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We consider sets of MOLS (mutually orthogonal Latin squares) having holes, corresponding
to missing sub-MOLS, which are disjoint and spanning. We give several constructions for sets
of MOLS with holes.

1. Inéroduction

Let P={S,,..., S,} be a partition of a set § (n=2). A partitioned incomplete
Latin square, (or PILS), having partition P, is an |S| by |S| array L, indexed by S,
satisfying the following properties:

(0) a cell of L either contains an element of S or is empty,

(1) the subarrays indexed by S; X S; are empty, for 1<i<n (we will refer to
these subarrays as holes),

(2) the elements occurring in row (or column) s of L are precisely those in
S\S,;, where s€ S,.

We will say that the type of L is the multiset {|S;|,...,|S,|}. We will use the
notation t%: - - - tj* to describe the type of a PILS, where there are precisely u; S;’s
of cardinality ¢, for 1<i<k.

Suppose L and M are both PiLS having partition P. We say that L and M are
orthogonal if their superposition yields every ordered pair in $>\ U, S;. Several
PILS, each having partition P, are said to be orthogonal if each pair is. We
abbreviate the term orthogonal PILS to OPILS.

We give an example of two OPILS of type 2* in Fig. 1. (See Lemma 3.10.)
Here the symbol set S =Z;, and the partition is formed by S, ={0,4}, S, ={1, 5},
S;={2,6}, and S,={3,7}.

Just as for ordinary Latin squares, one can investigate the largest set of OPILS
of a specified type T. We will denote the size of such a set by N(T).

In this paper we primarily investigate N(T) where T is of the form 27, n a
positive integer. We show that N(2")=2 if and only if n=4, and that N(29)=6
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Fig. 1. Two OPILS of type 2*.

for several primes g. This is accomplished by a direct and a recursive construction,
described in the next section.

Two OPILS have been used (see [9]) to show the existence of the class of
Howell designs H(s,25—2), s odd. As well OPILS can be used in recursive
constructions to construct new examples of MOLS (mutually orthogonal Latin
squares) with certain sub-MOLS (see Section S).

We end this section by indicating a trivial upper bound.

Lemma 1.1, Let T=1t} - -t and n =Y¥_, u,. Then N(T)<n-2.

Proof. 1.et P={S,,....S,} be a partition of type Tof aset S. l.etL,,..., L, be
a set of OPILS having partition P. Consider a cell C = (s, t) with s€ S,, te S,. The
set {L(C): 1 <i=m} is disjoint from §,US, and meets any S; (i =3) in at most
one symbol; thus m=sn-2. O

2. Two constructions

The constructions in this section closely resemble constructions for MOLS and
other designs. Therefore we will not give proofs, but we will indicate appropriate
references. .

The first construction resembies [12; Lemma 1]. It uses difference methods. Let
G be an abelian group, H a subgroup of G, X any set disjoint from G, and k =2
an integer. For a vector be (G U X)*, we denote the ith coordinate of b by b;.

Lemma 2.1. Suppose B = (G U X)* satisfies the following properties:
(1) For each i, 1<i<k, and each x € X, there is a unique b B with b, = x.
(2) No be B has two coordinates in X.
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(3) For each i,j (1<i<j<k) and each ac G\ H there is a unique be B with
b, b€ G and b,—b; = a.

Then there is a set of k—2 OPILS of type h®"|X|', having partition {Hg:
geG}U{X} where g—IGI and h= IHI

We remark that the above construction is vahd wnth X ¢ condmons (1) and
(2) are then satisfied trivially.

The following recursive construction uses GDDs A group-divisible design (or
GDD) is a triple (X, ¢, o) satisfying:

(1) % is a partition of X into subsets (called groups),

(2) o is a set of subsets of X (called blocks), each having size at least two,

(2) a group and a block have at most one common element (or point) of X,

(4) every unordered pair of points not contained in a group is contained in a
unique block.

The group-type of (X, %4, o) will be the multiset {|G|: G € %}.

A weighting of a GDD is a mapping w : X — Z* U{0}. For (X, %, #) a GDD, w
a weighting, and Y < X, let w(Y) denote the multiset {w(x): xe Y}.

The following construction is similar to [10, Construction 2.2].

Lemma 2.2. Suppose that (X, %4, o) is a GDD, w is a weighting, and let k= 1.
Further, suppose that, for every block A € 4, there are k OPILS of type w(A). Then
there are k OPILS of type {3 cc w(x): Ge %}.

3. Two OPILS

We shall show in this section that N(2")=2 for n =4. Note that if n =<3, then
N(2")<2 by Lemma 1.1. First, we reduce the problem to a finite one.

A pairwise balanced design (or PBD) is a pair (X, ) such that (X, {{x}:
xe X}, of) is a GDD. We say that (X, &) is a (v, K)-PBD provided that |X|=
and |A|eK for all A e . (K is a set of integers, each exceeding one.) A set J of
positive integers is said to be PBD-closed provided that veJ whenever a
(v, J)-PBD exists. Define N, ={n: N(2")=2}

Lemma 3.1. N, is PBD-closed.

Proof. Apply Lemma 2.2 with k =2, giving every point weight two. O
Let K,=1{4,5,...,12,14,15,18, 19,23, 27}.
Lemma 3.2. Suppose K;< N,. Then N,={n: n=4}.

Proof. If n <4, then we have noted that n¢ N,. It has been shown [5] that a
(v, K,)-PBD exists for all v=4. Apply Lemma 3.1. [
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Lemma 3.3. Suppose q=3 (mod 4) is a prime power exceeding 3. Then q € N,.

Proof. We will apply Lemma 2.1 with G =GF(q)XZ,, H={0}xZ,, X=0 and
k =4. Let R denote the non-zero squares in GF(q); let N denote the (non-zero)
non-squares. Choose any non-zero ¢ € GF(q) such that ¢>—1¢e N (this is where we
require q>3). Now let

B ={(yo. ¢y}, (c + 1)yy, 0p), (yy, —cyy, —(c = 1)yg, Op),
(= Yo, —cyo, —(c + 1Dyq, 0p), (—yy, cyo. (¢ = 1)y, 0p): ye R}

(We are writing the ordered pair (x, i) as x; for simplicity.) It is straightforward to
verify property (3) in Lemma 2.1. Two OPILS of type 2% result. O

If g=1 (mod 4), the above construction does not work because —1 is a square.
However we have another construction.

Lemma 3.4. If q=1 (mod 4) is a prime power, then q€ N,.

Proof. Lt o be primitive in GF(q) and let ¢ be any non-square. Let t =(q— 1),
and define Q ={1, w?, ..., ®* ). Note that

QU-QUcQU-cQ =GF(q)\{0}.
We apply Lemma 2.1 with the same G, H, X and k as in Lemma 3.3. Define
B = {£(y,. cyi. (1+¢)yo, 04), £(cYo. y1, (1+¢)yy, Op),
+ (CZ.V'J- €Yo, C(l +C)y0n O())s i((‘yl, Czy(), C(l +C)y1, 0()): y € O}.

It can be verified that property (3) in Lemma 2.1 is satisfied; hence two OPILS of
type 29 result. O

We can construct two OPILS of type 2", n even, be altering slightly those of
type 2" ' constructed by Lemmata 3.3 and 3.4. (This is essentially the method of
‘sum composition’, as used by Horton [6, Theorem 3] and Ruiz and Seiden [8]).
Suppose B satisfies the hypotheses of Lemma 2.1 with k =4, and that there are
four vectors (in B) b' = (r,, s;, t,, 0), 1 <i=<4, which satisfy the following properties:

(I' r.s, and ¢; are all in G, 1<i<4.

D s, nrI<isdt={s;—r, sy=r, 21— (1), s4—r;—(t,— )}

ot {x,, .} be disjoint from G U X, and define

ABI = B\{b‘ 1$i$4}U{(rl, S:. xl; 0); ‘x[s S]-. t]v O)y (r?_» wlw t2) 0)9
‘r) - t|, S:" ‘2. (),xl). (r_z. S4‘ OCZ; (\), (:x::.‘ s}, t4~ 0)‘

(r4* *a. t-l‘ 0)" ("3 - 135 Sa— 14- 0' OC‘::)}.

The following result can be easily verified.

Lemma 3.5 (Projection Lemma). B’, described above, satisfies the hypothesis of
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Lemma 2.1 with respect to G,: H, and X' = X U{e,, ,}, with k =4. Hence two
OPILS of the relevant iype exist.

Now, consider the B constructed in Lemma 3.3. Choose
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let b! —(Vn. CV1,(C+1)V|, On) b2=(—Vn.“ - C+1)\n. On b3-— (—V¥1, €Y,
(c—1)y;, 0p) and b*=(y,, —cy;, —(c —1)yg, Op). These four vectors satisfy the tw
properties precedmg Lemma 3.5, hence they may be ‘projected’ as described
above. This process can be carried out successively for various elements of R.

There are 3(q — 1) residues, so we obtain the foliowing.

!

Lemma 3.6. For q=3 (mod 4) a prime power exceeding 3, and 0<i<j3(q—1),
there are two OPILS of type 27(2i).

Setting i =1, we obtain
Corollary 3.7. If g=3 (mod 4) is a prime power exceeding 3, then g+ 1€ N,.

The case q=1 (mod 4) may be dealt with similarly, by altering the B produced
in Lemma 3.4. Choose any y€ O and consider b' =(y,, wy;, (1+w)y,, 0p), b*=

s 2 sa N ~oN e AN s 24
(@W7Yp, WYg, W(1 T W)Yo, Yp), b® =(—wyg, —y1, —(1+w)y,, Op), and b =
{ sy _...21- Y & I TR TN N\ Thaoaca vontnre smavu ha Srmeniantad’ far ane o~ N
\ T WYy, —® Yo, O T WYy, uo) LU0 VOCWUIS [iiay UC pPryjoiicd , 1UT aily Y © .
Also, the vectors —b' (1<i=<4) may be ‘projected’, for any y € Q, independently
of the vectors B' (1=<i=<4). There are 3(q—1) choices for y € Q, so we obtain a

Lemma 3.8. For q=1 (mod 4) a prime power, and 0<i<3(q—1), there are two
1

Now, from Lemmata 3.3 and 3.4, and Corollaries 3.7 and 3.9, we have
f&e £ ™M O N 1A 11 17 14 10 10 2% A" — AT Te ez AL T moncnn 2D wxrr sennd
2,0, 7,0,Y, 10U, 11, 12, 14, 10, 1Y, 2O, 2/ S INp. III VIEW Of LEMMA 3.2, WE ii€€a
only show that {4, 15} N, in order to determine N,.

Lemma 3.11. 15 N,.

Proof. Apply Lemma 3.6 with q=11 and i obtain two OPILS of type
21181, “‘ow, fill in the hole of size 8 with tw. OP LS of type 2* on the relevant
symbol set. This produces two OPILS of type 2'°. O
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Thus we have proved

Theorem 3.12. There are two OFILS of type 2" if and only if n=4.

4. Six OPILS

In this section, by means of a computer, we construct six OPILS of type 27 for
several prime powers q=1 (mod 4).

Let g=1 (mod 4) be a prime power, let t=3(q—1), and let @ be primitive in
GF(q). Define Co={1=0", 0?*,...,©* ™}, and for 1=<i<3 define C, =0'C,. C,
is the (multiplicative) subgroup of index four in GF(q)\{0}, and the C’s are its
cosets.

We will apply Lemma 2.1 with G =GF(q)x7Z,, H={0}xZ,, X=, and k =8,
making use of the cyclotomic classes C; defined above.

For any ue(GF(q)?, say u=(y: 1<i<8), and any ve(Z,)®, say v=(v;:
1<i=<8), define uov=u,r;): 1si<8). Let v, 1<i<8, denote the ith row of
the matrix

0000O0O0TO OO
00110110
01011010

yoforrorioo
10001110
10111000
11010100
11100010

Thus v'€(Z,)", 1<i=<8. Suppose u and u’' are two vectors in (GF(q))®, with
u=(u: 1=i=<8). and v’ ={(u: 1<i=<8). Define

B=B(u.u', V)={xu-v', oxuov?, w’xucv®, w3xucv*, xu'ev’,
wxu'ov®, wxu'ov’, wixu'ov®: xe C)).

One :an ask when B will satisfy the hypotheses of Lemma 2.1. A set of
conditions is obtained, each of the form (u;, —u;)/{uj—u})e X where X is a union
of some or all of the cyclotomic classes. For example, when i=1 and j=2, we
obtain the differences (1, — u,)x,, (U — up)wxg, (lx—u)w’x,, (U= u)o’x,, (u3—
uxg, (uy—upwx,, (Uz—ue’xy, (us—ujw’x,, for all x e C,. These differences
are distinct if and only if (u;—u,)/(u;—u}) e C,. We record all of these conditions

in Table 1 below. The ij-entry (or entries) indicate the permissible cyclotomic
class(es) for (u; — w;)/(uj—u}), where 1<i<j<8.
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Table 1
\,-
i 2 3 4 5 6 7 8
\
1 0 0,2 0 2 1,3 2 0,1,2,3
2 2 1,3 0,1,2,3 0 0,2 2
3 2 0 0,1,2,3 0 1,3
4 0,2 0 0,1,2,3 2
5 2 1,3 0
6 2 0,2
7 0

By computer, we have found vectors u and u’ so that these conditions are
satisfied, for the primes 29, 37, 41, 53, 61, 73, 89, and 97. Larger primes (congruent
to 1 modulo 4) undoubtedly could also be handled by this method. So too could
prime powers (such as 25 or 81); the programming would be more difficult,
however. For the prime 17 we have only four OPILS by this method. We list
permissible vectors u and u', in Table 2.

We record our results.

Theorem 4.1. N(2'7)=4; N(2%)=6 for q =29, 37,41,53, 61,73, 89, and 97.

Table 2

qQ uw, Uy Uy Uy Us U U; Ug Wy Uy U Uy ME U, Uy Ug
17 1 3 7 4 6 0 1 10 8 15 7 0
29 1 2 327 9 2620 0 1 8 13 19 22 3 16 0
37 1 2 3 4 8 3110 0 1 8 19 12 5 23 26 0
41 1 3 2 9 4 2422 0 1 6 11 37 16 15 19 0
3 1 2 3 4 7 818 0 1 14 4 42 11 51 50 O
61 1 2 3 4 5 624 0 1 10 24 15 14 55 32 O
7301 2 3 4 6 13 5 0 1 3 26 50 23 34 28 0
89 1 2 3 6 5 713 0 1 510 70 21 26 52 O
97 1 2 3 4 5 1016 0 1 36 5 49 13 84 81 0

5. Further results

In this section we indicate several further results concerning MOLS with holes.
First, we briefly consider OPILS of type 1". The following is well known.

Lemma 5.1. There exist k OPILS of type 1" if and only if there exist k MOLS of
order n having a common transversal.

Denote the maximum number of MOLS of order n by N(n).
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Corollary 5.2. N(1")=N(n)—1.

Lower bounds for N(n) have been extensively tabulated (see for example, [3]),
so the abowv: corollary yields lower bounds which are sometimes quite good.

Corollary 5.3. If q is a prime power, then N(1%) =q - 2.

Proof. It is well known that N(q)=q —1 for q a prime power, so N(19)=q—-2.
Lemma 1.1 shows that N(19)<q-2. O

It has been determined [1] precisely when N(1")=2.
Theorem 5.4. N(1")=2 if and only if n=4 is an integer, n#6.

It is also known, with a few exceptions, when N(1")=3.
Theorem 5.5. N(1")=3 if n=5, n#6, 10, 14.
Proof. It is known (see [3]) that N(n)=4 if n=5, n¢{6, 10, 14, 18, 20, 22, 24,
26,28, 30, 33, 34, 38,42, 44, 52}; so N(1")=3 for all other n. Also, in [11] it is
shown that N(1")=3 for all the above possible exceptions other than 6, 10, and
14. O

Next, we record an improvement to Lemma 3.4, which is proved in [7].

Theorem 5.6. If q=1 (mod 4) is a prime power, then N(2%)=3.

Although we have already established thar N(2")=2 for all n =4, we give an
alternate construction, valid for n=1 (mod 3).

Theorem 5.7. Forn=1 (mod 3), n=7, NQ")=2.

roof. Let n=1 (mod3), n=7. There is a GDD having group-type 2" and
bloca« of size 4 by [4]. Apply Lemma 2.2, with & = 2, giving every point weight 1.
By Theorem 5.4 there are two OPILS of type 1. Thus two OPILS of type 2" are
constructed. O

The following result can be established in a similar manner.

‘Theorem 5.8. If n=0 (mod 3) and n =9, then N2"5")=2.

Proof. There is a GDD having group-type 2"5' and blocks of size 4 by [2].
Proceed as in Lemma 5.7. O '
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Finally we would like to indicate how MOLS with holes can be useful in
constructing MOLS with sub-MOLS. The following singular direct product con-
struction is useful.

Theorem 5.9. Suppose there exist:

(1) k OPILS of type t“,

(2) kK MOLS of order (v—w)/t,

(3) k MOLS of order v containing k sub-MOLS of c-der w.
Then there are k MOLS of order u(v — w)+ w, containing k sub-MOLS of orders v
and w.

Let us consider an example. Suppose one wished to construct three MOLS of
order 51 containing three sub-MOLS of order 11. The equation 51 =5(11-1)+1
comes to mind. In applying Lemma 5.9, one might try u =5, v=11, w=1 (and
k =3, of course). If t = 1, the construction fails since three MOLS of order 10 are
not known. However, we can set t=2: we have N(2°)=3 by Lemma 5.6,
N(5)=3, and there are three MOLS of order 11 with three sub-MOLS of order 1.
Thus we have shown

Theorem 5.10. There are three MOLS of order 51 containing three sub-MOLS of
order i1.

The authors know of no other method of obtaining the above result.
As another application of Lemma 5.9, we prove the following.

Theorem 5.11. If n=9 is odd, then therc exist two MOLS of order n containing
two sub-MOLS of order 3.

Proof. Apply Lemma 5.9 with k=2, t=2, u=3(n—1), v=3 and w=1. We have
u=4, so the required OPILS exist by Theorem 3.12. [

6. Summary and comments

MOLS are of widespread and basic importance in the construction of com-
binatorial designs. We feel that MOLS with holes will also prove useful, and we
have given some indication of wavs in which they can be used (see also [7] and
[10, Construction 2.4]).

What is needed now are more direct constructions for MOLS with holes. One
question that comes to mind is: When is N(2") = n —2 the case? Perhaps equality
holds for n a prime power.
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