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Abstract: We describe the algorithm being used to enumerate all of the nonisomor-
phic one-factorizations of K12. We also discuss the current progress of this project.

1 Introduction

We begin with some definitions. A one-factor in a graph G is a set of edges in which
every vertex appears precisely once. A one-factorization of G is a way of partitioning
the edge-set of G into one-factors. (We will sometimes refer to a one-factorization
as an OF). Two one-factorizations F and H of G, say F = {f1, f2, . . . , fk}, H =
{h1, h2, . . . , hk}, are called isomorphic if there exists a map φ from the vertex-set of
G onto itself such that {f1φ, f2φ, . . . , fkφ} = {h1, h2, . . . , hk}. Here fiφ is the set of
all the edges {xφ, yφ} where {x, y} is an edge in F . Obviously, if the complete graph
on n vertices Kn has a one-factorization, then necessarily n is even and any such
one-factorization contains n− 1 one-factors each of which contains n/2 edges. Figure
1 shows a OF of K12. Each of the rows is a one-factor.

{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}, {10, 11}
{0, 2}, {1, 4}, {3, 5}, {6, 8}, {7, 10}, {9, 11}
{0, 3}, {1, 6}, {2, 7}, {4, 9}, {5, 10}, {8, 11}
{0, 4}, {1, 8}, {2, 6}, {3, 10}, {5, 9}, {7, 11}
{0, 5}, {1, 7}, {2, 9}, {3, 11}, {4, 6}, {8, 10}
{0, 6}, {1, 9}, {2, 10}, {3, 4}, {5, 11}, {7, 8}
{0, 7}, {1, 10}, {2, 4}, {3, 9}, {5, 8}, {6, 11}
{0, 8}, {1, 11}, {2, 5}, {3, 6}, {4, 7}, {9, 10}
{0, 9}, {1, 2}, {3, 8}, {4, 11}, {5, 7}, {6, 10}
{0, 10}, {1, 3}, {2, 11}, {4, 8}, {5, 6}, {7, 9}
{0, 11}, {1, 5}, {2, 8}, {3, 7}, {4, 10}, {6, 9}

Figure 1: A one-factorization of K12

The exact number of nonisomorphic one-factorizations of Kn is known only for
even n ≤ 10. It is easy to see that there is a unique one-factorization of K2, K4,
and K6. There are exactly six for K8; these were found by Dickson and Safford [4]
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and a full exposition is given in [16]. In 1973, Gelling [6, 7] proved that there are
exactly 396 isomorphism classes of OFs of K10. In both these searches, the orders of
the automorphism groups of the factorizations were also found. This information can
be used to calculate the exact number of distinct factorizations.

It is also known that the number of nonisomorphic one-factorizations of Kn goes to
infinity as n goes to infinity [1, 9]. In fact, if we let N(n) denote the number of noni-
somorphic one-factorizations of Kn, then Cameron [3] proved that N(2n) ∼ 2n2 ln 2n.
Feeling that the complete enumeration of the nonisomorphic OFs of K12 could “not
be determined in a reasonable amount of time”, Seah and Stinson [12, 15] restricted
their search to finding one-factorizations of K12 with nontrivial automorphism group.
They found that there are exactly 56391 nonisomorphic one-factorizations of K12

with nontrivial automorphism groups, excluding those whose automorphism group is
of order 2 and consists of six 2-cycles. It is our goal to find the total number of noni-
somorphic one-factorizations of K12. We hope to verify the Seah-Stinson number, as
well as determine the remaining number of nonisomorphic one-factorizations of K12

which they did not count.
This problem was appealing to us as it represents a good example of the so called

combinatorial explosion. At this time we are estimating that there will be about 2
billion nonisomorphic one-factorizations of K12. We also believe that it will take more
than 2 years of CPU time at an execution rate of 100 mips to perform the complete
enumeration. This would certainly make this computation impractical if it were not
for the fact that our algorithm can be run in parallel on many different processors.
We believe that the entire enumeration will be completed in about six months by
distributing parts of the problem to workstations that run at rates of 14 to 50 mips.
We will have more about this later in this paper.

This paper is organized a follows: Section 2 describes the orderly algorithm that
is used in this search, Section 3 contains a discussion of our correctness checks for
this algorithm, and Section 4 contains our results to this point (January 17, 2017).

2 The Algorithm

The algorithm that we are using is an example of what is called an orderly algorithm; it
generates the nonisomorphic OFs of K12 in lexicographic order. The algorithm builds
up each one-factorization by adding one one-factor at a time and rejects a partial one-
factorization if it is not the lowest representative (lexicographically) of all the partial
one-factorizations in its isomorphism class. In this way, the algorithm is generating
only the lowest representative of any isomorphism class of one-factorizations and as
such never generates any OFs which are isomorphic to each other. This approach
saves both time and space over algorithms which first generate distinct (but possibly
isomorphic) one-factorizations and then use methods to winnow isomorphs.

This type of algorithm has been used in other combinatorial searches includ-
ing enumerating Latin squares [2, 11], strong starters [8], one-factorizations of small
graphs [13], Perfect one-factorizations of K14 [14], frame factorizations [5] and Howell
designs of small order [13]. Our algorithm below is essentially the one that was used
by Seah and Stinson to find the nonisomorphic OFs of K10 and to find the noniso-
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morphic one-factorizations of K12 with nontrivial automorphism group [15]. Ours has
been modified to deal with the explicit case of one-factorizations of K12.

We first give the lexicographic ordering. Suppose that the vertices of K12 are
numbered 0, 1, . . . , 11. An edge e will be written as an ordered pair (x, x′) with
1 ≤ x < x′ ≤ 11. For any two edges e1 = (x1, x

′
1) and e2 = (x2, x

′
2), say e1 < e2 if

either x1 < x2 or x1 = x2 and x′
1 < x′

2. A one-factor f is written as a set of ordered
edges, i.e. f = (e1, e2, e3, e4, e5, e6) where ei < ej whenever i < j. For two one-factors
fi = (ei1, ei2, . . . , ei6) and fj = (ej1, ej2, . . . , ej6), we say fi < fj if there exists a k
(1 ≤ k ≤ 6) such that eil = ejl for all l < k, and eik < ejk.

A one-factorization F of K12 is written as an ordered set of 11 one-factors, i.e.
F = (f1, f2, . . . , f11), where fi < fj whenever i < j. The example in Figure 1 is
written in this lexicographic order.

We use F and G to denote one-factorizations and fi and gi to denote one-factors
contained in F and G, respectively. An ordering for one-factorizations is defined as
follows. For two OFs F and G, we say that F < G if there exists some i, 1 ≤ i ≤ 11,
such that fi < gi, and fj = gj for all j < i.

For 1 ≤ i ≤ 11, Fi = (f1, f2, . . . , fi) will denote a partial OF consisting of an
ordered set of i one-factors. We say that i is the rank of the partial one-factorization.
Note that F11 = F, a (complete) one-factorization. We can also extend our ordering
to partial OFs of rank i, in an analogous manner.

We say a partial OF Fi = (f1, f2, . . . , fi) of rank i is proper if fj contains edge (0, j)
for 1 ≤ j ≤ i. If Fi is not proper, then it is improper. A complete one-factorization
is necessarily proper.

The automorphism group of the complete graph K12 is S12, the symmetric group
on 12 elements. Thus given a proper partial OF Fi (of rank i), we can rename the 12
points using a permutation α ∈ S12, and obtain another partial OF (not necessarily
proper) of the same graph, denoted Fα

i . We say Fi is canonical if Fi ≤ Fα
i for all

permutations α ∈ S12. Thus, each canonical partial OF Fi is the lexicographically
lowest representative of its isomorphism class. The following theorems on canonicity
are from Seah [12].

Theorem 2.1 If two proper partial OFs of rank i, Fi and Gi, are distinct and are
both canonical, then Fi and Gi are nonisomorphic.

Theorem 2.2 If a partial proper one-factorization Fi = (f1, f2, . . . , fi) is canonical,
and 1 ≤ j ≤ i then Fj = (f1, f2, . . . , fj) is also canonical.

Theorem 2.3 If a partial proper OF Fi = (f1, f2, . . . , fi) is not canonical, then any
complete OF extended from Fi is also not canonical.

Note that one can form a rooted tree in which each node represents one of the
partial proper canonical OFs of K12. The root represents the unique canonical F1

which consists of the following one-factor, fa:

fa = {(0,1), (2,3), (4,5), (6,7), (8,9), (10,11)}
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If a node v represents Fi, then the children of v represent each of the Fi+1 which are
proper canonical extensions of Fi. The nodes at level 11 of the tree represent the
canonical OFs of K12.

We can now describe the orderly algorithm that we use to construct canonical
(non-isomorphic) OFs of the complete graph K12; it is based on a depth-first traversal
of the tree. The following recursive pseudo-coded procedure describes how to generate,
from a given canonical Fi, all of the canonical Fi+1 extending Fi, for 0 ≤ i ≤ 10. Let
F0 be the partial OF of rank 0 (an empty set), and note that Fα

0 = F0 for all α ∈ S12.
We invoke the procedure using Generate(F0, 0).

procedure Generate(Fi, i):
if i = 11 then

Fi is a canonical OF
else

(1) for each f , containing (0, i + 1), disjoint from each 1-factor in Fi do
(2) for each permutation α do
(3) if Fα

i

⋃{fα} < Fi
⋃{f} then

Fi
⋃{f} is not canonical, discard it and go on to next f

{Here Fα
i

⋃{fα} ≥ Fi
⋃{f} for all α. Hence Fi

⋃{f} is}
{canonical and proper.}
Generate(Fi

⋃{f}, i + 1)

There are several opportunities for improving the efficiency of the algorithm. We
first note that the loop controlled by statement (1) potentially has 3 · 5 · 7 · 9 = 945
one-factors f to test as candidates for extensions of Fi. However, backtracking for
each set of edges that comprise a one-factor disjoint from Fi reduces the number of
one-factors that need to be considered.

As noted above, for all canonical Fi = {f1, f2, . . . , fi}, i ≥ 1, f1 = fa. Since the
union of two disjoint one-factors is a union of disjoint cycles of even length, then
for any one-factor f which is edge disjoint from fa, {f}

⋃{fa} will form a graph
isomorphic to either three disjoint 4-cycles; a 4-cycle and an 8-cycle; two 6-cycles;
or a single 12-cycle. Thus, each F2 is in one of four isomorphism classes. Following
are the four one-factors which, when unioned with fa, yield in turn each of the four
canonical rank 2 one-factorizations of K12.

1. {(0, 2), (1, 3), (4, 6), (5, 7), (8, 10), (9, 11)}⋃{fa} forms three disjoint 4-cycles

2. {(0, 2), (1, 3), (4, 6), (5, 8), (7, 10), (9, 11)}⋃{fa} forms a 4-cycle and an 8-cycle

3. {(0, 2), (1, 4), (3, 5), (6, 8), (7, 10), (9, 11)}⋃{fa} forms two disjoint 6-cycles

4. {(0, 2), (1, 4), (3, 6), (5, 8), (7, 10), (9, 11)}⋃{fa} forms a 12-cycle

We refer to the isomorphism class of a pair of one-factors as their cycle structure,
and label these classes type 1, type 2, type 3, and type 4 respectively. We further
note that this ordering of the types is the same as the lexicographic ordering of the
canonical representatives of the types. We extend the definition of type to apply to
all canonical partial OFs. For all canonical Fi = {f1, f2, . . . , fi}, i ≥ 2, {f1}

⋃{f2} is
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one of the four canonical rank 2 one-factorizations of K12; we define the type of Fi to
be the type of {f1}

⋃{f2}. We note that all canonical rank i one-factorizations of K12

which have type s lexicographically precede all canonical rank i one-factorizations of
K12 which have type t, for s < t.

Suppose we wish to consider extending some proper canonical Fi, 2 ≤ i ≤ 10,
by adding one-factor f . Further, assume that Fi has type t, 2 ≤ t ≤ 4. Let g be a
one-factor in Fi such that the type of {f}⋃{g} (call it s) is minimal. If s < t, then
Fi
⋃{f} is not canonical because there exists a permutation α that maps Fi

⋃{f} to
a canonical rank i OF of type s. This observation leads to the following improvement
of the algorithm. If Fi has type t, and f , at statement (1), forms a type s cycle
structure with some one-factor in Fi such that s < t, then f can be discarded as a
candidate for extending Fi to a proper canonical Fi+1.

The classification scheme permits an additional optimization of the algorithm. At
statement (2) of the algorithm, α is chosen from the 12! elements of S12. However, the
algorithm only needs to consider those permutations which might map Fi

⋃{f} into a
lexicographically lower isomorph. Thus, if Fi is of type t, then the only permutations
which need to be considered are those which map some pair of one-factors in Fi

⋃{f}
onto the canonical rank 2 factorization of type t.

Improvements based on the types of partial factorizations were used in [12] and
[13]. Our implementation of the algorithm also uses lazy evaluation techniques; we
postpone parts of the computation on the chance that the current Fi can not be
extended to the next rank. We also use dynamic programming techniques, saving
information from the generation of permutations at rank i to speed up the generation
of the permutations at rank i + 1.

The algorithm outlined above can easily be modified for certain classes of OFs
that are of interest. Indeed, it has been modified to find perfect one-factorizations
of K12 and K14 [12, 14], and to find so-called frame factorizations of Kn for n ≤ 10
[5]. We are also using the algorithm to conduct a bushiest-first search for new perfect
one-factorizations of K16; we probe the tree of proper canonical one-factorizations of
K16 visiting first the nodes with the most children.

3 Correctness

Based on the four types of rank 2 factorizations, it is easy to verify by hand that our
program correctly generates the four canonical proper rank 2 one-factorizations. We
now describe the techniques we used to verify the correctness of the program at ranks
3 and 4.

We begin by determining, independently of our program, the number of distinct
F3 = {f1, f2, f3}, the rank 3 one-factorizations of K12. We note that (0, a) is an edge
in f1, (0, b) ∈ f2, and (0, c) ∈ f3 where a, b, and c are distinct, and 1 ≤ a, b, c ≤ 11.
If we fix a, then there are 9 · 7 · 5 · 3 = 945 ways to choose the remaining 5 edges in
f1. If b and c are also fixed, then 105 of the choices for f1 contain edge (b, c), and
840 do not. Using a simple backtracking algorithm, we counted 220,156 distinct F3

for a fixed f1 containing {(0, a), (b, c)} when (0, b) ∈ f2 and (0, c) ∈ f3. When f1 is

fixed, but (a, b) 6∈ f1, there are 223,632 distinct F3. Since there are
(

11
3

)
= 165 ways
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to select a, b, and c, then the total number of distinct F3 is

165(105 · 220156 + 840 · 223632) = 34,809,597,900

We now describe how we used our program to determine the number of distinct
F3. Our program found 76 proper canonical F3. Additionally, we used the program to
determine that there are 81 improper canonical F3. Let C3 = {C3

1 , C3
2 , . . . C3

157} be the
ordered set of all canonical rank 3 one-factorizations of K12 in lexicographic order,
with {C3

1 , C3
2 , . . . C3

76} as the proper rank 3 canonical OFs. We determine the size of
the isomorphism class of C3

i , 1 ≤ i ≤ 157, by counting the number of F3 that can be
mapped onto C3

i .

1. Each of the 12 vertices in K12 can be mapped onto vertex 0 in C3
i ;

2. If vertex v is mapped onto 0, there are 3! ways of mapping the neighbors of v
in some F3 into the neighbors of 0 in C3

i ;

3. There are 8! ways of mapping the remaining 8 vertices of an F3 into the remain-
ing 8 vertices of C3

i .

Thus, if Aut(C3
i ) is the size of the automorphism group of C3

i , then there are (12 · 3! ·
8!)/A(C3

i ) elements in the isomorphism class of C3
i .

We determined the sizes of the automorphism groups of the elements of C3 in
two ways. First, when Generate was called with parameter i equal to 10 (thus
generating OFs with rank i + 1 = 11), we counted at statement (3) the number of
permutations which were automorphisms on Fi

⋃{f}. The second technique was to
generate a line graph for each of the 157 elements of C3, and then use McKay’s nauty
program [10] to determine the sizes of the automorphism groups. The results from
these two approaches agreed.

Based on the sizes of the automorphism groups of the elements of C3, we calculated
the number of distinct F3 to be

157∑
i=1

12 · 3! · 8!

Aut(C3
i )

= 34,809,597,900

This result agrees with that derived by our independent method described above.
We repeated this verification process for the rank 4 OFs. Based on the 945 choices

for a first factor containing (0, a), 315 generated 47,323,968 distinct F4 each, and 630
generated 48,190,032 distinct F4 each; 315 of the 945 first factors contain an edge
(b, c) where {(0, b), (0, c)} ⊂ f2

⋃
f3
⋃

f4. Thus, the number of distinct F4 is(
11

4

)
(315 · 47323968 + 630 · 48190032) = 45,266,770,080

Using our program we found 32,741 elements of C4, the set of canonical rank 4
OFs; 5,108 are proper and 27,633 are improper. We again determined the sizes of the
automorphism groups using both our own program and nauty. Indeed, we found that

32741∑
i=1

12 · 4! · 7!

Aut(C4
i )

= 45,266,770,080
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We have not checked results beyond rank 4. All of the computations for the
verification at rank 4 required a total of about one hour on a 24 mips DECstation
5000. We have not pursued verification at level 5; there are 5,108 proper canonical
F4, however there are 291,031 proper canonical F5. We do not know the number of
improper canonical F5.

Finally, we note that we used a modified version of the program to generate the
proper canonical one-factorizations of K10 (both partial and complete). Our results
agreed with those in [13].

4 Current Results

The essential feature of the algorithm is that, given any partial one-factorization F ,
it attempts to generate a lexicographically lower member of the isomorphism class of
F . Thus, a search for complete canonical OFs can proceed independently from any
proper canonical partial OF. We do not need to store the one-factorizations that are
constructed (we do count them and store information about some of them) and we
do not need to construct the one-factorizations in order. This allows us to work on
many processors that do not even need to communicate with each other.

As discussed in Section 2, there are four types of OFs based on the cycle structure
of the first pair of one-factors in an OF. These correspond to the four elments of
C2, all of which are proper. The edges of C2

4 form a 12-cycle. If a partial OF, Fi,
of type 4 contained a pair of factors with a cycle structure of type t < 4, then Fi

could be mapped into F ′
i of type t. So, every pair of one-factors in a canonical

type 4 one-factorization of K12 has a type 4 cycle structure. The complete OFs of
type 4 are called perfect (wherein the union of any pair of one-factors is a hamilton
circuit of the complete graph). Seah and Stinson [15] found that there are five perfect
one-factorizations of K12, and our results concur.

Because of this tight constraint on the cycle structures, the search for all type 4
canonical OFs is quite fast. We could proceed directly from C2

4 to find all complete
canonical OFs of type 4 in about six minutes running at a rate of 100 mips. For
similar reasons, it is tractable to conduct the search for all type 3 OFs directly from
C2

3 ; this required about seven hours running at 100 mips. However, the size of the
problem makes it impractical to proceed directly from C2

1 or C2
2 . In these cases we

start the search independently from each of their proper rank three descendants in
C3.

In Table 1 we show the numbers of partial proper canonical one-factorizations
derived directly from C3

3 and C3
4 ; the rank 11 OFs are the complete one-factorizations.

For the sake of completeness, we also summarize the partial results derived from C2
1

and C2
2 , and totals which include the partial results. All lower bounds derived from

partial results are underlined in the table.
In Table 2 we list for each of the first 32 elements of C3 the number of proper

canonical OFs generated at each rank. The first 13 elements of C3 are of type 1, and
the next 19 are of type 2. Again, partial results are underlined. About 3,100 hours
of cpu time at 100 mips were required to obtain the partial results in Table 2.
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The OFs with automorphism group size greater than two were completely enu-
merated in [12]; our results so far are consistent with that enumeration. As well, [12]
found that there are at least 39,706 canonical one-factorizations of K12 with auto-
morphism group size of two. So far, we have found 77,016 with automorphism group
size of two. We have found 157,000,971 canonical OFs of K12 to date, and antici-
pate finding about two billion in all. We estimate that we need about eighteen more
months of cpu time at 100 mips to complete the enumeration. However, we hope to
finish in about six months by distributing the computation.
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Rank
C2

i 3 4 5 6 7 8 9 10 11
1 13 1281 90035 834355 9862184 48483661 69365845 95936792 39225013

2 19 2661 183345 4446635 54335882 294579706 470722376 204780756 117775773

3 20 771 14972 123762 371692 353455 76933 3796 180
4 24 395 2679 10987 13791 3491 209 6 5

tot 76 5108 291031 5415739 64583549 343420313 540165363 300721350 157000971

Table 1: Numbers of proper partial canonical OFs derived from C2

Rank
C3

i 4 5 6 7 8 9 10 11
1 4 152 4355 55414 437492 1114428 794716 565834
2 71 4098 7512029

3 21 994 1598245

4 43 2100 2563696

5 44 2261 3568101

6 68 3672
7 179 15484 1504031

8 150 11757 645457

9 119 7250 992390

10 167 13495 12732422

11 156 12224 410426 5676581 35369247 55084008 22589908 7117166
12 134 8562 219920 2322418 7939530 8778320 2433531 384149
13 125 7986 199654 1807771 4737392 4389089 752792 41493
tot 1281 90035 834355 9862184 48483661 69365845 95936792 39225013

14 86 4267 12182653

15 70 3834 107585 1666752 13517003 31122923 20266304 14572837
16 171 13943 10342956

17 195 19943 943364 18867458 141289174 287529951 146106090 72109582
18 175 16429 622742 9484427 54216317 73897948 22003950 5821093
19 153 13030 450220 6011875 28669360 31937747 7374945 1433411
20 172 14594 412017 4799778 19804695 21561259 5002775 845086
21 187 15577 533689 6778202 24424413 19113862 3523357 435112
22 177 13362 361466 1800072 4903376 2572238 284957 21109
23 168 12261 310962 1385055 3168130 1375432 129127 7572
24 171 12457 243865 1785258 2992324 1214618 73828 3890
25 122 6416 81064 264748 267286 55672 1761 10
26 156 9278 160040 806027 838355 249353 10759 400
27 98 4395 37341 105276 54886 7719 279 0
28 144 6864 55503 198465 144133 33190 1184 27
29 135 6777 56612 201339 173118 35119 1047 32
30 90 3364 19099 35230 22504 1464 19 0
31 134 5592 48224 142467 93734 13850 374 3
32 57 962 2842 3453 898 31 0 0
tot 2661 183345 4446635 54335882 294579706 470722376 204780756 117775773

Table 2: Numbers of proper partial canonical OFs derived from C3
1 through C3

32
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