,01 30,00
20,11 21,10 01,30 00,31

The primary direct method for constructing Room d-frames with one hole size h
is to use starters and adders. Let G be an additive abelian group of order g, let H
be a subgroup of G of order h where g − h is even and let n = g/h. An hn−frame
starter in G−H is a set of pairs S = {{si, ti} | i = 1, 2, . . . , g−h

2
} satisfying

(1) {si, ti | i = 1, 2, . . . , g−h
2
} = G−H and

(2) {±(si − ti) | i = 1, 2, . . . , g−h
2
} = G−H

An adder A for S is a set of g−h
2

distinct elements of G−H, A = {ai | i = 1, 2, . . . , g−h
2
}

such that {si + ai, ti + ai | i = 1, 2, . . . , g−h
2
} = G−H. An adder A is skew provided

ai 6= −aj for any i, j.

Lemma 2.2. [18] If there exists an hn−frame starter in G−H and an adder A for
S, then there is an hn Room frame. Furthermore, if A is skew, then there is a skew
hn Room frame.
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A frame starter S = {{si, ti} | i = 1, 2, . . . , g−h
2
} in G − H is said to be strong

provided si + ti /∈ H for i = 1, 2, . . . , g−h
2

and si + ti = sj + tj implies i = j. A strong
starter S is called a skew-strong starter if si + ti 6= −(sj + tj) for any i, j.

An equivalent method to constructing Room frames from starters and adders is to
construct them via orthogonal starters, which we now define. Let S = {{si, ti} | i =
1, 2, . . . , g−h

2
} and T = {{ui, vi} | i = 1, 2, . . . , g−h

2
} be two frame starters in G −H.

S and T are called a pair of orthogonal frame starters if there is an adder A so that
S +A = T . A set of frame starters Q = {S1, S2, . . . , St} is called a set of t orthogonal
frame starters if each pair of starters is orthogonal.

The patterned frame starter is the starter P = {{si, ti} | i = 1, 2, . . . , g−h
2
} where

si = −ti for all i. The patterned frame starter can exist in G−H only if |G| is odd.
If S is a strong-frame starter in G−H and |G| is odd, then {S,−S, P} is a set of 3
orthogonal frame starters and can be used to construct a 3-dimensional Room frame
of type hn, where n = g/h [9].

Lemma 2.3. [9] If there exists a strong frame starter S in G−H with |G| odd, then
there is a Room 3-frame of type hn where n = g/h.

To illustrate the connection between frame starters and Room frames we note
that the the four pairs {(2, 1), (4, 1)}, {(4, 0), (3, 1)}, {(1, 0), (2, 0)} and {(3, 0), (1, 1)},
form a frame starter S in (Z5×Z2)\({0}×Z2). An adder for this frame starter is A =
{(4, 0), (3, 1), (2, 0), (1, 1)}. S + A is the frame starter {(1, 1), (3, 1)}, {(2, 1), (1, 0)},
{(3, 0), (4, 0)}, {(4, 1), (2, 0)} which is orthogonal to S. Indexing the rows by the
translates of S and the columns by the translates of S + A (in the group Z5 × Z2)
yields the Room frame of type 25 given in Example 2.1. Since we have exhibited three
orthogonal frame starters of type 25 we have shown that there exists a Room 3-frame
of type 25.

Frame starters and adders were used to construct the following Room 3-frames.
Note that the Room 3-frame of type 25 is given above.

Lemma 2.4. [5, 9] There exist Room 3-frames of type 2n for n ∈ {5, 12, 13, 16, 17, 20, 21}.

We use orthogonal frame starters to construct several more Room 3-frames.

Lemma 2.5. There exist Room 3-frames of type 2n for n ∈ {8, 9, 24, 28, 32, 33, 44, 52}.

Proof. For each of these orders we give 3 orthogonal frame starters S1, S1, S3 of type
2n in Appendix A. 2

Unfortunately, the following result tells us that we can not use orthogonal frame
starters to find Room frames of type 2n for certain congruence classes of n.

Theorem 2.6. [9] There does not exist a frame starter for a Room frame of type 2n

for n ≡ 2, 3 (mod 4).

To cover these two congruence classes we use a variant of the frame starter called
an intransitive frame starter, first described in [10, 18]. We give a different definition

8



than in the original papers, but it is easy to show the definitions are equivalent.
However, our definition will be easier to generalize to higher dimensions.

Let G be an abelian group of order g, and let H be a subgroup of order h
where both g and h are even and let n = g/h. Let k be a positive integer. An
hn(2k)−intransitive frame starter in G \H is a pair (S, C) with

S = {{ai, bi} : 1 ≤ i ≤ g − h

2
− 2k}∪ {ui : 1 ≤ i ≤ 2k} and C = {{pi, qi} : 1 ≤ i ≤ k}

where

(i) S ∪ C = G \H,

(ii) the elements {±(bi−ai)} and {±(pi−qi)} are all distinct and elements of G\H,

(iii) for 1 ≤ i ≤ k each element pi − qi has even order,

(iv) if D = {{±(bi−ai)}
⋃
{±(pi−qi)}} are the differences in the intransitive frame

starter, then the missing differences, namely (G \ H) \ D, all have even order
in G.

We can now give the definition for two hn(2k)-intransitive frame starters (S, C)
and (T, R) to be orthogonal hn(2k)-intransitive frame starters. Let

S = {{ai, bi} : 1 ≤ i ≤ g−h
2
− 2k} ∪ {ui : 1 ≤ i ≤ 2k}, C = {{pi, qi} : 1 ≤ i ≤ k},

T = {{ci, di} : 1 ≤ i ≤ g−h
2
− 2k} ∪ {vi : 1 ≤ i ≤ 2k}, and R = {{p′i, q′i} : 1 ≤ i ≤ k}.

Then (S, C) and (T, R) are orthogonal hn(2k)-intransitive frame starters if the fol-
lowing conditions are satisfied.

1. The differences {±(p′i − q′i)} are precisely the missing differences from (S, C)
and {±(pi − qi)} are the missing differences from (T, R).

2. If bi − ai is not a difference missing from (T, R) and di − ci is not a missing
difference from (S, C), then assume bi − ai = di − ci. Then all of the elements
{di − bi} and {vi − ui} are distinct elements of G \H.

As noted above, this definition is the same as given by Stinson in [18] hence the
following theorem still follows.

Theorem 2.7. [18] If there exist two orthogonal hn(2k)-intransitive frame starters,
then there exists a Room frame of type hn(2k).

In this paper we are interested in constructing Room frames where all the holes
have size 2. In this case the above definitions can be simplified significantly. We
will always have that G = Z2n and H = {0, n}. We will be constructing frames of
type 2n+1 on the symbols Z2n ∪ {∞1,∞2} and an intransitive frame starter will have
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exactly one missing difference d < n. Let (S, C) be a 2n+1−intransitive frame starter
where

S = {{ai, bi} : 1 ≤ i ≤ n− 1, i /∈ {d, q − p}} ∪ {u1, u2} and C = {p, q}.

We can assume that d and q − p < n are odd. Also, if i 6= d, then bi − ai = i for
1 ≤ i ≤ n − 1. Note that for the missing difference d we will have no pair {ad, bd}
in S. Let (T, R) be a second 2n+1-intransitive frame starter (with missing difference
d′) where T = {{ci, di} : 1 ≤ i ≤ n − 1, i /∈ {d′, q′ − p′}} ∪ {v1, v2} and R = {p′, q′}.
In order for (S, C) and (T, R) to be orthogonal 2n+1−intransitive frame starters the
conditions in the definition above translate to the following.

1. The difference q′ − p′ = d (the missing difference from (S, C)) and q − p = d′

(the missing difference from (T, R)), or equivalently

{±(bi − ai)} : 1 ≤ i ≤ n− 1, i 6= d, d′} ∪ {±d,±d′} = Z2n \ {0, n} and

{±(di − ci)} : 1 ≤ i ≤ n− 1, i 6= d′, d′} ∪ {±d,±d′} = Z2n \ {0, n}.

2. All of the elements {(di − bi)|1 ≤ i ≤ n − 1, i 6= d, d′}, v1 − u1 and v2 − u2 are
distinct elements of Z2n \ {0, n}. (This is called the adder).

Corollary 2.8. If there exist two orthogonal 2n+1−intransitive frame starters, then
there is a Room frame of type 2n+1. Furthermore, the two holey one-factorizations of
K2n+2 \ (n+1)K2 generated by the intransitive frame starters will be orthogonal holey
one-factorizations.

We present an example to illustrate the definitions above.

Example 2.9. Two orthogonal 210−intransitive frame starters.

First note that the group is G = Z18 and the subgroup is H = {0, 9}. Let
S = {(3, 4), (15, 17), (8, 12), (10, 16), (7, 14), (5, 13)} ∪ {1, 2}, with C = (6, 11) and
T = {(7, 8), (10, 12), (15, 1), (16, 4), (17, 6), (13, 3)} ∪ {2, 5} with R = (11, 14).

Note (S, C) is missing difference 3 and (T, R) is missing difference 5. The adder will
be (4,13,7,6,10,8,1,3) and note that S ∪ C = T ∪ R = Z18 \ {0, 9}. The first holey
one-factorization is constructed from (S, C) by taking the 18 translates in Z18 to get
the first 18 holey one-factors. The last two holey one-factors are constructed from
the pairs with difference d′ = 3, so they are {{1 + i, 4 + i} : 0 ≤ i ≤ 17, i even}
and {{1 + i, 4 + i} : 0 ≤ i ≤ 17, i odd}, respectively. Note that these last two holey
one-factors miss the hole {∞1,∞2}.

¿From Theorem 2.7 we have that given two orthogonal 2n+1-intransitive frame
starters, there exists a Room frame of type 2n+1. The following example gives the
Room frame of type 210 which results from this theorem using the starters given
in the Example 2.9. One can see that the rows of this Room frame are essentially
translates of (S, C) while the columns are translates of (T, R). The 2 × 2 ”holes”
down the diagonal are labeled for the reader’s convenience. Also note that we have
replaced ∞1 by a and ∞2 by b. The interested reader can see [18] for the details of
this construction.
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Example 2.10. A 210 Room frame constructed from the intransitive starters in Ex-
ample 2.9.

0,9 5,13 8,12 10,16 15,17 3,4 2,b 7,14 1,a 6,11
14,4 17,3 1,7 12,13 6,8 11,b 10,a 16,5 15,2

2,a 8,15 1,10 6,14 9,13 11,17 16,0 4,5 3,b 7,12
17,6 11,a 15,5 0,4 2,8 13,14 7,9 12,b 16,3

3,a 9,16 2,11 7,15 10,14 12,0 17,1 5,6 4,b 8,13
0,7 12,a 16,6 1,5 3,9 14,15 8,10 13,b 17,4

5,b 4,a 10,17 3,12 8,16 11,15 13,1 0,2 6,7 9,14
14,b 1,8 13,a 17,7 2,6 4,10 15,16 9,11 0,5

7,8 1,3 6,b 5,a 11,0 4,13 9,17 12,16 14,2 10,15
10,1216,17 15,b 2,9 14,a 0,8 3,7 5,11 1,6

8,9 2,4 7,b 6,a 12,1 5,14 10,0 13,17 15,3 11,16
11,1317,0 16,b 3,10 15,a 1,9 4,8 6,12 2,7

16,4 9,10 3,5 8,b 7,a 13,2 6,15 11,1 14,0 12,17
7,13 12,14 0,1 17,b 4,11 16,a 2,10 5,9 3,8

15,1 17,5 10,11 4,6 9,b 8,a 14,3 7,16 12,2 13,18
6,10 8,14 13,15 1,2 0,b 5,12 17,a 3,11 4,9

13,3 16,2 0,6 11,12 5,7 10,b 9,a 15,4 8,17 14,1
4,12 7,11 9,15 14,16 2,3 1,b 6,13 0,a 5,10

11,14 3,6 13,16 5,8 15,0 7,10 17,2 9,12 1,4 a, b2,5 12,15 4,7 14,17 6,9 16,1 8,11 0,3 10,13

We are now in a position to discuss the manner in which three intransitive frame
starters could be mutually orthogonal. As before we will restrict to the case where all
the holes are size 2. We again assume G = Z2n and H = {0, n}. Let 1 ≤ d1, d2, d3 < n
all be odd. Assume q1−p1 = s3−r3 = d1, q2−p2 = r1−s1 = d2 and q3−p3 = s2−r2 =
d3 and that if 1 ≤ i ≤ n − 1 with i 6= d1, d2, d3, then bi − ai = di − ci = fi − ei = i.
Let

S1 = {{ai, bi} : 1 ≤ i ≤ n− 1, i 6= d1, d2, d3} ∪ {u1, u2}, P1 = {p1, q1}, R1 = {r1, s1},

S2 = {{ci, di} : 1 ≤ i ≤ n− 1, i 6= d1, d2, d3} ∪ {v1, v2}, P2 = {p2, q2}, R2 = {r2, s2},

S3 = {{ei, fi} : 1 ≤ i ≤ n− 1, i 6= d1, d2, d3} ∪ {w1, w2}P3 = {p3, q3}, R3 = {r3, s3},

satisfy the following conditions:

1. For i = 1, 2, 3, the elements in Si ∪ Pi ∪Ri are precisely Z2n \ {0, n}.

2. Let {ad2 , bd2} = {r1, s1} and {cd2 , dd2} = {p2, q2}, then (S1, P1) and (S2, R2) are
orthogonal 2n+1−intransitive frame starters with (S1, P1) missing difference d3

and (S2, R2) missing difference d1.

3. Let {ad1 , bd1} = {p1, q1} and {ed1 , fd1} = {r3, s3}, then (S1, R1) and (S3, P3) are
orthogonal 2n+1−intransitive frame starters with (S1, R1) missing difference d3

and (S3, P3) missing difference d2.

4. Let {cd3 , dd3} = {r2, s2} and {ed3 , fd3} = {p3, q3}, then (S2, P2) and (S3, R3) are
orthogonal 2n+1−intransitive frame starters with (S2, P2) missing difference d1

and (S3, R3) missing difference d2.
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We will refer to the above sets (S1, P1, R1), (S2, P2, R2) and (S3, P3, R3) as 3 mu-
tually orthogonal 2n+1−intransitive frame starters. Since the holey one-factorizations
generated by each of the three intransitive starters will be orthogonal we will have
three mutually orthogonal one-factorizations of the graph K2n+2 − (n + 1)K2 or a
Room 3-frame of type 2n+1 as desired.

Example 2.11. 3 mutually orthogonal 210−intransitive frame starters.

Again we note that the group is G = Z18 and the subgroup is H = {0, 9}. Let

S1 = {(15, 17), (8, 12), (10, 16), (7, 14), (5, 13)} ∪ {1, 2}, P1 = (6, 11) and R1 = (3, 4).

S2 = {(10, 12), (15, 1), (16, 4), (17, 6), (13, 3)} ∪ {2, 5}, P2 = (7, 8) and R2 = (11, 14).

S3 = {(4, 6), (11, 15), (14, 2), (12, 1)(17, 7)} ∪ {3, 8}, P3 = (13, 16) and R3 = (5, 10).

Note here that d1 = 5, d2 = 1 and d3 = 3. Also see that (S1 ∪ R1, P1) = (S, C) from
Example 2.9 while the set (S2 ∪ P2, R2) = (T, R) in that example. Also, looking at
the Room frame in Example 2.10 note that the cells containing each translate in Z18

of the third starter have the property that no two are in the same row or column
and that each translate contains all of the symbols in Z18 ∪ {∞1,∞2}, i.e. each
is a transversal of the Room frame. The final two one-factors obtained from that
third starter (for the hole {∞1,∞2}) are {{1 + i, 2 + i} : 0 ≤ i ≤ 17, i even} and
{{1 + i, 2 + i} : 0 ≤ i ≤ 17, i odd} – note the cells containing the pairs in each of
these sets is also transversal of the Room frame. Hence we have a Room 3-frame of
type 210.

Theorem 2.12. There exist Room 3-frames of type 2n for n ∈ {10, 14, 15, 18, 22, 26, 30,
34}.

Proof. Example 2.11 gives 3 mutually orthogonal 210−intransitive frame starters. In
appendix B we give 3 mutually orthogonal 2n−intransitive frame starters for each
n ∈ {14, 15, 18, 22, 26, 30, 34}. 2

Skew strong starters can be used to construct 3-dimensional Room frames. The
following construction is a slight extension of a construction found in [10]. We need
the following definition. Let P = {S1, S2, . . . , Sm} be a partition of a set S where
|Si| = h for 1 ≤ i ≤ m. A partitioned incomplete latin square of type hm, is an |S|×|S|
array L, indexed by the elements of S, satisfying the following properties: (1) A cell
of L either contains an element of S or is empty; (2) The subarrays indexed by Si×Si

are empty for 1 ≤ i ≤ m. (3) Let j ∈ Si, then row j of L contains each element
of S \ Si precisely once and column j of L contains each element of S \ Si precisely
once. Note that a partitioned incomplete latin square of type 1m is equivalent to
an idempotent latin square of side m. Orthogonality of partitioned latin squares is
defined in the obvious way.

Lemma 2.13. If there exists a skew strong starter of order q and a set of 3 orthogonal
partitioned incomplete latin squares of type 1q, then there is a Room 3-frame of type
2q.
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Proof. Let |V | = |W | = q where V = {v1, v2, . . . , vq} and W = {w1, w2, . . . , wq}, and
suppose S is a skew strong starter of order q. F will denote the Room frame of type
1q defined on V and generated by S where the ith hole is associated with the element
vi of V . F ′ will denote the skew complement of F defined on W . (So F ′ is a Room
frame of type 1q defined on W where the wi is the element associated with the ith
hole.) Since F is generated by a skew strong starter, the patterned starter can be
used to construct a set of q skew transversals. Let A be the array of pairs formed
by the superposition of F and F ′, A = F ◦ F ′. Let T1, T2, . . . , Tq denote the q skew
transversals of A. So every element of V ∪ W \ {vi, wi} occurs precisely once in Ti,
i = 1, 2, . . . , q.

Let L1 be a partitioned incomplete latin square of type 1q defined on V where vi

is associated with cell (i, i). Similarly, let L2 be an orthogonal partitioned incomplete
latin square of type 1q defined on W where wi is associated with cell (i, i). Let
L be the array of pairs formed by the superposition of L1 and L2, L = L1 ◦ L2. L
contains every pair in V ×W \{(vi, wi) : i = 1, 2, . . . , q}. We use the third partitioned
incomplete latin square of type 1q to construct a set of q transversals of L, namely
N1, N2, . . . , Nq, where every element of V ∪W \{vi, wi} occurs once in Ni. (Note that
cell (i, i) which is empty is in Ni.)

We construct a 2q × 2q array as follows:

B =

(
A

L

)
It is straightforward to verify that B is a Room frame of type 2q defined on V ∪W
with holes Bi = {vi, wi}. B has a third orthogonal resolution. For hole Bi, the two
(partial) resolution classes which contain every element of V ∪W \{vi, wi} are Ti and
Ni. 2

It is easy to see that in Lemma 2.13 one can replace the ingredient of a skew
strong starter of order q, with a skew frame of type 1n which has a set of n skew
transversals.

Corollary 2.14. There exists a Room 3-frame of type 27, 211, 219, 223, 227, 229 and 231.

Proof. Skew strong starters for the necessary orders can be found in [15]. Since each
q is a prime power, there exits q − 1 mutually orthogonal latin squares, hence there
exist three orthogonal idempotent latin square of order q. 2

The next Theorem provides Room 3-frames of type 2n for many odd values of n.

Theorem 2.15. Let n ≡ 1 (mod 2), n ≥ 7 and n 6= 3m where m ≥ 5 and (m, 3) = 1.
Then there is a Room 3-frame of type 2n.

Proof. Given n, Theorem 2.8 in [14] provides a skew Room frame of type 1n with a
set of n skew transversals. When n is odd and n ≥ 7, there exists three idempotent
MOLS(n) or equivalently 3 orthogonal partitioned incomplete latin squares of type 1q

(See [3], Table III.3.83). The result now follows from Lemma 2.13 and the comment
that follows that lemma. 2
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Our main recursive construction uses group divisible designs. A group divisible
design (GDD) is a triple (X,G,B) which satisfies the following properties.

(1) G is a partition of X into subsets called groups; G = {G1, G2, . . . , Gm}.

(2) B is a collection of subsets of X, called blocks, such that a group and a block
contain at most one element in common.

(3) Every pair of elements from distinct groups occurs in precisely λ blocks.

Let K be a set of positive integers. A GDD(v; K; G1, G2, . . . , Gm; 0, λ) G is a group
divisible design of index λ with |X| = v, |B| ∈ K for every B ∈ B, and G =
{G1, G2, . . . , Gm}. The type of G is the multiset {|G1|, |G2|, . . . , |Gm|}. We usually
use exponential notation to describe the type; G has type tu1

1 tu2
2 . . . tu`

` if there are ui

Gj’s of cardinality ti, 1 ≤ i ≤ m. A GDD(v; K; G1, . . . , Gm; 0, λ) is often denoted
as a (K, λ)-GDD of type tu1

1 tu2
2 . . . tu`

` . If λ = 1, the design is usually denoted as a
K-GDD of type tu1

1 tu2
2 . . . tu`

` . For convenience, if K = {k}, the designs are denoted
as a (k, λ)-GDD or simply as a k-GDD if the index λ = 1. A K-GDD of type 1v is
also known as a pairwise balanced design and denoted by PBD(v, K). A transversal
design TD(k, n) is a k-GDD of type nk. It is well known that a TD(k, n) is equivalent
to the existence of a set of k − 2 mutually orthogonal latin squares of side n.

The next two constructions are standard recursive constructions for Room frames
(see [18]). It is straightforward to extend the proofs to d dimensions. The first
construction expands the hole size and the second fills in the holes with smaller
Room frames.

Theorem 2.16. If there exists a d-dimensional Room frame of type tu1
1 tu2

2 · · · tun
n and

a set of d mutually orthogonal latin squares of side m, then there is a d-dimensional
Room frame of type (mt1)

u1(mt2)
u2 · · · (mtn)un.

Theorem 2.17. Let F be a d-dimensional {S1, S2, . . . , Sn}-Room frame where |Si| =
2ti for i = 1, 2, . . . , n, and let t =

∑n
i=1 ti.

(i) If there exists a Room d-frame of type 2ti for each i, 1 ≤ i ≤ n, then there is
Room d-frame of type 2t.

(ii) If there exists a Room d-frame of type 2ti+1 for each i, 1 ≤ i ≤ n, then there is
a Room d-frame of type 2t+1.

Our main recursive construction is a special case of Wilson’s Fundamental Con-
struction, [21], for frames. The proof in [19] is for the two dimensional case and also
doesn’t fill in the holes, but this extension is immediate.

Theorem 2.18. (a) If there exists a GDD(v; K; G1, G2, . . . , Gm; 0, 1) such that (1)
there exists a Room d-frame of type 2k for each k ∈ K and (2) there exists a Room
d-frame of type 2|Gi|+1 for i = 1, . . . ,m, then there exists a Room d-frame of type
2v+1.

(b) If there exists a GDD(v; K; G1, G2, . . . , Gm; 0, 1) such that (1) there exists a
Room d-frame of type 2k for each k ∈ K and (2) there exists a Room d-frame of type
2|Gi| for i = 1, . . . ,m, then there exists a Room d-frame of type 2v.
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We are now in a position to construct Room 3-frames of type 2n with only a few
possible exceptions. We first gather the necessary group divisible designs in order to
employ Theorem 2.18.

Theorem 2.19. [1] There exists a PBD(v, {5, 7, 8, 9}) for v a positive integer v ≥ 5
and v /∈ N1 = {6, 10 − 20, 22, 23, 24, 26 − 34, 38, 39} except possibly for v ∈ N2 =
{42, 43, 44, 46, 51, 52, 60, 94, 95, 96, 98, 99, 100, 102, 104, 106, 107, 108, 110, 111, 116, 138,
140, 142, 146, 150, 154, 156, 158, 162, 166, 170, 172, 174, 206}.

We use this PBD result to construct group divisible designs.

Theorem 2.20. Let v be a positive integer, v ≥ 5 and v /∈ N1 ∪ N2. There exists a
GDD(v − 1; {5, 7, 8, 9}; {4, 6, 7, 8}; 0, 1).

Proof. Delete one element from the pairwise balanced designs constructed in Theo-
rem 2.19. The resulting GDDs have blocks of sizes 5, 7, 8, and 9 and groups of sizes
4, 6, 7, and 8. 2

Theorem 2.21. Let v be a positive integer, v ≥ 5 and v /∈ N1 ∪ N2. There exists a
Room 3-frame of type 2v.

Proof. We apply Theorem 2.18(a) using the group divisible designs constructed in
Theorem 2.20 and the existence of the Room 3-frames of type 2k for k = 5, 7, 8, 9.
The Room 3-frames of type 25, 28, and 29 are from Lemma 2.5 while a Room 3-frame
of type 27 exists from Corollary 2.14. 2

For most of the values of n ∈ N1, Room 3-frames of type 2n have been constructed.
The following lemma gives pointers to proofs of their existence.

Lemma 2.22. Let n ∈ N1 \ {6, 38, 39}, then there is a Room 3-frames of type 2n.

Proof. Room 3-frames of type 2n exist for n ∈ {10, 14, 15, 18, 22, 26, 30, 34} by Theo-
rem 2.12.

Room 3-frames of type 2n exist for n ∈ {11, 19, 23, 27, 29, 31} by Corollary 2.14.
Room 3-frames of type 2n for n ∈ {12, 16, 20} are given in [5].
Room 3-frames of type 2n for n ∈ {13, 17} are given in [9].
Room 3-frames of type 2n exist for n ∈ {24, 28, 32, 33} by Lemma 2.5. 2

We now construct most of the Room 3-frames of type 2n for the values of n ∈ N2.
These Room 3-frames are made via Theorem 2.18 using group divisible designs which
are constructed by truncating transversal designs. The following lemma describes
this process in more detail.

Lemma 2.23. If there exists a TD(9, m) and there exist Room 3−frames of type
2x, 2y and 2m where 0 ≤ x, y ≤ m, then there is a Room 3−frames of type 27m+x+y.

Proof. Delete m − x elements from one group and m − y elements from a second
group of the TD(9, m). The resulting design is a GDD with blocks of size 7,8, and
9 and groups of sizes m, x, and y, i.e. a GDD(7m + x + y; {7, 8, 9}; {m, x, y}). Now
use Theorem 2.18(b) to construct Room 3−frames of type 27m+x+y. 2
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We are now in position to construct Room 3−frames of type 2n for nearly all of
the values in N2.

Lemma 2.24. Let n ∈ N2 − {42, 46}. Then there exists a Room 3-frame of type 2v.

Proof. First note that 3-frames of types 244 and 252 exist by Lemma 2.5 and there
exist 3-frames of type 2n for n = 43, 95 and 107 from Theorem 2.15.

We use the direct product construction, Theorem 2.16, combined with Theo-
rem 2.17 to construct 2 more cases. For type 251, we start with a Room 3-frame of
type 45 [14] and expand by 5, then fill in the holes of the resulting frame with Room
3-frames of type 211 (via Theorem 2.17(ii)). For type 260, we start with a Room
3-frame of type 212 and expand by 5, then we fill in the holes with Room 3-frames of
type 25 (via Theorem 2.17(i)).

We construct all of the remaining cases using Lemma 2.23 with m = 11, 13, 19, 23,
and 25 and x, y ∈ {5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23}. There exist Room 3-frames of
type 2k for k ∈ {5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25} from Theorem 2.21 or Lemma 2.22.
The following table contains the details of the construction from Lemma 2.23.

n Construction n Construction
94 7 · 11 + 9 + 8 96 7 · 13 + 5
98 7 · 13 + 7 99 7 · 13 + 8
100 7 · 13 + 9 102 7 · 13 + 11
104 7 · 13 + 5 + 8 106 7 · 13 + 8 + 7
108 7 · 13 + 9 + 8 110 7 · 13 + 8 + 11
111 8 · 13 + 12 116 8 · 13 + 12
138 7 · 19 + 5 140 7 · 19 + 7
142 7 · 19 + 9 146 7 · 19 + 13
150 7 · 19 + 17 154 7 · 19 + 12 + 9
156 7 · 19 + 12 + 11 158 7 · 19 + 12 + 13
162 7 · 19 + 16 + 13 166 7 · 19 + 16 + 17
170 7 · 23 + 9 172 7 · 23 + 11
174 7 · 23 + 13 206 7 · 25 + 23 + 8

2

Combining the existence results in Theorem 2.21 and Lemmas 2.22 and 2.24 above,
we have the following.

Theorem 2.25. Let v be a positive integer, v ≥ 5. Then there exists a Room 3-frame
of type 2v except possibly for v ∈ {6, 38, 39, 42, 46}.

We do not hesitate to conjecture that Room 3-frame of type 2v exist for v ∈
{38, 39, 42, 46}. We are not as certain about the existence of a Room 3-frame of type
26.
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3 Howell cubes

In this section, we use the Room 3-frames from Section 2 and a combination of recur-
sive and direct constructions to establish the existence of Howell cubes, H3(2n, 2n+α),
for all n ≥ 4 and α ∈ {2, 4, 6, 8}.

We begin with a direct construction for Howell cubes which we will use for the
small values. As with Room frames, we again use a modified type of starter, termed
a Howell n-starter, for finding small Howell cubes. Suppose G is an additive abelian
group of order s, and s + 1 ≤ 2n ≤ 2s. A Howell n-starter in G is a set

S = {{si, ti} : 1 ≤ i ≤ s− n} ∪ {{si} : s− n + 1 ≤ i ≤ n}

that satisfies the two properties:

1. {si : 1 ≤ i ≤ n} ∪ {ti : 1 ≤ i ≤ s− n} = G;

2. (si − ti) 6= ±(sj − tj) if i 6= j.

If S is a Howell n-starter, then a set A = {{ai} : 1 ≤ i ≤ n} is an adder for S if
the elements in A are distinct, and the set

S + A = {{si + ai, ti + ai} : 1 ≤ i ≤ s− n} ∪ {{si + ai} : s− n + 1 ≤ i ≤ n}

is again a Howell n-starter. In this case the two Howell n-starters are called orthogonal
Howell n-starters.

Example 3.1. S = {{5, 6}, {2, 0}, {1}, {3}, {4}} is a Howell 5-starter in the group
G = Z7. A = {4, 5, 0, 1, 2} is an adder for S and the orthogonal Howell 5-starter is
S + A = {{2, 3}, {0, 5}, {1}, {4}, {6}}.

The existence of two orthogonal Howell n-starters in a group of order s implies
the existence of a H∗(s, 2n) (see [6]) and hence the existence of a pair of orthogonal
one-factorizations of an underlying s-regular graph on 2n vertices. Hence a set of d
mutually orthogonal Howell n-starters in a group of order s implies the existence of
a H∗

d(s, 2n). We record this in the following theorem for the case of d = 3.

Theorem 3.2. The existence of three orthogonal Howell n-starters in the group Zs

implies the existence of an H∗
3 (s, 2n)

Our main recursive construction is a easy generalization of Theorem 7.1 in [9] to
higher dimension and frames of general type.

Theorem 3.3. If there exists a GDD(v; K; M) such that (1) there exists a Room
d-frame of type 2k for each k ∈ K and (2) there exists an H∗

d(2m, 2m + α) for each
m ∈ M , then there exists an H∗

d(2v, 2v + α).

We will also use the standard direct product construction for a few small cases.

Theorem 3.4. If there exists a d-dimensional {S1, S2, . . . , Sn}-Room frame, d mu-
tually orthogonal latin squares of side u, and H∗

d(u|Si|, u|Si| + α) for i = 1, 2, . . . , n,
then there is an H∗

d(u
∑n

i=1 |Si|, u(
∑n

i=1 |Si|) + α).
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We will apply our main recursive construction Theorem 3.3 using the same group
divisible designs that were used in Theorem 2.21 for Room 3-frames. Recall that N1 =
{6, 10−20, 22, 23, 24, 26−34, 38, 39} and N2 = {42, 43, 44, 46, 51, 52, 60, 94, 95, 96, 98, 99,
100, 102, 104, 106, 107, 108, 110, 111, 116, 138, 140, 142, 146, 150, 154, 156, 158, 162, 166,
170, 172, 174, 206}.

We will need to construct some of the small H∗
3 (2v, 2v+α) directly. The following

lemma describes their construction.

Lemma 3.5. There exist H∗
3 (2n, 2n+α) for α = 2, 4, 6, 8 and 2n ∈ {8, 10, 12, 14, 16}

and also all n where n + 1 ∈ N1 ∪ {42, 43, 44, 46, 51, 52, 60}.

Proof. An H3(12, 14) is given in Example 1.2. An H3(8, 16) is equivalent to three
MOLS(8) (which clearly exist). Two of these designs can be constructed using finite
geometry; we apply Theorem 1.6 with m = 3, 5, to construct an H4(8, 10) and an
H16(32, 34).

Three orthogonal Howell starters for the H∗
3 (12, 14), H∗

3 (12, 16), H∗
3 (12, 18) and

H∗
3 (12, 20) are given in Appendix C. We use these Howell cubes and apply Theorem 3.4

using a Room 3-frame of type 17 and u = 12 to construct an H3(84, 84 + α). Three
orthogonal Howell starters for the H∗

3 (10, 12), H∗
3 (10, 14), H∗

3 (10, 16) and H∗
3 (10, 18)

are also given in Appendix C. Using these Howell cubes we apply Theorem 3.4 with
u = 5 and a Room 3-frames of type 29 to construct an H3(90, 90+α). We again apply
Theorem 3.4 with u = 5 and Room 3-frames of type 45 to construct an H3(100, 100+
α): the three orthogonal Howell starters for the H∗

3 (20, 22), H∗
3 (20, 24), H∗

3 (20, 26)
and H∗

3 (20, 28) are given at [8].
All of the remaining Howell cubes H3(2n, 2n + α) listed above are constructed

directly via Theorem 3.2 using computer searches for 3 orthogonal Howell n-starters.
For 2n ∈ {8, 10, 12, 14, 16} these starters are given in Appendix C, the larger ones
can all be found at [8]. 2

Theorem 3.6. Let v ≥ 5 be a positive integer with v /∈ N2. Then there exists an
H∗

3 (2(v − 1), 2(v − 1) + α) for α = 2, 4, 6, 8.

Proof. Let v ≥ 5 be a positive integer, v /∈ N1 ∪N2. Since there exist 3-dimensional
Room frames of type 2k for k ∈ {5, 7, 8, 9} and H∗

3 (2m, 2m + α) for m ∈ {4, 6, 7, 8}
by Lemma 3.5, we can apply Theorem 2.20 and Theorem 3.3 to construct H∗

3 (2(v −
1), 2(v− 1)+α) for α = 2, 4, 6, 8. If v ∈ N1, then there is a H∗

3 (2(v− 1), 2(v− 1)+α)
for α = 2, 4, 6, 8 by Lemma 3.5. 2

¿From Lemma 3.5 and Theorem 3.6 we see that the only remaining cases are for
H3(2(v− 1), 2(v− 1) + α) where v ≥ 94 and v ∈ N2. These remaining cases are done
using group divisible designs which are constructed by truncating transversal designs
and applying Theorem 3.3. The next result covers all of the remaining cases for v− 1
where v ∈ N2.

Lemma 3.7. There exist H∗
3 (2n, 2n+α) for α = 2, 4, 6, 8 and n ∈ {93, 94, 95, 97, 98, 99,

101, 103, 105, 106, 107, 109, 110, 115, 137, 139, 141, 145, 149, 153, 155, 157, 161, 165, 169,
171, 173, 205}.

18



Proof. As with Lemma 2.23 we again begin with a TD(9, m) to construct a GDD(7m+
x + y; {7, 8, 9}; {m, x, y}). We then apply Theorem 3.3 to obtain an H∗

3 (2n, 2n + α)
where n = 7m + x + y. For ingredients we will use m = 11, 13, 17, and 23 and
4 ≤ x, y ≤ m . There exist Room 3-frames of types 27, 28, 29 and the required Howell
cubes are constructed in Lemma 3.5. The following table contains the details of the
GDD constructions.

n Construction n Construction n Construction
93 7 · 11 + 8 + 8 94 7 · 11 + 9 + 8 95 7 · 13 + 4
97 7 · 13 + 6 98 7 · 13 + 7 99 7 · 13 + 8
101 7 · 13 + 5 + 5 103 7 · 13 + 7 + 5 105 7 · 13 + 7 + 7
106 7 · 13 + 8 + 7 107 7 · 13 + 8 + 8 109 7 · 13 + 10 + 8
110 7 · 13 + 10 + 9 115 7 · 13 + 12 + 12 137 7 · 19 + 4
139 7 · 19 + 6 141 7 · 19 + 8 145 7 · 19 + 12
149 7 · 19 + 8 + 8 153 7 · 19 + 8 + 12 155 7 · 19 + 10 + 12
157 7 · 19 + 12 + 12 165 7 · 23 + 4 169 7 · 23 + 8
171 7 · 23 + 5 + 5 173 7 · 23 + 5 + 7 205 7 · 23 + 22 + 22

2

Combining Lemma 3.5, Theorem 3.6 and Lemma 3.7 above gives us the following
result.

Theorem 3.8. Let n be a positive integer, n ≥ 4, and let α ∈ {2, 4, 6, 8}. Then there
exists an H∗

3 (2n, 2n + α).

4 Conclusion

Room 3-frames and Howell cubes are natural generalizations of Room frames and
Howell designs to three dimensions. The two dimensional problems were solved in
the 80’s, but only sporadic examples were known for higher dimensions. In this
paper we have begun the systematic study of Howell cubes and Room 3-frames. We
introduced the notion of three orthogonal intransitive frame starters which provided
some small examples of Room 3-frames. We then proved the existence of Room 3-
frames of type 2n (with at present only 5 possible exceptions). We are continuing our
study of Room 3-frames of other types; the natural case to focus on next is type hn,
for all h. Similarly, we have proven the existence of all 3 dimensional Howell designs,
H∗

3 (2n, 2n + α) for n ≥ 4 and α ∈ {2, 4, 6, 8}. In addition to Room 3-frames, the
recursive constructions that we would like to use to determine the spectrum of Howell
cubes in general also require information about the spectrum of H3(s, s + k) for k
small and odd. This is the focus of our current work as well as constructing further
cases of H∗

3 (s, 2n + α) where α > 8.
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Appendix A
In this appendix, we give three mutually orthogonal frame starters S1, S2, S3 of

type 2n for each n ∈ {8, 9, 24, 28, 32, 33, 44, 52}.

n = 8
S1: (4,5) (13,15) (6,9) (10,14) (2,7) (11,1) (12,3)
S2: (5,6) (9,11) (12,15) (3,7) (13,2) (14,4) (10,1)
S3: (10,11) (2,4) (3,6) (9,13) (12,1) (15,5) (7,14)

n = 9
S1: (2,3) (4,6) (11,14) (13,17) (7,12) (10,16) (1,8) (15,5)
S2: (12,13) (3,5) (1,4) (2,6) (10,15) (11,17) (7,14) (8,16)
S3: (1,2) (11,13) (14,17) (6,10) (3,8) (16,4) (5,12) (7,15)

n = 24
S1: (32,33) (6,8) (41,44) (5,9) (22,27) (19,25) (3,10) (15,23) (29,38) (42,4) (35,46) (31,43)

(26,39) (47,13) (1,16) (20,36) (11,28) (12,30) (2,21) (45,17) (34,7) (18,40) (14,37)
S2: (6,7) (18,20) (32,35) (41,45) (37,42) (8,14) (23,30) (28,36) (10,19) (2,12) (4,15)

(17,29) (25,38) (43,9) (34,1) (31,47) (16,33) (26,44) (3,22) (39,11) (40,13) (5,27) (46,21)
S3: (45,46) (2,4) (29,32) (3,7) (42,47) (6,12) (30,37) (27,35) (11,20) (33,43) (15,26) (9,21)

(10,23) (14,28) (38,5) (1,17) (22,39) (13,31) (25,44) (16,36) (19,40) (34,8) (18,41)

n = 28
S1: (10,11) (32,34) (15,18) (25,29) (54,3) (49,55) (33,40) (50,2) (53,6) (27,37) (5,16)

(9,21) (39,52) (22,36) (31,46) (41,1) (13,30) (17,35) (44,7) (4,24) (26,47) (20,42) (45,12)
(51,19) (23,48) (38,8) (43,14)

S2: (31,32) (12,14) (38,41) (13,17) (53,2) (9,15) (44,51) (26,34) (27,36) (49,3) (46,1)
(42,54) (35,48) (11,25) (6,21) (4,20) (7,24) (22,40) (47,10) (30,50) (8,29) (33,55) (16,39)
(37,5) (18,43) (19,45) (52,23)

S3: (21,22) (31,33) (3,6) (12,16) (4,9) (13,19) (40,47) (7,15) (2,11) (35,45) (37,48) (43,55)
(51,8) (20,34) (23,38) (36,52) (29,46) (32,50) (25,44) (54,18) (5,26) (17,39) (30,53) (42,10)
(24,49) (1,27) (14,41)

n = 32
S1: (53,54) (46,48) (37,40) (24,28) (56,61) (11,17) (62,5) (7,15) (51,60) (25,35) (12,23)

(8,20) (26,39) (16,30) (18,33) (42,58) (21,38) (27,45) (44,63) (47,3) (10,31) (55,13) (34,57)
(49,9) (43,4) (52,14) (59,22) (1,29) (41,6) (36,2) (19,50)

S2: (26,27) (2,4) (7,10) (37,41) (46,51) (15,21) (43,50) (1,9) (35,44) (52,62) (34,45) (55,3)
(47,60) (24,38) (5,20) (61,13) (6,23) (22,40) (11,30) (58,14) (28,49) (54,12) (16,39) (18,42)
(8,33) (31,57) (36,63) (53,17) (19,48) (29,59) (25,56)

S3: (48,49) (37,39) (23,26) (20,24) (36,41) (29,35) (61,4) (11,19) (63,8) (40,50) (14,25)
(46,58) (43,56) (17,31) (54,5) (2,18) (62,15) (3,21) (34,53) (13,33) (59,16) (52,10) (22,45)
(47,7) (51,12) (44,6) (38,1) (27,55) (28,57) (30,60) (42,9)

n = 33
S1: (50,51) (35,37) (38,41) (5,9) (52,57) (15,21) (24,31) (22,30) (4,13) (2,12) (54,65)

(62,8) (27,40) (55,3) (49,64) (29,45) (17,34) (10,28) (23,42) (43,63) (18,39) (36,58) (59,16)
(1,25) (60,19) (47,7) (26,53) (44,6) (32,61) (56,20) (46,11) (48,14)
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S2: (36,37) (30,32) (39,42) (31,35) (15,20) (17,23) (1,8) (26,34) (46,55) (61,5) (27,38)
(52,64) (57,4) (62,10) (14,29) (43,59) (2,19) (47,65) (44,63) (21,41) (54,9) (56,12) (50,7)
(25,49) (3,28) (53,13) (45,6) (60,22) (11,40) (18,48) (51,16) (58,24)

S3: (61,62) (3,5) (10,13) (55,59) (34,39) (43,49) (4,11) (7,15) (63,6) (17,27) (31,42) (9,21)
(45,58) (26,40) (50,65) (8,24) (12,29) (30,48) (37,56) (32,52) (23,44) (19,41) (57,14) (22,46)
(35,60) (25,51) (20,47) (54,16) (38,1) (64,28) (53,18) (36,2)

n = 44
S1: (31,32) (62,64) (2,5) (82,86) (79,84) (63,69) (26,33) (27,35) (51,60) (58,68) (41,52)

(3,15) (85,10) (67,81) (39,54) (34,50) (25,42) (12,30) (17,36) (77,9) (75,8) (80,14) (48,71)
(22,46) (45,70) (57,83) (74,13) (28,56) (24,53) (65,7) (76,19) (11,43) (4,37) (38,72) (73,20)
(23,59) (18,55) (66,16) (78,29) (21,61) (87,40) (47,1) (6,49)

S2: (23,24) (84,86) (29,32) (8,12) (52,57) (75,81) (66,73) (83,3) (61,70) (20,30) (71,82)
(67,79) (49,62) (5,19) (48,63) (87,15) (68,85) (13,31) (34,53) (17,37) (55,76) (28,50) (18,41)
(35,59) (22,47) (38,64) (45,72) (14,42) (65,6) (10,40) (58,1) (77,21) (27,60) (56,2) (4,39)
(7,43) (9,46) (16,54) (74,25) (11,51) (80,33) (36,78) (26,69)

S3: (86,87) (25,27) (72,75) (63,67) (17,22) (4,10) (46,53) (15,23) (42,51) (71,81) (62,73)
(1,13) (57,70) (54,68) (33,48) (24,40) (77,6) (79,9) (64,83) (38,58) (26,47) (30,52) (37,60)
(76,12) (20,45) (80,18) (82,21) (11,39) (66,7) (5,35) (34,65) (29,61) (41,74) (16,50) (84,31)
(19,55) (32,69) (78,28) (85,36) (56,8) (2,43) (49,3) (59,14)

n = 52
S1: (21,22) (71,73) (3,6) (4,8) (78,83) (100,2) (27,34) (60,68) (82,91) (57,67) (50,61)

(77,89) (56,69) (30,44) (32,47) (85,101) (45,62) (41,59) (29,48) (26,46) (10,31) (80,102)
(63,86) (92,12) (84,5) (11,37) (1,28) (96,20) (94,19) (51,81) (97,24) (40,72) (66,99) (54,88)
(18,53) (7,43) (76,9) (17,55) (98,33) (103,39) (49,90) (23,65) (36,79) (14,58) (74,15) (93,35)
(70,13) (16,64) (38,87) (25,75) (95,42)

S2: (4,5) (29,31) (70,73) (75,79) (15,20) (87,93) (91,98) (36,44) (97,2) (37,47) (99,6)
(68,80) (45,58) (9,23) (102,13) (25,41) (72,89) (35,53) (76,95) (103,19) (63,84) (21,43) (67,90)
(27,51) (34,59) (100,22) (12,39) (66,94) (56,85) (32,62) (18,49) (69,101) (48,81) (8,42) (11,46)
(28,64) (77,10) (50,88) (57,96) (71,7) (24,65) (92,30) (78,17) (16,60) (38,83) (40,86) (14,61)
(26,74) (33,82) (55,1) (3,54)

S3: (83,84) (36,38) (31,34) (88,92) (57,62) (44,50) (102,5) (29,37) (39,48) (17,27) (11,22)
(13,25) (67,80) (64,78) (58,73) (24,40) (55,72) (3,21) (86,1) (81,101) (49,70) (6,28) (85,4)
(32,56) (66,91) (16,42) (18,45) (33,61) (87,12) (69,99) (43,74) (65,97) (63,96) (77,7) (89,20)
(98,30) (75,8) (9,47) (100,35) (53,93) (82,19) (76,14) (51,94) (46,90) (15,60) (68,10) (59,2)
(23,71) (54,103) (95,41) (79,26)

Appendix B
In this appendix, we give three mutually orthognal 2n-intransitive frame starters S1, S2, S3

for each n ∈ {14, 15, 18, 22, 26, 30, 34}.

n = 14

S1 = {(21, 19), (15, 11), (7, 12), (17, 23), (14, 22), (25, 8), (10, 20), (24, 9), (4, 18)} ∪ {5, 16},
P1 = (3, 6), R1 = (1, 2)
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S2 = {(7, 5), (19, 15), (22, 1), (14, 20), (16, 24), (23, 6), (18, 2), (25, 10), (3, 17)} ∪ {21, 12},
P2 = (8, 9), R2 = (4, 11)

S3 = {(9, 7), (5, 1), (12, 17), (24, 4), (8, 16), (14, 23), (19, 3), (21, 6), (22, 10)} ∪ {15, 20}
P3 = (11, 18), R2 = (25, 2)

n = 15

S1 = {(24, 26), (8, 11), (16, 20), (13, 18), (17, 23), (27, 7), (15, 25), (10, 21), (22, 6), (19, 4)} ∪
{5, 9}, P1 = (3, 12), R1 = (1, 2)

S2 = {(17, 19), (4, 7), (22, 26), (15, 20), (5, 11), (2, 10), (13, 23), (1, 12), (9, 21), (3, 16)}∪{18, 8},
P2 = (24, 25), R2 = (27, 6)

S3 = {(9, 11), (20, 23), (6, 10), (16, 21), (27, 5), (4, 12), (19, 1), (25, 8), (18, 2), (13, 26)}∪{7, 15},
P3 = (17, 24), R3 = (22, 3)

n = 18

S1 = {(10, 12), (30, 33), (14, 18), (11, 16), (26, 32), (22, 29), (20, 28), (15, 24), (31, 7), (8, 19),
(27, 5), (23, 3), (9, 25)} ∪ {4, 13}, P1 = (6, 21), R1 = (1, 2)

S2 = {(2, 4), (18, 21), (26, 30), (32, 3), (29, 1), (24, 31), (15, 23), (16, 25), (10, 20), (28, 5), (7, 19),
(33, 13), (6, 22)} ∪ {12, 11}, P2 = (8, 9), R2 = (14, 27)

S3 = {(5, 7), (15, 18), (28, 32), (3, 8), (14, 20), (16, 23), (30, 4), (24, 33), (21, 31), (29, 6), (1, 13),
(22, 2), (27, 9)} ∪ {19, 10}, P3 = (12, 25), R3 = (11, 26)

n = 22

S1 = {(32, 33), (18, 20), (9, 13), (31, 37), (29, 36), (27, 35), (39, 7), (17, 28), (4, 16), (41, 12),
(11, 25), (23, 38), (8, 24), (2, 19), (22, 40), (15, 34), (10, 30)} ∪ {3, 26}, P1 = (5, 14),
R1 = (1, 6)

S2 = {(26, 27), (38, 40), (20, 24), (23, 29), (10, 17), (31, 39), (2, 12), (5, 16), (41, 11), (15, 28),
(35, 7), (30, 3), (18, 34), (33, 8), (37, 13), (6, 25), (36, 14)} ∪ {1, 32}, P2 = (4, 9),
R2 = (19, 22)

S3 = {(4, 5), (15, 17), (36, 40), (38, 2), (6, 13), (25, 33), (31, 41), (7, 18), (10, 22), (24, 37),
(39, 11), (1, 16), (19, 35), (3, 20), (32, 8), (9, 28), (34, 12)} ∪ {26, 29}, P3 = (27, 30),
R3 = (14, 23)

n = 26

S1 = {(13, 14), (44, 46), (5, 8), (47, 1), (31, 36), (17, 23), (30, 37), (40, 48), (24, 33), (2, 12), (18, 29),
(4, 16), (15, 28), (42, 6), (19, 35), (26, 43), (20, 38), (22, 41), (7, 27), (39, 11), (21, 45)}∪{3, 10},
P1 = (34, 49)), R1 = (9, 32))

S2 = {(6, 7), (40, 42), (34, 37), (24, 28), (17, 22), (8, 14), (38, 45), (47, 5), (11, 20), (3, 13), (15, 26),
(39, 1), (36, 49), (46, 10), (32, 48), (2, 19), (23, 41), (16, 35), (9, 29), (21, 43), (44, 18)}∪{27, 30},
P2 = (31, 4), R2 = (12, 33)
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S3 = {(26, 27), (32, 34), (20, 23), (15, 19), (40, 45), (48, 4), (42, 49), (44, 2), (38, 47), (18, 28), (10, 21),
(24, 36), (43, 6), (39, 3), (41, 7), (13, 30), (11, 29), (12, 31), (17, 37), (33, 5), (22, 46)}∪{8, 9},
P3 = (14, 35), R3 = (1, 16)

n = 30

S1 = {(18, 19), (22, 24), (4, 7), (2, 6), (20, 25), (44, 50), (42, 49), (48, 56), (57, 8), (37, 47), (32, 43),
(28, 40), (21, 35), (38, 54), (10, 27), (23, 41), (17, 36), (53, 15), (30, 51), (45, 9), (11, 34), (31, 55),
(46, 13), (26, 52), (5, 33)} ∪ {3, 14}, P1 = (12, 39), R1 = (1, 16)

S2 = {(16, 17), (49, 51), (3, 6), (11, 15), (7, 12), (41, 47), (55, 4), (28, 36), (39, 48), (13, 23), (20, 31),
(45, 57), (24, 38), (10, 26), (33, 50), (19, 37), (2, 21), (32, 52), (25, 46), (18, 40), (30, 53), (35, 1),
(9, 34), (54, 22), (44, 14)} ∪ {5, 8}, P2 = (27, 42), R2 = (43, 56)

S3 = {(1, 2), (26, 28), (43, 46), (5, 9), (6, 11), (32, 38), (3, 10), (14, 22), (12, 21), (39, 49), (25, 36),
(15, 27), (41, 55), (34, 50), (40, 57), (35, 53), (23, 42), (51, 13), (45, 8), (52, 16), (33, 56), (7, 31),
(19, 44), (4, 30), (48, 18)} ∪ {17, 54}, P3 = (24, 37), R3 = (20, 47)

n = 34

S1 = {(7, 8), (52, 54), (36, 39), (5, 9), (16, 21), (35, 41), (22, 29), (20, 28), (10, 19), (47, 57), (48, 59),
(56, 2), (65, 12), (37, 51), (55, 4), (44, 60), (14, 32), (63, 17), (40, 61), (24, 46), (25, 49), (64, 23),
(43, 3), (26, 53), (6, 34), (13, 42), (15, 45), (27, 58), (30, 62)} ∪ {11, 38}, P1 = (31, 50),
R1 = (1, 18)

S2 = {(3, 4), (41, 43), (27, 30), (54, 58), (48, 53), (61, 1), (52, 59), (8, 16), (15, 24), (34, 44), (46, 57),
(37, 49), (6, 19), (21, 35), (2, 17), (7, 23), (13, 31), (36, 56), (63, 18), (28, 50), (47, 5), (26, 51),
(60, 20), (11, 38), (14, 42), (10, 39), (25, 55), (9, 40), (32, 64)} ∪ {45, 62}, P2 = (12, 29),
R2 = (65, 22)

S3 = {(18, 19), (34, 36), (9, 12), (58, 62), (42, 47), (32, 38), (65, 6), (14, 22), (1, 10), (45, 55), (43, 54),
(59, 5), (40, 53), (13, 27), (16, 31), (28, 44), (63, 15), (26, 46), (2, 23), (17, 39), (24, 48), (49, 8),
(51, 11), (30, 57), (41, 3), (35, 64), (61, 25), (29, 60), (20, 52)}∪{21, 4}, P3 = (50, 7), R3 =
(37, 56)

Appendix C
In the following, three orthogonal Howell starters are given for 2n = 8, 10, 12, 14 and 16.

These can be used to construct H3(2n, 2n + α) for α = 2, 4, 6, 8. Note that if x = 2n + i,
then x represents ∞i for 1 ≤ i ≤ α.

2n = 8
H3(8, 12)

S1: (4,5) (2,12) (3,6) (8,9) (1,11) (7,10)
S2: (2,3) (7,12) (5,8) (4,9) (1,11) (6,10)
S3: (3,4) (5,12) (7,2) (8,9) (6,11) (1,10)

H3(8, 14)
S1: (8,1) (7,12) (5,9) (2,13) (4,11) (3,10) (6,14)
S2: (2,3) (6,12) (5,9) (7,13) (8,11) (4,10) (1,14)
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S3: (5,6) (3,12) (7,9) (8,13) (4,11) (2,10) (1,14)

2n = 10
H3(10, 12)

S1: (5,6) (10,2) (1,4) (3,7) (8,11) (9,12)
S2: (9,10) (6,8) (2,5) (3,7) (1,11) (4,12)
S3: (3,4) (7,9) (5,8) (2,6) (1,11) (10,12)

H3(10, 14)
S1: (7,8) (4,6) (9,2) (5,13) (1,12) (10,11) (3,14)
S2: (9,10) (4,6) (8,1) (3,13) (2,12) (5,11) (7,14)
S3: (5,6) (7,9) (8,1) (2,13) (3,12) (10,11) (4,14)

H3(10, 16)
S1: (7,13) (3,15) (9,2) (1,5) (4,14) (10,16) (6,11) (8,12)
S2: (6,13) (4,15) (2,5) (9,3) (10,14) (7,16) (1,11) (8,12)
S3: (5,13) (7,15) (8,1) (6,10) (4,14) (2,16) (3,11) (9,12)

H3(10, 18)
S1: (8,17) (10,18) (4,7) (6,16) (2,14) (3,15) (1,11) (9,13) (5,12)
S2: (4,17) (1,18) (9,2) (3,16) (10,14) (6,15) (5,11) (8,13) (7,12)
S3: (4,17) (2,18) (3,6) (9,16) (7,14) (1,15) (8,11) (10,13) (5,12)

2n = 12

H3(12, 14)
S1: (11,12) (8,10) (6,9) (1,5) (2,7) (3,14) (4,13)
S2: (1,2) (5,7) (9,12) (6,10) (3,8) (11,14) (4,13)
S3: (8,9) (3,5) (10,1) (12,4) (2,7) (11,14) (6,13)

H3(12, 16)
S1: (12,1) (4,6) (11,2) (8,13) (5,10) (7,14) (3,15) (9,16)
S2: (6,7) (1,3) (2,5) (8,13) (4,9) (12,14) (11,15) (10,16)
S3: (8,9) (11,1) (2,5) (12,13) (10,3) (7,14) (4,15) (6,16)

H3(12, 18)
S1: (6,7) (2,4) (1,17) (5,9) (10,15) (3,16) (8,18) (12,14) (11,13)
S2: (7,8) (11,1) (12,17) (5,9) (4,15) (10,16) (6,18) (2,14) (3,13)
S3: (7,8) (12,2) (3,17) (9,1) (10,15) (6,16) (4,18) (11,14) (5,13)

H3(12, 20)
S1: (7,16) (8,20) (3,6) (9,18) (11,4) (12,14) (2,19) (1,17) (10,13) (5,15)
S2: (12,16) (5,20) (7,10) (11,18) (9,2) (6,14) (3,19) (8,17) (1,13) (4,15)
S3: (8,16) (10,20) (11,2) (12,18) (4,9) (6,14) (1,19) (5,17) (7,13) (3,15)

2n = 14
H3(14, 16)

S1: (9,10) (6,8) (13,2) (14,4) (7,12) (11,3) (5,15) (1,16)
S2: (7,8) (10,12) (1,4) (9,13) (14,5) (11,3) (2,15) (6,16)
S3: (6,7) (13,1) (9,12) (4,8) (5,10) (11,3) (14,15) (2,16)

H3(14, 18)
S1: (6,7) (8,10) (12,1) (14,4) (9,18) (11,3) (13,15) (5,17) (2,16)
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S2: (7,8) (12,14) (6,9) (13,3) (1,18) (4,10) (11,15) (2,17) (5,16)
S3: (12,13) (7,9) (5,8) (10,14) (4,18) (11,3) (1,15) (2,17) (6,16)

H3(14, 20)
S1: (8,9) (11,13) (3,18) (6,10) (14,16) (1,7) (5,20) (4,19) (2,15) (12,17)
S2: (4,5) (14,2) (1,18) (6,10) (9,16) (7,13) (12,20) (8,19) (3,15) (11,17)
S3: (11,12) (6,8) (3,18) (10,14) (5,16) (7,13) (1,20) (2,19) (4,15) (9,17)

H3(14, 22)
S1: (3,4) (2,19) (12,1) (10,14) (7,17) (5,20) (8,16) (11,15) (6,22) (13,18) (9,21)
S2: (5,6) (8,19) (10,13) (14,4) (3,17) (2,20) (1,16) (12,15) (11,22) (7,18) (9,21)
S3: (9,10) (14,19) (5,8) (13,3) (1,17) (2,20) (4,16) (6,15) (7,22) (12,18) (11,21)

2n = 16
H3(16, 18)

S1: (5,6) (10,12) (11,14) (16,4) (3,8) (1,7) (2,9) (15,18) (13,17)
S2: (13,14) (4,6) (8,11) (1,5) (10,15) (3,9) (16,7) (2,18) (12,17)
S3: (10,11) (12,14) (4,7) (15,3) (1,6) (2,8) (9,16) (5,18) (13,17)

H3(16, 20)
S1: (13,14) (2,4) (7,10) (5,9) (12,1) (11,17) (8,15) (3,18) (16,19) (6,20)
S2: (5,6) (7,9) (1,4) (8,12) (13,2) (11,17) (3,10) (16,18) (14,19) (15,20)
S3: (13,14) (16,2) (6,9) (7,11) (15,4) (12,17) (1,8) (10,18) (5,19) (3,20)

H3(16, 22)
S1: (16,20) (5,7) (3,6) (10,14) (12,18) (11,1) (2,9) (13,19) (15,17) (8,22) (4,21)
S2: (8,20) (2,4) (6,9) (11,15) (3,18) (10,16) (14,5) (7,19) (1,17) (12,22) (13,21)
S3: (13,20) (14,16) (4,7) (15,3) (12,18) (5,11) (1,8) (9,19) (2,17) (6,22) (10,21)

H3(16, 24)
S1: (1,17) (14,23) (16,3) (2,18) (7,12) (5,11) (15,6) (10,24) (9,22) (13,19) (8,20) (4,21)
S2: (7,17) (13,23) (5,8) (9,18) (10,15) (16,6) (12,3) (2,24) (11,22) (14,19) (1,20) (4,21)
S3: (16,17) (5,23) (10,13) (8,18) (12,1) (3,9) (7,14) (6,24) (2,22) (15,19) (11,20) (4,21)
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