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Abstract

In this note, we discuss a tournament scheduling problem that
connects Room squares and balanced tournament designs. The prob-
lem involves assigning referees to tournament schedules, and it can be
solved using certain types of Room squares called “maximum empty
subarray Room squares”. We also point out that these Room squares
can be “gravity-transformed” into balanced tournament designs.

1 Introduction and Background

We begin with some definitions. Let n be an odd integer and let S be a
set of size n + 1 called symbols. A Room square of side n (denoted RS(n))
based on symbol set S is an n × n array, F , which satisfies the following
properties:

1. every cell of F either is empty or contains an unordered pair of sym-
bols from S,

2. every symbol x ∈ S occurs once in every row and once in every column
of F ,

3. every unordered pair of symbols occurs in exactly one cell of F .

It is known that a Room square of side n exists if and only if n is
an odd integer, n ≥ 1, n 6= 3, 5. See Mullin and Wallis [5] for a proof.
For additional information about Room squares and related structures, see
Dinitz and Stinson [2] or The CRC Handbook of Combinatorial Designs [1].
A Room square of side 7 is given in Figure 1.

1



Figure 1: A Room square of side 7

01 45 67 23
57 02 13 46

56 03 12 47
37 04 26 15

36 14 27 05
24 35 17 06

16 34 25 07

A Room square of side n, say F , can be used to schedule a round robin
tournament for n + 1 teams. The rows of F are indexed by n playing
fields, and the columns of F are indexed by n rounds. The round robin
tournament satisfies the following properties:

1. every team plays once on every field and every team plays once in
every round,

2. every pair of teams plays together exactly once during the tourna-
ment.

It is easily seen that there are exactly (n + 1)/2 games in every round.
Therefore we need at least (n+1)/2 referees so that every game has a referee
assigned to it. In order to eliminate possible bias of referees, we would like
to assign referees to games in such a way that every team receives each
referee roughly the same number of times. More precisely, for every team
T and for every referee R, it should be the case that R is assigned to
exactly one or two games involving team T . A Room square for which
referees can be assigned in this way will be called a referee-minimal Room
square, denoted RMRS(n).

Given a Room square F of side n, a column-transversal in F is a set of
n filled cells with the property that no two cells are in the same column and
no symbol occurs more than twice in these cells. F will be an RMRS(n) if
and only if there exists a set of (n + 1)/2 disjoint column-transversals in F
(each column transveral corresponds to an assigned referee).

Referee-minimal Room squares have a nice three-dimensional interpre-
tation. This interpretation makes use of structures called “balanced tour-
nament designs”, which we define now.

Let m be an integer and let S be a set of size 2m called symbols. A
balanced tournament design of order m (denoted BTD(m)) based on symbol
set S is an m× (2m− 1) array, G, which satisfies the following properties:
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Figure 2: A maximum empty subarray Room square of side 9

37 28 59 4X 16
56 1X 47 29 38

2X 67 18 35 49
48 39 26 17 5X

19 45 3X 68 27
12 8X 57 69 34
46 13 89 7X 25
58 79 14 23 6X
9X 24 36 15 78

1. every cell of G contains an unordered pair of symbols from S,

2. every symbol x ∈ S occurs either once or twice in every row of G,
and once in every column of G,

3. every unordered pair of symbols occurs in exactly one cell of G.

It is known that a balanced tournament design of order m exists if and
only if m is a positive integer such that m 6= 2. See Schellenberg, van Rees
and Vanstone [6] for a proof of this fact. As well, a brief survey of balanced
tournament designs can be found in [1, pp. 238–241].

Now, it is not hard to see that an RMRS(n) is equivalent to a three-
dimensional “brick”, having dimensions n× n× n+1

2 , that satisfies certain
conditions. Suppose that we think of the three dimensions of the brick as
corresponding to fields, rounds, and referees, respectively. If we collapse
the third dimension (i.e., project onto the first two dimensions), then we
obtain a Room square of side n. If we collapse the first dimension, then we
obtain a BTD((n + 1)/2).

2 A Construction for Referee-minimal Room
Squares

We now describe a method of constructing RMRS(n) for almost all odd
integers n ≥ 9. We make use of a special type of Room square called a
maximum empty subarray Room square, denoted MESRS(n), which was
first defined by Stinson [7]. An MESRS(n) is an RS(n) containing an
n−1

2 × n−1
2 subarray of empty cells. We present an MESRS(9) in Figure 2.
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It is not hard to see that the rows and columns of an MESRS(n), say
F , can be permuted so that F has the form(

A B
C D

)
,

where A has dimensions n+1
2 × n+1

2 , B has dimensions n+1
2 × n−1

2 , C has
dimensions n−1

2 × n+1
2 , D has dimensions n−1

2 × n−1
2 , B and C are filled, D

is empty, and the only filled cells in A are the diagonal cells. An MESRS(n)
that is displayed in this fashion is said to be in standard form. Note that
the MESRS(9) in Figure 2 is in standard form.

In constucting RMRS(n), we will make use an existence result for
MESRS which is found in Lamken [3]. (Theorem 2.1 follows directly from
[3] and the fact that an MESRS(2n − 1) is equivalent to a special type of
BTD(n) called a partitioned balanced tournament design; see [4].)

Theorem 2.1 Suppose n ≥ 9 is an odd integer, and n 6= 17, 21, 29. Then
there exists an MESRS(n).

Now, suppose we have an MESRS(n) in standard form. Let m = (n +
1)/2. Suppose that the rows of B are denoted B1, . . . , Bm, and denote the
rows of C by C1, . . . , Cm−1. Let the diagonal of A be denoted Ad. We now
assign referees for the games. For 1 ≤ i ≤ m− 1, referee Ri is assigned to
all the games in the cells in Bi ∪ Ci. Referee Rm is assigned to the games
in the cells in Ad ∪Bm.

We show that this assignment of referees to games yields an RMRS(n).
Every set of cells Ci contains every team exactly once, and every set of cells
Bi contains every team at most once. Therefore referees R1, . . . , Rm−1 are
assigned to each team either once or twice. In addition, it is not hard to
see that the set of cells Ad contains every team exactly once, and hence
the desired property holds also for referee Rm. Hence, we have proven the
following.

Theorem 2.2 Suppose n ≥ 9 is an odd integer, and suppose n 6= 17, 21, 29.
Then there exists an RMRS(n).

3 Referee Field Changes

A round robin tournament based on a Room square is set up so that every
team plays on a different field during each round. However, there may be
no reason why the referees should be required to change fields so often.
On the contrary, it might be desirable for the referees to change fields as
infrequently as possible.

Here is a small example to illustrate.
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Example 3.1 Consider the RMRS(9) constructed as we have described in
Section 2. Referees R1, R2, R3 and R4 each change fields once, and referee
R5 changes fields four times. The total number of field changes is therefore
eight. We will show a bit later that the total number of referee field changes
in this example is small as posssible. �

In general, if we construct an RMRS(n) as described in Section 2, then
the total number of referee field changes is n − 1. We now show that it is
impossible to construct an RMRS(n) in which the total number of referee
field changes is less than n− 1.

Theorem 3.2 For any RMRS(n), the total number of referee field changes
is at least n− 1.
Proof: For 1 ≤ i ≤ n, let fi denote the number of referees that are assigned
to at least one game on the ith playing field. If fi = fj = 1 for some
i 6= j, then the referee assigned to field i must be different from the referee
assigned to field j (otherwise a referee would be assigned to more than
n games, an impossibility). Hence, there at most (n + 1)/2 fields having
fi = 1 and at least (n− 1)/2 fields having fi ≥ 2. Consequently,

n∑
i=1

fi ≥
n + 1

2
+ 2× n− 1

2
=

3n− 1
2

.

Now, it is not difficult to see that the total number of field changes is

n∑
i=1

fi −
n + 1

2
≥ 3n− 1

2
− n + 1

2
= n− 1.

This completes the proof. �

Summarizing, we obtain the following result about referee field changes
in RMRS(n).

Theorem 3.3 Suppose n ≥ 9 is an odd integer, and suppose n 6= 17, 21, 29.
Then there exists an RMRS(n) in which the total number of referee field
changes is equal to n− 1. Moreover, for any odd integer n, there does not
exist an RMRS(n) in which the total number of referee field changes is less
than n− 1.

4 Gravity-transformed Room Squares

Suppose that F is a Room square of side n. Think of lifting F so that it
is vertical, and imagine that the contents of all the filled cells are affected
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Figure 3: A gravity-transformed Room square of side 9

37 56 2X 48 19 28 59 4X 16
12 8X 57 69 34 1X 47 29 38
46 13 89 7X 25 67 18 35 49
58 79 14 23 6X 39 26 17 5X
9X 24 36 15 78 45 3X 68 27

by a gravitational force. Then the cells in the bottom (n + 1)/2 rows
are completely filled, and the cells in the the top (n − 1)/2 rows are all
empty. The n+1

2 × n array of filled cells in this structure will be called a
gravity-transformed Room square, which we denote by GTRS(n). A gravity-
transformed Room square of side 9, derived from the RS(9) from Figure 2,
is presented in Figure 3.

It is not hard to see that the GTRS(9) presented in Figure 3 is in fact
a BTD(5). This is no accident, in view of the following theorem, which we
state without proof.

Theorem 4.1 Suppose F is an MESRS(n) in standard form, and let G be
the GTRS(n) derived from F . Then G is a BTD((n + 1)/2).

Hence, for every odd integer n ≥ 9, (except possibly n = 17, 21, 29)
there is a Room square of side n which can be gravity-transformed into a
balanced tournament design.

5 An Open Problem

We mentioned a three-dimensional interpretation of RMRS(n) in Section 1.
In this interpretation, we have a three-dimensional brick such that one two-
dimensional projection yields a Room square and another two-dimensional
projection yields a balanced tournament design. It is conceivable that
the third two-dimensional projection could also be a balanced tournament
design; however, we do not have any examples where this occurs. Thus we
pose the following open problem.

For which odd integers n does there exist a three-dimensional
brick B having dimensions n × n × n+1

2 , such that every two-
dimensional projection of B is either a BTD((n + 1)/2) or an
RS(n)?

The existence of such a brick is equivalent to the existence of a Room
square of side n which contains (n + 1)/2 disjoint transversals, where each
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transversal consists of n filled cells with the property that no two cells are
in the same row or column and no symbol occurs more than twice in these
cells. We were unable to find any example of this object, even for small
orders of n. However, we do not hesitate to conjecture that such an object
exists for many orders.
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