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Abstract

Let Kn,n − I denote the complete bipartite graph with n vertices in each part from
which a 1-factor I has been removed. An m-cycle system of Kn,n − I is a collection of
m-cycles whose edges partition Kn,n−I . Necessary conditions for the existence of such
an m-cycle system are that m ≥ 4 is even, n ≥ 3 is odd, m ≤ 2n, and m | n(n − 1).
In this paper, we show these necessary conditions are sufficient except possibly in the
case that m ≡ 0 (mod4) with n < m < 2n.
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1 Introduction

Throughout this paper, Kn,n will denote the complete bipartite graph with n vertices in each
partite set; Kn,n − I will denote the complete bipartite graph with a 1-factor I removed;
and Cm will denote the m-cycle (v1, v2, . . . , vm). An m-cycle system of a graph G is set C of
m-cycles whose edges partition the edge set of G. Several obvious necessary conditions for
an m-cycle system C of a graph G to exist are immediate: m ≤ |V (G)|, the degrees of the
vertices of G must be even, and m must divide the number of edges in G.

There have been many results regarding the existence of m-cycle systems of the complete
graph Kv (see, for example, [8]). In this case, the necessary conditions imply that m ≤ v, v
is odd, and that m divides v(v − 1)/2. In [1, 9], it is shown that these necessary conditions
are also sufficient. In the case that v is even, m-cycle systems of Kv − I, where I denotes
a 1-factor, have been studied. Here the necessary conditions are that m ≤ v and that m
divides v(v − 2)/2. These conditions are also known to be sufficient [1, 9].

Cycle systems of complete bipartite graphs have also been studied. The necessary condi-
tions for the existence of an m-cycle system of Kn,k are that m,n, and k are even, n, k ≥ m/2,
and m must divide nk. In [10], these necessary conditions were shown to be sufficient. To
study m-cycle systems of Kn,k when n and k are odd, it is necessary to remove a 1-factor
and hence n = k. Then, the necessary conditions are that m is even, n ≥ m/2 with n odd,
and m must divide n(n − 1). As a consequence of the main result of [6], it is known that
(2n)-cycle systems of Kn,n − I exist. Other results involving cycle systems of Kn,n − I are
given in [4], and other authors have considered cycle systems of complete multipartite graphs
[2, 3, 5, 6, 7].

The main result of this paper is the following.

Theorem 1.1 Let m and n be positive integers with m ≥ 4 even and n ≥ 3 odd. If m ≡
0 (mod 4) and m ≤ n, or if m ≡ 2 (mod 4) and m ≤ 2n, then the graph Kn,n − I has an
m-cycle system if and only if the number of edges in Kn,n − I is a multiple of m.

Our methods involve Cayley graphs and difference constructions. In Section 2, we give
some basic definitions while the proof of Theorem 1.1 is given in Section 3. We shall see
that the case m ≡ 2 (mod 4) is fairly easy to handle using known results, but the case
m ≡ 0 (mod 4) is more involved.

2 Notation and preliminaries

Let us begin with a few basic definitions. We write G = H1⊕H2 if G is the edge-disjoint union
of the subgraphs H1 and H2. If G = H1 ⊕ H2 ⊕ · · · ⊕ Hk, where H1

∼= H2
∼= . . . ∼= Hk

∼= H,
then the graph G can be decomposed into subgraphs isomorphic to H and we say that G is
H-decomposable. We also shall write H | G.

The proof of Theorem 1.1 uses Cayley graphs, which we now define. Let S be a subset
of a finite group Γ satisfying
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(1) 1 6∈ S, where 1 denotes the identity of Γ, and

(2) S = S−1; that is, s ∈ S implies that s−1 ∈ S.

A subset S satisfying the above conditions is called a Cayley subset. The Cayley graph
X(Γ;S) is defined to be that graph whose vertices are the elements of Γ, with an edge
between vertices g and h if and only if h = gs for some s ∈ S. We call S the connection set
and say that X(Γ;S) is a Cayley graph on the group Γ.

The graph Kn,n is a Cayley graph by selecting the appropriate group; that is, Kn,n =
X(Zn × Z2; {(0, 1), (1, 1), (2, 1), . . . , (n − 1, 1)}). Equivalently, for a positive integer n, let
S ⊆ {0, 1, 2, . . . , n − 1} and let X(n;S) denote the graph whose vertices are u0, u1, . . . , un−1

and v0, v1, . . . , vn−1 with an edge between ui and vj if and only if j − i ∈ S. Clearly,
Kn,n = X(n; {0, 1, . . . , n − 1}), and we will often write −s for n − s when n is understood.

Many of our decompositions arise from the action of a permutation on a fixed subgraph.
Let ρ be a permutation of the vertex set V of a graph G. For any subset U of V , ρ acts as a
function from U to V by considering the restriction of ρ to U . If H is a subgraph of G with
vertex set U , then ρ(H) is a subgraph of G provided that for each edge xy ∈ E(H), ρ(x)ρ(y) ∈
E(G). In this case, ρ(H) has vertex set ρ(U) and edge set {ρ(x)ρ(y) : xy ∈ E(H)}. Note that
ρ(H) may not be defined for all subgraphs H of G since ρ is not necessarily an automorphism.
In this paper, however, ρ will be an automorphism, so ρ(H) will be defined for all subgraphs
H.

For a set D of integers and an integer x, we define the sets ±D = {±d | d ∈ D},
D + x = {d + x | d ∈ D}, and x − D = {x− d | d ∈ D}.

3 The proof of the main theorem

In this section, we shall prove Theorem 1.1. It turns out that when m ≡ 2 (mod 4), an
m-cycle system of Kn,n − I can be found from an (m/2)-cycle system of Kn as we now show.

Lemma 3.1 For positive integers m and n with m ≡ 2 (mod 4), n odd, and 6 ≤ m ≤ 2n,
the graph Kn,n has a decomposition into m-cycles and a 1-factor if and only if m | n(n− 1).

Proof. Let m and n be integers with m ≡ 2 (mod 4), n odd, and 6 ≤ m ≤ 2n. Let the partite
sets of Kn,n be denoted by {u0, u1, . . . , un−1} and {v0, v1, . . . , vn−1}. Since m ≡ 2 (mod 4), we
have m = 2k for some odd integer k. Then k ≤ n and k | n(n−1)/2. Hence, by [1, 9], Kn has
a decomposition into k-cycles. Let the vertices of Kn be labelled with w0, w1, . . . , wn−1 and
let C be a decomposition of Kn into k-cycles. Suppose that C = (wi0, wi1, wi2, wi3 , . . . , wik−1

)
is a k-cycle in C. Then the cycle

C ′ = (ui0, vi1, ui2, vi3 . . . , uik−1
, vi0, ui1, vi2, ui3, . . . , vik−1

)

is of length 2k in Kn,n. Furthermore, for each edge wiwj of C, the edges uivj and viuj appear
on C ′. Thus, the collection

C′ = {(ui0, vi1, ui2, vi3 . . . , uik−1
, vi0, ui1, vi2, ui3, . . . , vik−1

)

| (wi0, wi1, wi2, wi3, . . . , wik−1
) ∈ C}
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together with {uivi | 0 ≤ i ≤ n− 1} is a decomposition of Kn,n into m-cycles and a 1-factor.

The case m ≡ 0 (mod 4) cannot be obtained by using a similar argument as in Lemma
3.1. Suppose that m ≡ 0 (mod 4), say m = 2k with k even and let n ≥ 3 be odd with
m ≤ 2n and m | n(n− 1). As before, k | n(n− 1)/2 and k ≤ n so that a k-cycle system C of
Kn exists. However, for each cycle C = (wi0, wi1, wi2, wi3, . . . , wik−1

) in C, we obtain the two
k-cycles

C ′ = (ui0, vi1, ui2, vi3 . . . , vik−1
)

and
C ′′ = (vi0, ui1, vi2, ui3, . . . , uik−1

)

in Kn,n rather than one 2k-cycle. Thus, we need more elaborate constructions for the case
m ≡ 0 (mod 4).

To help guide the reader, we will now give a rough outline of these constructions. Suppose
that m < n and n(n−1) is a multiple of m. Let n = qm+ r. The first construction, given in
Lemma 3.2, generates n cycles, each of length m. Collectively, these cycles contain all edges
uivj where j − i ∈ ±D for a given set D of m/2 nonzero differences. This construction will
be applied q times, leaving r differences. If r = 1, then this will give the required 1-factor,
while if r > 2, we proceed as follows. In Lemma 3.5, we show that r − 1 = s(m/g), where
g = gcd(m,n). Lemma 3.3 generates 2n/g cycles where these cycles contain all edges uivj

where j − i ∈ ±(D ∪ (D + n/g)) for a given set D of m/(2g) differences. This construction
will be applied bs/2c times, leaving either 1 difference (the missing 1-factor) or m/g + 1
differences. In the latter case, we apply the construction of Lemma 3.4. The details of how
the difference sets are chosen are given in Lemma 3.5.

Lemma 3.2 Let m and n be positive integers with m ≡ 0 (mod 4), n odd, and 4 ≤ m < n.
If D = {d1, d2, . . . , dm/2}, where d1, d2, . . . , dm/2 are positive integers satisfying d1 < d2 <
· · · < dm/2 ≤ (n − 1)/2, then Cm | X(n;±D).

Proof. Label the vertices of X(n;±D) with u0, u1, . . . , un−1 and v0, v1, . . . , vn−1. We have
uivj ∈ E(X(n;±D)) if and only if j − i ∈ ±D. Let ρ denote the permutation

(u0 u1 · · · un−1)(v0 v1 · · · vn−1).

Observe that ρ ∈ Aut(X(n;±D)), so for any subgraph L of X(n;±D), ρ(L) is also a
subgraph. Similarly, let τ denote the permutation (u0 v0)(u1 v1) · · · (un−1 vn−1). Let ek =

k∑

i=1

(−1)i+1di, and let P be the trail of length (m − 2)/2 given by

P : ue1 , ve2, ue3, ve4 , . . . , ue(m−2)/2
, vem/2

.

Now, the lengths of the edges of P , in the order that they are encountered, are −d2,−d3, . . . ,
−dm/2. Since e1, e3, . . . , e(m−2)/2 is a strictly increasing sequence while n+ e2, n+ e4, . . . , n+
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em/2 is a strictly decreasing sequence, it follows that the vertices of P are distinct so that P
is a path. Let P ′ = ρ−d1(τ (P )) so that P ′ begins at v0 and ends at uem/2−d1 and the edges of
P ′ have lengths d2, d3, . . . , dm/2. Since d1, dm/2 ≤ (n − 1)/2, we see that ue(m−2)/2

6= uem/2−d1

and ve(m−2)/2
6= vem/2−d1. Therefore, the vertices of P ′ are distinct from the vertices of P .

Next, we form a cycle C of length m by taking

C = {ue1v0, uem/2−d1vem/2
} ∪ P ∪ P ′.

Observe that these two additional edges have difference ±d1. From the above remarks, it
follows that

C, ρ(C), ρ2(C), . . . , ρn−1(C)

is a partition of the edge set of X(n;±D) into m-cycles.

Suppose n is odd, m ≡ 0(mod 4) with 4 ≤ m < n and D = {d1, d2, . . . , dm/2} is a set of
positive integers with n − 1 ≥ d1 > d2 > · · · > dm/2 > (n − 1)/2. Then, applying Lemma
3.2 to −D, we find a decomposition of X(n;±D) into m-cycles. Another consequence of
Lemma 3.2 is the following. Suppose that A is a set of mq/2 distinct positive integers for
some positive integer q, such that all elements of A are either at most (n − 1)/2 or at least
(n + 1)/2. Then, applying Lemma 3.2 q times, we have that X(n;±A) decomposes into
m-cycles.

In Lemma 3.2, we found a cycle with m distinct differences, and used ρ to create n cycles
that collectively covered all edges with those differences. We now consider cycles that have
repeated differences.

Lemma 3.3 Let m and n be positive integers with m ≡ 0 (mod 4), n odd, 4 ≤ m < n, and
let g = gcd(m,n) > 1. Let D = {d1, d2, . . . , dm/(2g)} be a set of m/(2g) positive integers, and
let d̄i ≡ di (mod (n/g)). Suppose either

(1) 0 < d1 < d2 < · · · < dm/(2g) ≤ (n − 1)/2 − n/g and 0 < d̄1 < d̄2 < · · · < d̄m/(2g) ≤
(n − g)/(2g),

or

(2) (n−1)/2−n/g ≥ d1 > d2 > · · · > dm/(2g) > 0 and n/g−1 ≥ d̄1 > d̄2 > · · · > d̄m/(2g) >
(n − g)/(2g).

Then Cm | X(n;±(D ∪ (D + n/g))).

Proof. Label the vertices of X(n;±(D ∪ (D + n/g)) as in Lemma 3.2 and let ρ, τ be as
defined in Lemma 3.2. Suppose first 0 < d1 < d2 < · · · < dm/(2g) ≤ (n − 1)/2 − n/g and

0 < d̄1 < d̄2 < · · · < d̄m/(2g) ≤ (n − g)/(2g). Let ek =

k∑

i=1

(−1)i+1di. Let P1 be the trail of

length m/(2g) − 1 given by

P1 : ue1, ve2, ue3 , ve4, . . . , uem/(2g)−1
, vem/(2g)

.
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Letting ēk =
k∑

i=1

(−1)i+1d̄i, we have that ē1, ē3, . . . , ēm/(2g)−1 is a strictly increasing se-

quence while n/g + ē2, n/g + ē4, . . . , n/g + ēm/(2g) is a strictly decreasing sequence. Hence,
the subscripts of vertices in P1 lie in different nonzero congruence classes modulo n/g so that
P1 is a path. Let P ′

1 = ρ−d1(τ (P1)) and note that the vertices of P ′
1 are distinct from P1 as

in the proof of Lemma 3.2.
Form a path W1 of length m/g by taking

W1 = {ue1v−n/g, uem/(2g)−d1vem/(2g)
} ∪ P1 ∪ P ′

1.

Observe that these two additional edges have differences d1 and −(d1 + n/g), so W1 is a
path from v0 to v−n/g. Moreover, the first and last vertices are the only ones whose subscripts
are congruent modulo n/g. It follows that

C1 = W1 ∪ ρn/g(W1) ∪ ρ2n/g(W1) ∪ · · · ∪ ρ(g−1)n/g(W1)

is a cycle of length m. Each difference occurs exactly g times, and the subscripts of the ui’s
incident with edges of difference k are all congruent modulo n/g.

From the above remarks, it follows that

C1, ρ(C1), ρ
2(C1), . . . , ρ

n/g−1(C1)

is a partition of the edge set of X(n;±D ∪ {−(d1 + n/g)} \ {−d1}) into m-cycles.
We form a second set of cycles in a similar manner. We define P2 analogously to P1, except

that, di is replaced by di + n/g and −di by −(di + n/g) in ek. Let P ′
2 = ρ−(d1+n/g)(τ (P2)).

Form W2 by adding the edges ue1+n/gvn/g and uem/(2g)−(d1+n/g)vem/(2g)
with differences −d1

and d1 + n/g.
The cycles

C2, ρ(C2), ρ
2(C2), . . . , ρ

n/g−1(C2)

are a partition of the edge set of X(n;±(D + n/g) ∪ {−d1} \ {−(d1 + n/g)}) into m-cycles.
Taken with the first set of cycles, we have our desired partition of X(n;±(D ∪ (D + n/g)))
into m-cycles.

Now suppose (n − 1)/2 − n/g ≥ d1 > d2 > · · · > dm/(2g) > 0 and n/g − 1 ≥ d̄1 > d̄2 >

· · · > d̄m/(2g) > (n−g)/(2g). In this case, let ek =
k∑

i=1

(−1)idi. Let P1 be as defined above and

note that if ēk =
k∑

i=1

(−1)id̄i, again ē1, ē3, . . . , ēm/(2g)−1 is a strictly increasing sequence while

n/g + ē2, n/g + ē4, . . . , n/g + ēm/(2g) is a strictly decreasing sequence. Hence, the subscripts
of vertices in P1 lie in different nonzero congruence classes modulo n/g so that P1 is a path.
Let P ′

1 = ρd1(τ (P1)) and note that the vertices of P ′
1 are distinct from P1 as in the proof of

Lemma 3.2.
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Form a path W1 of length m/g by taking

W1 = {ue1vn/g, uem/(2g)+d1vem/(2g)
} ∪ P1 ∪ P ′

1,

where these two additional edges have differences −d1 and d1 +n/g, so W1 is a path from v0

to vn/g. Again, the first and last vertices are the only ones whose subscripts are congruent
modulo n/g so that

C1 = W1 ∪ ρn/g(W1) ∪ ρ2n/g(W1) ∪ · · · ∪ ρ(g−1)n/g(W1)

is a cycle of length m and

C1, ρ(C1), ρ
2(C1), . . . , ρ

n/g−1(C1)

is a partition of the edge set of X(n;±D ∪ {d1 + n/g} \ {d1}) into m-cycles.
Form a second set of cycles as before, defining P2 analogously to P1 by replacing di with

di + n/g and −di with −(di + n/g) in ek. Let P ′
2 = ρd1+n/g(τ (P2)). Form W2 by adding the

edges ue1−n/gv−n/g and uem/(2g)+d1+n/gvem/(2g)
with differences d1 and −(d1 + n/g).

The cycles
C2, ρ(C2), ρ

2(C2), . . . , ρ
n/g−1(C2)

are a partition of the edge set of X(n;±(D + n/g) ∪ {d1} \ {d1 + n/g}) into m-cycles. As in
the previous case, we have our desired partition of X(n;±(D ∪ (D + n/g))) into m-cycles.

The previous lemma used 2m/g differences. The following lemma will use m/g differences
and will give a 1-factor.

Lemma 3.4 Let m and n be positive integers with m ≡ 0 (mod 4), n odd, 4 ≤ m < n, and
let g = gcd(m,n) > 1. Let D = {d1, d2, . . . , dm/(2g)−1} be a set of positive integers and let
d̄i ≡ di (mod (n/g)). Suppose either

(1) 0 < d1 < d2 < · · · < dm/(2g)−1 ≤ (n − 1)/2 and 0 < d̄1 < d̄2 < · · · < d̄m/(2g)−1 ≤
(n − g)/(2g)

or

(2) (n − 1)/2 ≥ d1 > d2 > · · · > dm/(2g)−1 > 0 and n/g − 1 ≥ d̄1 > d̄2 > · · · > d̄m/(2g)−1 >
(n − g)/(2g).

Then X(n;±D ∪ {0,±n/g}) decomposes into m-cycles and a 1-factor.

Proof. The proof is similar to that of Lemma 3.3 and uses the same notation. Suppose
first that 0 < d1 < d2 < · · · < dm/(2g)−1 ≤ (n − 1)/2 and 0 < d̄1 < d̄2 < · · · < d̄m/(2g)−1 ≤

(n − g)/(2g). Let ek =
k∑

i=1

(−1)idi. Let P be the trail of length m/(2g) − 1 given by

P : u0, ve1, ue2 , ve3, . . . , uem/(2g)−2
, vem/(2g)−1

.
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Clearly, P is a path and the lengths of the edges of P , in the order they are encoun-
tered and reduced modulo n/g, are −d̄1,−d̄2, . . . , −d̄m/(2g)−1. Hence, as in Lemma 3.3, the
subscripts of vertices in P lie in different nonzero congruence classes modulo n/g.

Form a path W of length m/g by taking

W = {u0vn/g, uem/(2g)−1
vem/(2g)−1

} ∪ P ∪ τ (P ).

Observe that these two additional edges have differences n/g and 0, respectively, so W
is a path from v0 to vn/g. Moreover, the first and last vertices are the only ones whose
subscripts are congruent modulo n/g. As before,

C = W ∪ ρn/g(W ) ∪ ρ2n/g(W ) ∪ · · · ∪ ρ(g−1)n/g(W )

is a cycle of length m, and
C, ρ(C), ρ2(C), . . . , ρn/g−1(C)

is a partition of the edge set of X(n;±D∪{0, n/g}) into m-cycles. The edges with difference
−n/g form the 1-factor, completing the construction.

Now suppose (n − 1)/2 ≥ d1 > d2 > · · · > dm/(2g)−1 > 0 and n/g − 1 ≥ d̄1 > d̄2 > · · · >

d̄m/(2g)−1 > (n − g)/(2g). Let ek =

k∑

i=1

(−1)i+1di. Let P , W , and C be defined as above so

that
C, ρ(C), ρ2(C), . . . , ρn/g−1(C)

is a partition of the edge set of X(n;±D ∪ {0, n/g}) into m-cycles. As before, let the edges
with difference −n/g form the 1-factor.

We now have all of the constructions needed for the proof of Theorem 1.1 in the case
m ≡ 0 (mod 4) and m < n.

Lemma 3.5 For positive integers m and n with m ≡ 0 (mod 4) and n odd with 4 ≤ m < n,
the graph Kn,n can be decomposed into m-cycles and a 1-factor if and only if m | n(n − 1).

Proof. Let m and n be positive integers with m ≡ 0 (mod 4), n odd, 4 ≤ m < n, and
m | n(n − 1), say n(n − 1) = mt. If t is even, then m | n(n − 1)/2. Thus, since m < n, an
m-cycle system C of Kn exists [9]. We have already noted that C will give rise to a collection
C′ of m-cycles in Kn,n so that what remains when C′ is removed from Kn,n is a 1-factor.
Therefore, it suffices to consider the case when t is odd.

Let n = qm+ r, where q ≥ 1 and 0 ≤ r < m with r odd. Let S = {1, 2, . . . , (n− 1)/2} so
that Kn,n = X(n;±S ∪ {0}), and let g = gcd(m,n). Suppose first that g = 1, and observe
that this implies that m | (n − 1) so that n − 1 = qm. Thus |S| = mq/2, and by Lemma
3.2, the graph X(n;±S) decomposes into m-cycles. Since the edges of difference 0 form a
1-factor, this completes the construction when g = 1.
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We may now assume that g > 1 and let r − 1 = s(m/g) for some positive integer s,
say s = 2k + ε for some nonnegative integer k and with ε = 0 or ε = 1. If s = 1, then
let D = {1, 2, . . . ,m/(2g) − 1}. Now X(n;±D ∪ {0,±n/g}) decomposes into m-cycles and
1-factor by Lemma 3.4. Next, the set A = S \ (D∪{n/g}) consists of mq/2 positive integers
and thus X(n;±A) decomposes into m-cycles by Lemma 3.2. Therefore, we have found the
required decomposition of Kn,n in this case.

Now suppose that s > 1. Let

D1 =
{

1, 2, . . . , m
2g

}
and D2 = n

g
− D1.

For a positive integer i, let

D2i+1 = D1 + 2i
(

n
g

)
and D2i+2 = D2 + 2i

(
n
g

)
.

Suppose first that k is even. Consider the sets D1,D2, . . . ,Dk (so i = 1, . . . , k/2 − 1). Note
that

• for each j = 1, 2, . . . , k, the set Dj = {dj,1, dj,2, . . . , dj,m/(2g)} consists of m/(2g) positive
integers, and if d̄j,i ≡ dj,i (mod (n/g)), then either

(1) 0 < dj,1 < dj,2 < · · · < dj,m/(2g) and 0 < d̄j,1 < d̄j,2 < · · · < d̄j,m/(2g) ≤
(n − g)/(2g),

or

(2) dj,1 > dj,2 > · · · > dj,m/(2g) > 0 and n/g − 1 ≥ d̄j,1 > d̄j,2 > · · · > d̄j,m/(2g) >
(n − g)/(2g);

• the sets D1,D2, . . . ,Dk are pairwise disjoint;

• if d ∈ D1 ∪ D2 ∪ · · · ∪ Dk, then d + n/g 6∈ D1 ∪ D2 ∪ · · · ∪ Dk;

• (D1 ∪ (D1 + n/g)) ∪ (D2 ∪ (D2 + n/g)) ∪ · · · ∪ (Dk ∪ (Dk + n/g)) ⊂ {1, 2, . . . , nk/g}.

Let

D =

{
1 +

nk

g
, 2 +

nk

g
, . . . ,

m

2g
− 1 +

nk

g

}
,

and let

T =

(
D1 ∪

(
D1 +

n

g

))
∪

(
D2 ∪

(
D2 +

n

g

))
∪ · · · ∪

(
Dk ∪

(
Dk +

n

g

))
.

Now D ∩ T = ∅ and the largest difference in D ∪ T is m/(2g) − 1 + nk/g. We now show
m/(2g)−1+nk/g ≤ (n−1)/2 so that these difference sets satisfy the hypotheses of Lemma

9



3.3 and 3.4. Since r < m, we have r− 1 = s(m/g) < g(m/g)− 1, so that s < g− g/m. Since
s is an integer, it follows that s ≤ g − 1. Hence

m

2g
− 1 +

nk

g
≤ m

2g
− 1 +

n

g

(s

2

)

≤ m

2g
− 1 +

n

g

(
g − 1

2

)

=
n

2
−

(
n

2g
− m

2g

)
− 1

≤ n − 1

2
.

For each j with 1 ≤ j ≤ k, the graph X(n;±(Dj ∪ (Dj + n/g))) has a decomposition
into m-cycles by Lemma 3.3. If ε = 1, then X(n;±D∪{0,±n/g}) decomposes into m-cycles
and a 1-factor by Lemma 3.4. Let A = S \ T if ε = 0 or let A = S \ (D ∪ T ) if ε = 1.
Then, A consists of mq/2 differences and Lemma 3.2 gives a decomposition of X(n;±A) into
m-cycles, completing the construction in the case that k is even.

Now suppose that k is odd. Consider the sets D1, D2, . . ., Dk+1 (so i = 1, . . . , (k−1)/2).
As before, the sets D1,D2, . . . ,Dk+1 satisfy the same properties as in the case when k is even
except that

(
D1 ∪

(
D1 +

n

g

))
∪ · · · ∪

(
Dk ∪

(
Dk +

n

g

))
∪ Dk+1 ⊂

{
1, 2, . . . ,

m

2g
+

nk

g

}
.

Let D = Dk+1 \ {nk/g − m/(2g)}. Let T be defined as above and note that the largest
positive integer in D ∪ T is m/(2g) + nk/g, and we have seen that m/2g + nk/g < n/2 −
(n − m)/(2g). Since m/(2g) + nk/g is an integer, it follows that m/(2g) + nk/g ≤ (n −
1)/2. Thus, as was done in the case when k is even, the graph X(n;±(Dj ∪ (Dj + n/g)))
has a decomposition into m-cycles by Lemma 3.3 for each j = 1, 2, . . . , k. If ε = 1, then
X(n;±D∪{0,±n/g}) decomposes into m-cycles and a 1-factor by Lemma 3.4. Thus, letting
A be defined as in the case when k is even, we have that X(n;±A) decomposes into m-cycles
by Lemma 3.2, completing the construction in the case that k is odd.

Theorem 1.1 now follows from Lemmas 3.1 and 3.5, and we have shown that the necessary
conditions for an m-cycle system of Kn,n − I are sufficient for many values of m and n. The
remaining open case is to show that an m-cycle system exists when m ≡ 0(mod 4) and
n < m < 2n.
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