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Abstract

The Hamilton-Waterloo problem in the case of triangle-factors and
Hamilton cycles asks for a 2-factorization of Kn in which each 2-factor
is either a Hamilton cycle or a triangle-factor. Necessarily n ≡ 3 (mod
6). The case of n ≡ 9 (mod 18) was completely solved in 2004 by
Horak, Nedela and Rosa. In this note we solve the problem when n ≡ 3
(mod 18) and there are at least two Hamilton cycles. A companion
paper treats the case when there is exactly one Hamilton cycle and
n ≡ 3 (mod 6) .

1 Definitions and Background

This paper is based on the paper by Horak, Nedela and Rosa [4].
We refer the reader to that paper and to [3] for background on the
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Hamilton-Waterloo problem and also to [1] or [2] for general reference
to terms which may not be defined. We begin by giving the necessary
definitions from [4]. Let HW*(6k + 3) be the set of all integers r such
that there exists a 2-factorization of K6k+3 in which r of the 2-factors
are Hamilton cycles, and the remaining s = 3k + 1 − r two-factors
are triangle-factors (spanning sets of 2k + 1 triangles). Clearly then
HW*(6k + 3) ⊆ {0, 1, . . .3k + 1}. Define I(6k + 3) = {0, 1, . . .3k + 1}.
It it is well-known that Hamilton factorizations of K6k+3 exist as do
triangle-factorizations (Kirkman triple systems), hence {0, 3k + 1} ⊂
HW*(6k + 3).

Let the vertex set of K6k+3 be the set Z2k+1 × {0, 1, 2}, where
k ≥ 1. As was done in [4] the notation is simplified by letting Z2k+1 ×
{0} = A = {a0, a1, . . .a2k}, Z2k+1 × {1} = B = {b0, b1, . . . b2k} and
Z2k+1 × {2} = C = {c0, c1, . . . c2k}. All indices will be taken modulo
2k + 1. For 0 ≤ d ≤ 2k, define the set of edges

(AB)d = {{ai, bi+d : i = 0, 1, . . .2k},
(BC)d = {{bi, ci+d : i = 0, 1, . . .2k}, and
(CA)d = {{ci, ai+d : i = 0, 1, . . .2k}.

Hence the edge set E of the complete graph K6k+3 can be written as

E = E([A])∪ E([B])∪ E([C])∪
2k⋃

d=0

{(AB)d ∪ (BC)d ∪ (CA)d}.

where [X ] is the complete graph induced by the set of vertices X .
For each 0 ≤ d ≤ 2k, let Fd denote the subgraph induced by

the set of edges (AB)d ∪ (BC)d ∪ (CA)−2d. Then clearly, for each
0 ≤ d ≤ 2k, Fd is a triangle-factor of K6k+3 where the edges of Fd

form the triangles (ai, bi+d, ci+2d) for i = 0, 1, . . .2k.
The following three results are all from [4].

Lemma 1.1 [4] Let −2k ≤ p, q, r ≤ 2k be integers such that p+ q + r
and 2k+1 are relatively prime. Then the set of edges (AB)p∪(BC)q ∪
(CA)r induce a Hamilton cycle of K6k+3.

Corollary 1.2 [4] For each d = 0, 1, . . .2k−1, the edges of Fd∪Fd+1

can be decomposed into two Hamilton cycles.

The following gives a partial result for HW*(n) in the case when
n ≡ 3 (mod 18).

Theorem 1.3 [4] Let n = 6k + 3 with k ≡ 0 or 2 (mod 3). Then
{(n + 3)/6, (n + 3)/6 + 2, (n + 3)/6 + 3, . . .(n − 1)/2} ⊂ HW ∗(n).
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2 Main Result

We begin with a corollary to Lemma 1.1.

Corollary 2.1 The edges of F1∪F2∪F3 can be decomposed into three
Hamilton cycles.

Proof. View the edge set of F1 ∪ F2 ∪ F3 as the union of sets G1 ∪
G2∪G3 where G1 = (AB)1∪ (BC)1 ∪ (CA)−4, G2 = (AB)2∪ (BC)2 ∪
(CA)−6, and G3 = (AB)3 ∪ (BC)3 ∪ (CA)−2. As all three numbers
1+1−4, 2+2−6 and 3+3−2 are relatively prime to 2k+1, by Lemma
1.1 each of the three graphs G1, G2 and G3 is a Hamilton cycle.

An important ingredient in the main proof is a Hanani triple sys-
tem. Assume that v ≡ 1 (mod 6), a Hanani triple system, HTS(v), is
a Steiner triple system on v points with a partition of its blocks into
(v − 1)/2 maximum parallel classes, and a single partial parallel class
with (v − 1)/6 blocks. If we let v = 2k + 1, then we see that there
are k classes each missing exactly one point and there is one class
which misses k + 1 points. It follows since the replication number of
an STS(2k + 1) is k, that each point is missing from exactly one class
of blocks. The following theorem gives the necessary and sufficient
conditions for the existence of a Hanani triple system of order v.

Theorem 2.2 [5] A Hanani triple system of order v exists if and only
if v ≡ 1 (mod 6) and v 6∈ {7, 13}.

We are now ready to prove our main result.

Theorem 2.3 Let n = 6k+3 with k ≡ 0 (mod 3) and k 6= 3, 6. Then
{2, 3, . . . , (n− 1)/2} ⊂ HW ∗(n).

Proof. Since n = 6k + 3 with k ≡ 0 (mod 3) we have that |A| =
|B| = |C| ≡ 1 (mod 6). Hence from Theorem 2.2 there exists a
Hanani triple system of order |A| = 2k + 1. Put the blocks of a
HTS(2k + 1) on the points of A such that for 0 ≤ i ≤ k − 1 the point
ai is missing from the ith maximum parallel class (call this Ai) and
the points ak , ak+1, . . .a2k are missing from the last class, Ak. Do
the same on the points of B and C. Now for 0 ≤ i ≤ k − 1, let Ti =
Ai∪Bi∪Ci∪{{ai, bi, ci}} and let Tk = Ak ∪Bk∪Ck ∪

⋃2k
j=k{aj , bj, cj}.

There are k + 1 of these Ti’s each of which is a triangle-factor of Kn

and
⋃k

i=0 Ti = E([A])∪ E([B])∪ E([C])∪ F0.

3



To show that 2m ∈ HW*(n) for 2m ≤ 2k apply Corollary 1.2 to
{F2i−1, F2i} for each i = 1, 2, . . . , m. The triangle-factors are formed
by Fj , j = 2m + 1, 2m + 2, . . . , 2k and by Tj, j = 0, 1, . . .k. To show
that 2m + 1 ∈ HW*(n) for 3 ≤ 2m + 1 ≤ 2k − 1 first apply Corollary
2.1 to {F1, F2, F3} to obtain 3 Hamilton cycles. If 2m + 1 ≥ 5 apply
Corollary 1.2 to {F2i, F2i+1} for i = 2, 3, . . . , m. The Ti’s and the
remaining Fi’s form the triangle-factors in the 2-factorization.

Hence we have that {2, 3, . . .2k − 1, 2k} = {2, 3, . . .(n − 3)/3} ⊂
HW*(n). Combining these values with those from Theorem 1.3 com-
pletes the proof.

Combining Theorem 2.3 with some other known results give us the
(almost) complete spectrum for HW(n) in the case where n ≡ 3 (mod
18). We state this as our final theorem.

Theorem 2.4 Let n ≡ 3 (mod 18), then HW*(n) = I(n) = {0, 1, . . . , (n−
1)/2} except possibly that 1 6∈ HW∗(n) if n = 93, 111, 129, 183, or 201.

Proof. When n = 21 and n = 39 the result is proven in [4]. The
existence of Hamilton cycle decompositions for all Kv with v odd
proves that 0 ∈ HW*(n) for n ≡ 3 (mod 18) and hence in conjunction
with Theorem 2.3 we have that I(n) \ {1} ⊂ HW*(n) for all n ≡ 3
(mod 18). In [3] it is shown that 1 ∈ HW*(n) for all but 13 values of n.
These exceptional cases when n ≡ 3 (mod 18) are n = 93, 111, 129, 183,
and 201.

3 Conclusion

We conclude by summarizing what is known about the Hamilton-
Waterloo problem on n vertices with triangle-factors and Hamilton
cycles. The necessary condition is that n = 3 mod 6. The problem
is completely solved when n = 3 or 9 (mod 18) and the number of
Hamilton cycles is at least 2 (from [4] and this paper). The problem is
also solved when n = 15 (mod 18) and the number of Hamilton cycles
is in the set {(n + 3)/6, (n + 3)/6 + 2, (n + 3)/6 + 3, . . .(n − 1)/2} [4]
(this is the top 2/3 of the possible spectrum).

In the case where there is exactly one Hamilton cycle and all the
other cycles are triangle factors, there is a solution to the Hamilton-
Waterloo problem for all n = 3 (mod 6) except possibly for 14 cases,
namely when n ∈ {93, 111, 123, 129, 141, 153, 159, 177, 183, 201, 207,
213, 237, 249} [3].
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