The Hamilton-Waterloo problem with triangle-factors and Hamilton cycles: The case $n \equiv 3(\bmod 18)$

Alan C.H. Ling
Dept. of Computer Science
University of Vermont
Burlington, Vermont
J.H. Dinitz
Dept. of Mathematics and Statistics
University of Vermont
Burlington, Vermont

February 13, 2008

Abstract

The Hamilton-Waterloo problem in the case of triangle-factors and Hamilton cycles asks for a 2-factorization of K_{n} in which each 2-factor is either a Hamilton cycle or a triangle-factor. Necessarily $n \equiv 3(\bmod$ $6)$. The case of $n \equiv 9(\bmod 18)$ was completely solved in 2004 by Horak, Nedela and Rosa. In this note we solve the problem when $n \equiv 3$ $(\bmod 18)$ and there are at least two Hamilton cycles. A companion paper treats the case when there is exactly one Hamilton cycle and $n \equiv 3(\bmod 6)$.

1 Definitions and Background

This paper is based on the paper by Horak, Nedela and Rosa [4]. We refer the reader to that paper and to [3] for background on the

Hamilton-Waterloo problem and also to [1] or [2] for general reference to terms which may not be defined. We begin by giving the necessary definitions from [4]. Let $\mathrm{HW}^{*}(6 k+3)$ be the set of all integers r such that there exists a 2 -factorization of $K_{6 k+3}$ in which r of the 2 -factors are Hamilton cycles, and the remaining $s=3 k+1-r$ two-factors are triangle-factors (spanning sets of $2 k+1$ triangles). Clearly then $\mathrm{HW}^{*}(6 k+3) \subseteq\{0,1, \ldots 3 k+1\}$. Define $I(6 k+3)=\{0,1, \ldots 3 k+1\}$. It it is well-known that Hamilton factorizations of $K_{6 k+3}$ exist as do triangle-factorizations (Kirkman triple systems), hence $\{0,3 k+1\} \subset$ $\mathrm{HW}^{*}(6 k+3)$.

Let the vertex set of $K_{6 k+3}$ be the set $\mathbb{Z}_{2 k+1} \times\{0,1,2\}$, where $k \geq 1$. As was done in [4] the notation is simplified by letting $\mathbb{Z}_{2 k+1} \times$ $\{0\}=A=\left\{a_{0}, a_{1}, \ldots a_{2 k}\right\}, \mathbb{Z}_{2 k+1} \times\{1\}=B=\left\{b_{0}, b_{1}, \ldots b_{2 k}\right\}$ and $\mathbb{Z}_{2 k+1} \times\{2\}=C=\left\{c_{0}, c_{1}, \ldots c_{2 k}\right\}$. All indices will be taken modulo $2 k+1$. For $0 \leq d \leq 2 k$, define the set of edges

$$
\begin{aligned}
& (A B)_{d}=\left\{\left\{a_{i}, b_{i+d}: i=0,1, \ldots 2 k\right\},\right. \\
& (B C)_{d}=\left\{\left\{b_{i}, c_{i+d}: i=0,1, \ldots 2 k\right\},\right. \text { and } \\
& (C A)_{d}=\left\{\left\{c_{i}, a_{i+d}: i=0,1, \ldots 2 k\right\} .\right.
\end{aligned}
$$

Hence the edge set E of the complete graph $K_{6 k+3}$ can be written as

$$
E=E([A]) \cup E([B]) \cup E([C]) \cup \bigcup_{d=0}^{2 k}\left\{(A B)_{d} \cup(B C)_{d} \cup(C A)_{d}\right\} .
$$

where $[X]$ is the complete graph induced by the set of vertices X.
For each $0 \leq d \leq 2 k$, let F_{d} denote the subgraph induced by the set of edges $(A B)_{d} \cup(B C)_{d} \cup(C A)_{-2 d}$. Then clearly, for each $0 \leq d \leq 2 k, F_{d}$ is a triangle-factor of $K_{6 k+3}$ where the edges of F_{d} form the triangles ($a_{i}, b_{i+d}, c_{i+2 d}$) for $i=0,1, \ldots 2 k$.

The following three results are all from [4].
Lemma 1.1 [4] Let $-2 k \leq p, q, r \leq 2 k$ be integers such that $p+q+r$ and $2 k+1$ are relatively prime. Then the set of edges $(A B)_{p} \cup(B C)_{q} \cup$ $(C A)_{r}$ induce a Hamilton cycle of $K_{6 k+3}$.

Corollary 1.2 [4] For each $d=0,1, \ldots 2 k-1$, the edges of $F_{d} \cup F_{d+1}$ can be decomposed into two Hamilton cycles.

The following gives a partial result for $\mathrm{HW}^{*}(n)$ in the case when $n \equiv 3(\bmod 18)$.

Theorem 1.3 [4] Let $n=6 k+3$ with $k \equiv 0$ or $2(\bmod 3)$. Then $\{(n+3) / 6,(n+3) / 6+2,(n+3) / 6+3, \ldots(n-1) / 2\} \subset H W^{*}(n)$.

2 Main Result

We begin with a corollary to Lemma 1.1.
Corollary 2.1 The edges of $F_{1} \cup F_{2} \cup F_{3}$ can be decomposed into three Hamilton cycles.

Proof. View the edge set of $F_{1} \cup F_{2} \cup F_{3}$ as the union of sets $G_{1} \cup$ $G_{2} \cup G_{3}$ where $G_{1}=(A B)_{1} \cup(B C)_{1} \cup(C A)_{-4}, G_{2}=(A B)_{2} \cup(B C)_{2} \cup$ $(C A)_{-6}$, and $G_{3}=(A B)_{3} \cup(B C)_{3} \cup(C A)_{-2}$. As all three numbers $1+1-4,2+2-6$ and $3+3-2$ are relatively prime to $2 k+1$, by Lemma 1.1 each of the three graphs G_{1}, G_{2} and G_{3} is a Hamilton cycle.

An important ingredient in the main proof is a Hanani triple system. Assume that $v \equiv 1(\bmod 6)$, a Hanani triple $\operatorname{system}, \operatorname{HTS}(v)$, is a Steiner triple system on v points with a partition of its blocks into ($v-1$)/2 maximum parallel classes, and a single partial parallel class with $(v-1) / 6$ blocks. If we let $v=2 k+1$, then we see that there are k classes each missing exactly one point and there is one class which misses $k+1$ points. It follows since the replication number of an $\operatorname{STS}(2 k+1)$ is k, that each point is missing from exactly one class of blocks. The following theorem gives the necessary and sufficient conditions for the existence of a Hanani triple system of order v.

Theorem 2.2 [5] A Hanani triple system of order v exists if and only if $v \equiv 1(\bmod 6)$ and $v \notin\{7,13\}$.

We are now ready to prove our main result.
Theorem 2.3 Let $n=6 k+3$ with $k \equiv 0(\bmod 3)$ and $k \neq 3,6$. Then $\{2,3, \ldots,(n-1) / 2\} \subset H W^{*}(n)$.

Proof. Since $n=6 k+3$ with $k \equiv 0(\bmod 3)$ we have that $|A|=$ $|B|=|C| \equiv 1(\bmod 6)$. Hence from Theorem 2.2 there exists a Hanani triple system of order $|A|=2 k+1$. Put the blocks of a $\operatorname{HTS}(2 k+1)$ on the points of A such that for $0 \leq i \leq k-1$ the point a_{i} is missing from the i th maximum parallel class (call this A_{i}) and the points $a_{k}, a_{k+1}, \ldots a_{2 k}$ are missing from the last class, A_{k}. Do the same on the points of B and C. Now for $0 \leq i \leq k-1$, let $T_{i}=$ $A_{i} \cup B_{i} \cup C_{i} \cup\left\{\left\{a_{i}, b_{i}, c_{i}\right\}\right\}$ and let $T_{k}=A_{k} \cup B_{k} \cup C_{k} \cup \bigcup_{j=k}^{2 k}\left\{a_{j}, b_{j}, c_{j}\right\}$. There are $k+1$ of these T_{i} 's each of which is a triangle-factor of K_{n} and $\bigcup_{i=0}^{k} T_{i}=E([A]) \cup E([B]) \cup E([C]) \cup F_{0}$.

To show that $2 m \in \operatorname{HW}^{*}(n)$ for $2 m \leq 2 k$ apply Corollary 1.2 to $\left\{F_{2 i-1}, F_{2 i}\right\}$ for each $i=1,2, \ldots, m$. The triangle-factors are formed by $F_{j}, j=2 m+1,2 m+2, \ldots, 2 k$ and by $T_{j}, j=0,1, \ldots k$. To show that $2 m+1 \in \mathrm{HW}^{*}(n)$ for $3 \leq 2 m+1 \leq 2 k-1$ first apply Corollary 2.1 to $\left\{F_{1}, F_{2}, F_{3}\right\}$ to obtain 3 Hamilton cycles. If $2 m+1 \geq 5$ apply Corollary 1.2 to $\left\{F_{2 i}, F_{2 i+1}\right\}$ for $i=2,3, \ldots, m$. The T_{i} 's and the remaining F_{i} 's form the triangle-factors in the 2-factorization.

Hence we have that $\{2,3, \ldots 2 k-1,2 k\}=\{2,3, \ldots(n-3) / 3\} \subset$ $\mathrm{HW}^{*}(n)$. Combining these values with those from Theorem 1.3 completes the proof.

Combining Theorem 2.3 with some other known results give us the (almost) complete spectrum for $\operatorname{HW}(n)$ in the case where $n \equiv 3(\bmod$ 18). We state this as our final theorem.

Theorem 2.4 Let $n \equiv 3(\bmod 18)$, then $H W^{*}(n)=I(n)=\{0,1, \ldots,(n-$ 1)/2\} except possibly that $1 \notin H W^{*}(n)$ if $n=93,111,129,183$, or 201 .

Proof. When $n=21$ and $n=39$ the result is proven in [4]. The existence of Hamilton cycle decompositions for all K_{v} with v odd proves that $0 \in \operatorname{HW}^{*}(n)$ for $n \equiv 3(\bmod 18)$ and hence in conjunction with Theorem 2.3 we have that $I(n) \backslash\{1\} \subset \operatorname{HW}^{*}(n)$ for all $n \equiv 3$ $(\bmod 18)$. In $[3]$ it is shown that $1 \in \mathrm{HW}^{*}(n)$ for all but 13 values of n. These exceptional cases when $n \equiv 3(\bmod 18)$ are $n=93,111,129,183$, and 201.

3 Conclusion

We conclude by summarizing what is known about the HamiltonWaterloo problem on n vertices with triangle-factors and Hamilton cycles. The necessary condition is that $n=3 \bmod 6$. The problem is completely solved when $n=3$ or $9(\bmod 18)$ and the number of Hamilton cycles is at least 2 (from [4] and this paper). The problem is also solved when $n=15(\bmod 18)$ and the number of Hamilton cycles is in the set $\{(n+3) / 6,(n+3) / 6+2,(n+3) / 6+3, \ldots(n-1) / 2\}[4]$ (this is the top $2 / 3$ of the possible spectrum).

In the case where there is exactly one Hamilton cycle and all the other cycles are triangle factors, there is a solution to the HamiltonWaterloo problem for all $n=3(\bmod 6)$ except possibly for 14 cases, namely when $n \in\{93,111,123,129,141,153,159,177,183,201,207$, $213,237,249\}[3]$.

References

[1] C.J. Colbourn and J.H. Dinitz, Handbook of Combinatorial Designs, Second Edition, Chapman \& Hall/CRC, Boca Raton, Fl., 2007.
[2] C.J. Colbourn and A. Rosa, Triple Systems, Oxford University Press, Oxford, 1999.
[3] J.H. Dinitz and A.C.H. Ling, The Hamilton-Waterloo problem: The case of triangle-factors and one Hamilton cycle, submitted.
[4] P. Horak, R. Nedela, and A. Rosa, The Hamilton-Waterloo problem: the case of Hamilton cycles and triangle-factors, Discrete Math. 284 (2004), pp. 181-188.
[5] S.A. Vanstone, D.R. Stinson, P.J. Schellenberg, A. Rosa, R.S. Rees, C.J. Colbourn, M.W. Carter, and J. Carter, Hanani triple systems, Israel J. Math. 83 (1993), pp.305-319.

