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Abstract

An integer Heffter array H(m,n; s, t) is an m×n partially filled matrix with entries
from the set {±1,±2, . . . ,±ms} such that i) each row contains s filled cells and each
column contains t filled cells, ii) every row and column sums to 0 (in Z), and iii) no two
entries agree in absolute value. Heffter arrays are useful for embedding the complete
graph K2ms+1 on an orientable surface in such a way that each edge lies between a face
bounded by an s-cycle and a face bounded by a t-cycle. In 2015, Archdeacon, Dinitz,
Donovan and Yazıcı constructed square (i.e. m = n) integer Heffter arrays for many
congruence classes. In this paper we construct square integer Heffter arrays for all
the cases not found in that paper, completely solving the existence problem for square
integer Heffter arrays.

1 Introduction

We begin with the general definition of Heffter arrays from [1]. A Heffter array H(m, n; s, t)
is an m× n matrix with nonzero entries from Z2ms+1 such that

1. each row contains s filled cells and each column contains t filled cells,

2. the elements in every row and column sum to 0 in Z2ms+1, and

3. for every x ∈ Z2ms+1 \ {0}, either x or −x appears in the array.

The notion of a Heffter array H(m, n; s, t) was first defined by Archdeacon in [1]. It is
shown there that a Heffter array with a pair of special row and column orderings can be used
to construct an embedding of the complete graph K2ms+1 on a surface. This connection is
given in the following theorem.

∗Research supported by ARC grant #DP150100506.
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Theorem 1.1. [1] Given a Heffter array H(m, n; s, t) with compatible orderings ωr of the
symbols in the rows of the array and ωc on the symbols in the columns of the array, then
there exists an embedding of K2ms+1 on an orientable surface such that every edge is on a
face of size s and a face of size t. Moreover, if ωr and ωc are both simple, then all faces are
simple cycles.

We refer the reader to [1] for the definition of a simple ordering and the definition of
compatible orderings. We will not concern ourselves with the ordering problem in this paper
and will concentrate on the construction of Heffter arrays. In [5] the ordering problem is
addressed in more detail in the case when m = t = 3 and n = s.

A Heffter array is called an integer Heffter array if Condition 2 in the definition of
Heffter array above is strengthened so that the elements in every row and every column sum
to zero in Z. In [2, 3], Archdeacon et al. study the case where the Heffter array has no
empty cells. They show that there is an integer H(m, n; n, m) if and only if m, n > 3 and
mn ≡ 0, 3 (mod 4) and in general that there is an H(m, n; n, m) for all m, n > 3.

In this paper we will concentrate on constructing square integer Heffter arrays with empty
cells. If the Heffter array is square, then m = n and necessarily s = t. So for the remainder
of this paper define a square integer Heffter array H(n; k) to be an n×n partially filled array
of nonzero integers satisfying the following:

1. each row and each column contains k filled cells,

2. the symbols in every row and every column sum to 0 in Z, and

3. for every element x ∈ {1, 2, . . . , nk} either x or −x appears in the array.

In [4] the authors study the case of square integer Heffter arrays H(n; k). The following
theorem is from that paper.

Theorem 1.2. [4] If an H(n; k) exists, then necessarily 3 6 k 6 n and nk ≡ 0, 3 (mod 4).
Furthermore, this condition is sufficient except possibly when n ≡ 0 or 3 (mod 4) and k ≡
1 (mod 4).

It should be noted that [4] also contains partial results when n ≡ 0 or 3 (mod 4) and
k ≡ 1 (mod 4). In this paper we will solve those cases completely. Our main result is given
in the following theorem.

Theorem 1.3. There exists an integer H(n; k) if and only if 3 6 k 6 n and nk ≡
0, 3 (mod 4).

We will prove this theorem by first constructing an H(n; 5) where all the filled cells are
contained on 5 diagonals. Then we will add s disjoint H(n; 4) to construct H(n; 5 + 4s) =
H(n; k) where k ≡ 1 (mod 4). We begin in Section 2 by giving a general construction for
H(n; 4) where all of the filled cells are contained in 4 diagonals. In Section 3 we discuss the
case when n ≡ 3 (mod 4) and in Section 4 we discuss the case when n ≡ 0 (mod 4).
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2 H(n ; 4) using two sets of consecutive diagonals

An important concept in the prior work on Heffter arrays has been the notion of a shiftable
Heffter array. A shiftable Heffter array Hs(n; k) is defined to be a Heffter array H(n; k) where
every row and every column contain equal numbers of positive and negative entries. Let A be
a shiftable array and x a nonnegative integer. If x is added to each positive element and −x
is added to each negative element, then all of the row and column sums remain unchanged.
Let A± x denote the array where x is added to all the positive entries in A and −x is added
to all the negative entries.

If A is an integer array, define the support of A as the set containing the absolute value
of the elements contained in A. So if A is shiftable with support S and x a nonnegative
integer, then A± x has the same row and column sums as A and has support S + x. In the
case of a shiftable Heffter array Hs(n; k), the array Hs(n; k) ± x will have row and column
sums equal to zero and support S = {1 + x, 2 + x, . . . , nk + x}.

In this section we describe an easy construction of a shiftable H(n; 4) where all of the
filled cells are contained in two pairs of adjacent diagonals. If H is an n × n array with
rows and columns labeled 1, . . . , n, for i = 1 . . . , n define the ith diagonal Di to be the set
of cells Di = {(i, 1), (i + 1, 2), . . . , (i− 1, n)} where all arithmetic is performed in Zn (using
the reduced residues {1, 2, . . . n}. We say that the diagonals Di and Di+1 are consecutive
diagonals. We should note that in [4] there is a construction of a shiftable H(n; 4) for all
n > 4 that uses 4 consecutive diagonals.

All the constructions in this paper are based on filling in the cells of a fixed collection
of diagonals. To aid in these constructions we define the following procedure for filling a
sequence of cells on a diagonal. It is termed diag and it has six parameters.

In an n× n array A the procedure diag(r, c, s, ∆1, ∆2, `) instals the entries

A[r + i∆1, c + i∆1] = s + i∆2 for i = 0, 1, . . . , `− 1.

Here all arithmetic on the row and column indices is performed modulo n, where the set of
reduced residues is {1, 2, . . . , n}. The following summarizes the parameters used in the diag
procedure:

• r denotes the starting row,
• c denotes the starting column,
• s denotes the starting symbol,
• ∆1 denotes how much the row and column indices change at each step,
• ∆2 denotes how much the symbol changes at each step, and
• ` is the length of the chain.

The following example shows the use of the above definition and is also an example of
the construction which will be described in Theorem 2.2.

Example 2.1. A shiftable H(11; 4) where the filled cells are contained in two sets of con-
secutive diagonals.

The Heffter array H(11; 4) below is constructed via the following procedures:
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diag(4, 1, 1, 1, 2, 11);
diag(5, 1,−2, 1,−2, 11);
diag(4, 7,−23, 1,−2, 11);
diag(5, 7, 24, 1, 2, 11).

38 −39 −16 17
40 −41 −18 19

42 −43 −20 21
1 44 −23 −22
−2 3 24 −25

−4 5 26 −27
−6 7 28 −29

−8 9 30 −31
−33 −10 11 32
34 −35 −12 13

36 −37 −14 15

We point out a few properties of the Heffter array in Example 2.1 which will useful in the
proof of the main theorem of this section. First we note that all of the filled cells are in the
two pairs of consecutive diagonals {D4, D5} and {D9, D10} and that the sum of the symbols
in the columns of one of the pairs of diagonals is +1 while the other adds to −1. Hence every
column adds to 0. The rows are similar except for row 4. In this row the sum of the symbols
in D4 and D5 is −21 while the sum of the symbols in D9 and D10 is +21. So all the row
sums are 0. It is also apparent that each row and each column contain two positive values
and two negative values making this a shiftable array. Finally it is clear that the support
of D4 and D5 is {1, 2, . . . , 22} while the support of D9 and D10 is {23, 24, . . . , 44}. We have
thus shown that this is indeed a shiftable integer H(11; 4) where all the filled cells are in the
two pairs of consecutive diagonals. The following is the main theorem of this section.

Theorem 2.2. For every n > 4 and any two disjoint pairs of consecutive diagonals, there
exists a shiftable integer Heffter array H(n; 4) with filled cells contained in the four diagonals.

Proof. Assume that the two pairs of consecutive diagonals are {Da, Da+1} and {Db, Db+1}
with b > a + 1. We define the square H using the diag procedures as in Example 2.1 above.
So let H be constructed from

diag(a, 1, 1, 1, 2, n),
diag(a + 1, 1,−2, 1,−2, n),
diag(a, n + a− b + 1,−2n− 1, 1,−2, n), and
diag(a + 1, n + a− b + 1, 2n + 2, 1, 2, n).

Clearly diagonal Da is filled from the procedure diag(a, 1, 1, 1, 2, n) while diagonal Da+1

is filled from diag(a + 1, 1,−2, 1,−2, n). We next note that a cell (i, j) gets filled from the
procedure diag(a, n + a− b + 1,−2n− 1, 1,−2, n) if and only if j− i = (n + a− b + 1)− a =
n − b + 1 = 1 − b (mod n). So cell (b, 1) is filled from this procedure. Since ` = n in this
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procedure we have that every cell in Db is filled. Similarly every cell in Db+1 is filled from
the procedure diag(a + 1, n + a− b + 1, 2n + 2, 1, 2, n).

Considering the column sums, we see that in each column the sum of the cells in Da and
Da+1 is −1, while the sum of the cells in Db and Db+1 is +1. Hence the sum of the symbols
in each column is 0. Similarly, if r 6= a, then the sum of the cells in row r in Da and Da+1

is +1, while the sum of the cells in row r in Db and Db+1 is −1. So the sum of the symbols
in each row r 6= a is 0. Now consider row a. The symbols from Da,Da+1, Db and Db+1 are
1,−2n,−2n− 1 and 4n, respectively, and so the symbols in this row also add to 0.

We next check the support of H. We see that the support of diag(a, 1, 1, 1, 2, n) is
{1, 3, . . . , 2n−1}, while the support of diag(a+1, 1,−2, 1,−2, n) is {2, 4, . . . , 2n} so together
they cover the symbols {1, 2, . . . 2n}. Further, we have that the support of diag(a, n + a −
b + 1,−2n− 1, 1,−2, n) is {2n + 1, 2n + 3, . . . , 4n− 1}, while the support of diag(a + 1, n +
a− b + 1, 2n + 2, 1, 2, n) is {2n + 2, 2n + 4, . . . , 4n}, so these two diagonals cover the symbols
{2n + 1, 2n + 2, . . . , 4n}. Hence the support of H is the required {1, 2, . . . , 4n}. Finally it is
clear from the construction that each row and each column contains two positive numbers
and two negative numbers. Thus we have shown that H is indeed a shiftable integer H(n; 4),
as desired.

3 H(n ; k) when n ≡ 3 (mod 4) and k ≡ 1 (mod 4)

In this section we first give a direct construction for H(n; 5) with n ≡ 3 (mod 4) where all of
the filled cells are on exactly 5 diagonals. We then use Theorem 2.2 repeatedly to construct
H(n; k) for all n ≡ 3 (mod 4) with n > 7, and all k ≡ 1 (mod 4) with 5 6 k 6 n− 2.

We begin with an example of the main construction of this section. Hopefully, the reader
can see the type of patterns which will exist in the general case.

Example 3.1. An H(11, 5).

10 53 24 −33 −54
−36 −9 44 32 −31

−45 −8 52 30 −29
−37 −7 43 28 −27

−46 −6 51 26 −25
−21 −38 −11 47 23
12 −13 −42 4 39

14 −15 −50 3 48
16 −17 −41 2 40

18 −19 −49 −5 55
35 20 −22 −34 1
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Theorem 3.2. There exists an H(n, 5) for all n ≡ 3 (mod 4) with n > 7.

Proof. Let h = (n + 1)/2 and q = (n − 3)/4. We construct an n × n array H using the
following procedures. The procedures are labeled a to n.

a diag(h + 1, h + 1, h− 2, 1,−1, h− 3);
b diag(3, 3,−(n− 3), 1, 1, h− 3);

c diag(2, 3, 4n, 2,−1, q);
d diag(3, 2,−(4n + 1), 2,−1, q);
e diag(3, 4, 5n− 3, 2,−1, q);
f diag(4, 3,−(3n + 4), 2,−1, q);

g diag(h + 1, h,−(4n− q), 2, 1, q);
h diag(h + 2, h + 1,−(5n− q − 3), 2, 1, q);
i diag(h, h + 1, (4n + q + 1), 2, 1, q);
j diag(h + 1, h + 2, (3n + q + 4), 2, 1, q);

k diag(h + 1, 2,−(n + 2), 1,−2, h− 2);
l diag(h + 1, 1, (n + 1), 1, 2, h− 1);
m diag(1, h + 1,−(3n), 1, 2, h− 1);
n diag(2, h + 1, (3n− 1), 1,−2, h− 2);

We also fill the following cells in an ad hoc manner.

H[1, 1] = n− 1; H[1, 2] = (5n− 2); H[1, h] = 2n + 2; H[1, n] = −(5n− 1);
H[2, 1] = −(3n + 3); H[2, 2] = −(n− 2);
H[h, 1] = −(2n− 1); H[h, h] = −n; H[h, n] = (2n + 1);
H[n− 1, n− 1] = −(h− 1); H[n− 1, n] = 5n;
H[n, 1] = (3n + 2); H[n, h] = −2n; H[n, n− 1] = −(3n + 1); H[n, n] = 1;

We now prove that the array constructed by the description above is indeed an integer
H(n; 5). To aid in the proof we give a schematic picture of where each of the diagonal
procedures fills cells. The first cell in each of these procedures is shaded and we have placed
an x in the ad hoc cells. (In this picture we used n = 15, so h = 8 and q = 3.)
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x x x m x
x x c n m

d b e n m
f b c n m

d b e n m
f b c n m

d b e n m
x f x i x
l k g a j

l k h a i
l k g a j

l k h a i
l k g a j

l k h x x
x l x x x

We first check that the rows all add to 0 (in the integers).

Row 1: There are four ad hoc values plus the first value in diagonal m. The sum is
(n− 1) + (5n− 2) + (2n + 2)− 3n− (5n− 1) = 0.

Row 2: The sum is −(3n + 3)− (n− 2) + 4n + (3n− 1)− (3n− 2) = 0.

Rows 3 to h− 1: First notice that in all of these rows the sum of the n and the m diagonal
cells is +1 so we must show that the sum of the three cells in the three center diagonals
is −1. There are two cases depending on whether the row r is odd or even. If r is odd,
then write r = 3 + 2k where 0 6 k 6 q − 1. Notice that from the d, b and e diagonal
cells we get the following sum: −(4n+1)−k−(n−3)+2k+(5n−3)−k = −1 as desired.
If r is even, then write r = 4 + 2k where 0 6 k 6 q − 2. From the f, b and c diagonal
cells we get the following sum: −(3n + 4)− k − (n− 3) + 1 + 2k + 4n− 1− k = −1,
as desired.

Row h: There are three ad hoc values plus the last of the f diagonal as well as the first of the
i diagonal. We get the row sum: −(2n−1)−n+(2n+1)−(3n+4)−(q−1)+4n+q+1 = 0.

Rows h+1 to n−2: Note that in all of these rows the sum of the l and the k diagonal cells
is −1 so we must show that the sum of the three cells in the three center diagonals is
+1. There are again two cases depending on whether the row r is odd or even. If r
is odd, noting that h is even, we write r = (h + 1) + 2k where 0 6 k 6 q − 1. Now,
from the g, a and j diagonal cells we get the following sum: −(4n− q) + k + (h− 2)−
2k + (3n + q + 4) + k = −n + 2q + h + 2 = 1. If r is even, write r = (h + 2) + 2k
where 0 6 k 6 q − 2. From the h, a and i diagonal cells we get the following sum:
−(5n− q − 3) + k + (h− 3)− 2k + (4n + q + 2) + k = −n + 2q + h + 2 = 1.
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Row n − 1: We add the values in diagonals l, k and h with two ad hoc values to get:
(n+1)+2(h−3)−(n+2)−2(h−3)−(5n−q−3)+(q−1)−(h−1)+5n = −h+2q+2 = 0.

Row n: The sum is (3n + 2)− 2n− (3n + 1) + 1 + (n + 1) + 2(h− 2) = −n + 2h− 1 = 0.

So all rows add to zero. Next we check that the columns also all add to zero.

Column 1: There are four ad hoc values plus the first value in diagonal l. The sum is
(n− 1)− (3n + 3)− (2n− 1) + (n + 1) + (3n + 2) = 0.

Column 2: The sum is 5n− 2− (n− 2)− (4n + 1)− (n + 2) + (n + 1) + 2 = 0.

Columns 3 to h− 1: Note that in all of these columns the sum of the l and the k diagonal
cells is +1 so we must show that the sum of the three cells in the three center diagonals
is −1. There are two cases depending on whether the column c is odd or even. If c is
odd, then write c = 3 + 2k where 0 6 k 6 q − 1. From the c, b and f diagonal cells
we get the following sum: 4n− k− (n− 3) + 2k− (3n + 4)− k = −1. If c is even, then
write c = 4 + 2k where 0 6 k 6 q − 2. From the e, b and d diagonal cells we get the
following sum: (5n− 3)− k − (n− 4) + 2k − (4n + 1)− 1− k = −1, as desired.

Column h: There are three ad hoc values plus the last of the e diagonal as well as the first
of the g diagonal. We get (2n + 2)− n− 2n + (5n− 3)− (q − 1)− (4n− q) = 0.

Columns h + 1 to n− 2: In all of these columns the sum of the m and the n diagonal cells
is −1, so we must show that the sum of the three cells in the three center diagonals is
+1. There are again two cases depending on whether the column c is odd or even. If
c is odd, noting that h is even, we write c = (h + 1) + 2k where 0 6 k 6 q − 1. Now,
from the i, a and h diagonal cells we get the following sum: (4n + q + 1) + k + (h −
2)− 2k − (5n− q − 3) + k = −n + 2q + h + 2 = 1. If c is even, write c = (h + 2) + 2k
where 0 6 k 6 q − 2. From the j, a and g diagonal cells we get the following sum:
(3n + q + 4) + k + (h− 3)− 2k − (4n− q) + 1 + k = −n + 2q + h + 2 = 1.

Column n − 1: We add the values in diagonals m, n and j with two ad hoc values to get:
(−3n)+2(h−3)+(3n−1)−2(h−3)+(3n+q+4)+q−1−(h−1)−(3n+1) = 2q−h+2 = 0.

Column n: The sum is −5n + 1− 3n + 2(h− 2) + 2n + 1 + 5n + 1 = −n + 2h− 1 = 0

So we have shown that all column sums are zero. Next we consider the support of H.
We do this by looking at the elements used in each of the diagonals as well as the ad hoc
symbols. We will write [u, v](w) if the elements in diagonal w consist of the integers in the
closed interval [u, v] and we give the ad hoc symbols individually. Note that we write all the
numbers in terms of the value q (where 4q + 3 = n). The support of H is:

{1, [2, 2q](a), 2q+1, [2q+2, 4q](b), 4q+1, 4q+2, 4q+3, [4q+4, 8q+4](k∪l), 8q+5, 8q+6, 8q+
7, 8q + 8, [8q + 9, 12q + 9](m ∪ n), 12q + 10, 12q + 11, 12q + 12, [12q + 13, 13q + 12](f), [13q +
13, 14q + 12](j), [14q + 13, 15q + 12](g), [15q + 13, 16q + 12](c), [16q + 13, 17q + 12](d), [17q +
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13, 18q +12](i), [18q +13, 19q +12](h), [19q +13, 20q +12](e), 20q +13, 20q +14, 20q +15} =
[1, 20q + 15] = [1, 5n].

We have shown that H is indeed an integer Heffter array H(n; 5).

We are now ready to prove the main theorem of this section. Let k = 5+4s. To construct
an H(n; k) we start with the H(n; 5) constructed in Theorem 3.2 and add s disjoint H(n; 4)
(with the symbols shifted accordingly) that were constructed in Theorem 2.2. The details
are given in the following theorem.

Theorem 3.3. There exists an integer Heffter array H(n; k) for all n ≡ 3 (mod 4) and
k ≡ 1 (mod 4) with n > 7 and 5 6 k 6 n− 2.

Proof. Again let h = (n + 1)/2, noting that h is necessarily even, and let k = 5 + 4s.
When s = 0 we are done by Theorem 3.2. So we assume that s > 1, and hence that
4 6 4s 6 n− 7. Begin with H = H(n; 5) constructed in Theorem 3.2. We place s (shifted)
H(n; 4) constructed in Theorem 2.2 in 4s empty diagonals of H. These empty diagonals
will come in pairs of consecutive diagonals. Specifically, for each 0 6 t 6 s − 1 place
Ht = H(n; 4)± (5n + 4nt) on the 4 diagonals D3+2t, D4+2t, Dh+2+2t, and Dh+3+2t.

A few things need to be checked. The filled diagonals in H are D1, D2, Dh, Dh+1,
and Dn. The diagonals that get filled with the Ht’s are D3, D4, . . . , D1+2s, D2+2s and
Dh+2, Dh+3, . . . , Dh+2s, Dh+2s+1. Since 4s 6 n− 7, then 2s + 2 6 h− 2 and also h+ 2s + 1 6
n− 2. So the filled diagonals in H, H1, H2, . . . , Hs are all disjoint.

The row and column sums in H as well as in each Ht, 0 6 t 6 s − 1 is zero, hence the
resulting array has row and column sum zero. Finally, note that the support of H is [1, 5n]
and for each Ht the support is [5n + 4nt + 1, 5n + 4nt + 4n] = [5n + 4nt + 1, 9n + 4nt]. So
the support in the final array is

[1, 5n] ∪
⋃s−1

t=0 [5n + 4nt + 1, 9n + 4nt]

= [1, 5n] ∪ [5n + 1, 9n] ∪ [9n + 1, 13n] ∪ · · · ∪ [5n + 4n(s− 1) + 1, 9n + 4n(s− 1)].

Since 9n + 4n(s− 1) = n(5 + 4s) = nk, the support is [1, nk], completing the proof.

4 H(n ; k) when n ≡ 0 (mod 4) and k ≡ 1 (mod 4)

This section follows the same structure as Section 3. We first give a direct construction
for H(n; 5) with n ≡ 0 (mod 4) where all of the filled cells are on exactly 5 diagonals. We
then use Theorem 2.2 repeatedly to construct H(n; k) for all n ≡ 0 (mod 4) with n > 8,
and all k ≡ 1 (mod 4) with 5 6 k 6 n − 3. We again begin with an example of the main
construction of this section.

Example 4.1. An H(16, 5).
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46 −14 62 −49 −45
−63 −13 75 44 −43

−50 −12 61 42 −41
−64 −11 74 40 −39

−51 −10 60 38 −37
−65 −9 73 36 −35

−52 −8 59 34 −33
−30 −66 77 67 −48
15 −16 −58 6 53

17 −18 −72 5 68
19 −20 −57 4 54

21 −22 −71 3 69
23 −24 −56 2 55

25 −26 −70 −7 78
−32 27 80 −47 −28
1 76 −79 −29 31

Theorem 4.2. There exists an H(n, 5) for all n ≡ 0 (mod 4) with n > 8.

Proof. Let h = n/2 and q = n/4. We construct an n × n array H using the following
procedures. The procedures are labeled a to n.

a diag(h + 1, h + 2, h− 2, 1,−1, h− 3);
b diag(1, 2,−(n− 2), 1, 1, h− 1);
c diag(1, 3, 4n− 2, 2,−1, q);
d diag(2, 2,−(4n− 1), 2,−1, q);
e diag(2, 4, 5n− 5, 2,−1, q − 1);
f diag(3, 3,−(3n + 2), 2,−1, q − 1);
g diag(h + 1, h + 1,−(4n− q − 2), 2, 1, q − 1);
h diag(h + 2, h + 2,−(5n− q − 4), 2, 1, q − 1);
i diag(h, h + 2, (4n + q − 1), 2, 1, q − 1);
j diag(h + 1, h + 3, (3n + q + 1), 2, 1, q − 1);
k diag(h + 1, 1, (n− 1), 1, 2, h− 1);
l diag(h + 1, 2,−n, 1,−2, h− 2);
m diag(2, h + 2, (3n− 4), 1,−2, h− 2);
n diag(1, h + 2,−(3n− 3), 1, 2, h− 1);

We also fill the following cells in an ad hoc manner.

H[1, 1] = 3n− 2;H[1, h + 1] = −(3n + 1);
H[h, 1] = −(2n− 2);H[h, h + 1] = 5n− 3;H[h, n] = −3n;
H[n− 2, n− 1] = −(h− 1);H[n− 2, n] = 5n− 2;
H[n− 1, 1] = −2n;H[n− 1, h] = 5n;H[n− 1, n− 1] = −(3n− 1);H[n− 1, n] = −(2n− 4);
H[n, 1] = 1; H[n, 2] = 5n− 4;H[n, h] = −(5n− 1);H[n, h + 1] = −(2n− 3);H[n, n] = 2n− 1;

10



We now prove that the array constructed by the description above is indeed an integer
H(n; 5). To aid in the proof we again give a schematic picture of where each of the diagonal
procedures fills cells. The first cell in each of these procedures is shaded and we have placed
an x in the ad hoc cells. (In this picture we used n = 16, so h = 8 and q = 4.)

x b c x n

d b e m n

f b c m n

d b e m n

f b c m n

d b e m n

f b c m n

x d x i x

k l g a j

k l h a i

k l g a j

k l h a i

k l g a j

k l h x x

x k x x x

x x x x x

We first check that the rows all add to zero.

Row 1: There are two ad hoc values plus the first value in diagonals b,c and n. The sum
is (3n− 2)− (n− 2) + (4n− 2)− (3n + 1)− (3n− 3) = 0.

Rows 2 to h − 1: In all of these rows the sum of the n and the m diagonal cells is +1
so we must show that the sum of the three cells in the three center diagonals is −1.
There are two cases depending on whether the row r is odd or even. If r is even, then
write r = 2 + 2k where 0 6 k 6 q − 2. From the d,b and e diagonal cells we get the
following sum: −(4n − 1) − k − (n − 3) + 2k + (5n − 5) − k = −1. If r is odd, then
write r = 3 + 2k where 0 6 k 6 q − 2. Notice that from the f,b and c diagonal cells
we get the following sum: −(3n+2)− k− (n− 4)+2k +(4n− 3)− k = −1 as desired.

Row h: The sum is: −(2n− 2)− (4n− 1)− (q − 1) + (5n− 3) + (4n + q − 1)− 3n = 0.

Row h+1 to n− 3: Note that in all of these rows the sum of the l and the k diagonal cells
is −1 so we must show that the sum of the three cells in the three center diagonals is
+1. There are again two cases depending on whether the row r is odd or even. If r
is odd, noting that h is even, we write r = (h + 1) + 2k where 0 6 k 6 q − 2. Now,
from the g,a and j diagonal cells we get the following sum: −(4n− q − 2) + k + (h−
2) − 2k + (3n + q + 1) + k = −n + 2q + h + 1 = 1, as desired. If r is even, write
r = (h + 2) + 2k where 0 6 k 6 q − 3. From the h,a and i diagonal cells we get the
following sum: −(5n− q− 4) + k + (h− 3)− 2k + (4n + q) + k = −n + 2q + h + 1 = 1.
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Row n−2: The sum is: (n−1)+2(h−3)−n−2(h−3)−(5n−q−4)+(q−2)−h+1+(5n−2) =
2q − h = 0.

Row n− 1: The sum is: −2n+(n− 1)+2(h− 2)+5n− (3n− 1)− (2n− 4) = −n+2h = 0.

Row n: The sum is: 1 + (5n− 4)− (5n− 1)− (2n− 3) + (2n− 1) = 0.

So all rows add to zero. Next we check that the columns also all add to zero.

Column 1: There are four ad hoc values plus the first value in diagonal k. The sum is
(3n− 2)− (2n− 2) + (n− 1)− 2n + 1 = 0.

Column 2: The sum is: −(n− 2)− (4n− 1)− n + (n + 1) + (5n− 4) = 0.

Columns 3 to h− 1: Note that in all of these columns the sum of the l and the k diagonal
cells is +1, so we must show that the sum of the three cells in the three center diagonals
is −1. There are two cases depending on whether the column c is odd or even. If c is
odd, then write c = 3 + 2k where 0 6 k 6 q− 2. From the c,b and f diagonal cells we
get the following sum: (4n− 2)− k − (n− 3) + 2k − (3n + 2)− k = −1. If c is even,
then write c = 4 + 2k where 0 6 k 6 q − 3. From the e,b and d diagonal cells we get
the following sum: (5n− 5)− k − (n− 4) + 2k − 4n− k = −1, as desired.

Column h: There are two ad hoc values plus the last of the e, b and d diagonals. We get
5n− (5n− 1) + (5n− 5)− (q − 2)− (n− 2) + (h− 2)− (4n− 1)− (q − 1) = 0.

Column h+1: The sum is: −(3n+1)+(4n−2)−(q−1)+(5n−3)−(4n−q−2)−(2n−3) = 0.

Columns h + 2 to n− 2: In all of these columns the sum of the m and the n diagonal cells
is −1, so we must show that the sum of the three cells in the three center diagonals
is +1. There are again two cases depending on whether the column c is odd or even.
If c is even, noting that h is even, write c = (h + 2) + 2k where 0 6 k 6 q − 2. From
the i,a and h diagonal cells we get the following sum: (4n + q − 1) + k + (h − 2) −
2k − (5n − q − 4) + k = −n + h + 2q + 1 = 1. If c is odd, we write c = (h + 3) + 2k
where 0 6 k 6 q − 3. Now, from the j,a and g diagonal cells we get the following
sum: (3n + q + 1) + k + (h− 3)− 2k − (4n− q − 2) + 1 + k = −n + 2q + h + 1 = 1.

Column n − 1: The sum is: −(3n − 3) + 2(h − 3) + (3n − 4) − 2(h − 3) + (3n + q + 1) +
(q − 2)− (h− 1)− (3n− 1) = 2q − h = 0.

Column n: The sum is: −(3n−3)+2(h−2)−3n+(5n−2)−(2n−4)+(2n−1) = −n+2h = 0.

So we have shown that all column sums are zero. Next we consider the support of H.
We do this by looking at the elements used in each of the diagonals as well as the ad hoc
symbols used. We again write [u, v](w) if the elements in diagonal w consist of the integers
in the closed interval [u, v] and we give the ad hoc symbols individually. Note that we write
all the numbers in terms of the value q (where 4q = n). The support of H is:
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{1, [2, 2q − 2](a), 2q − 1, [2q, 4q − 2](b), [4q − 1, 8q − 5](k ∪ l), 8q − 4, 8q − 3, 8q − 2, 8q −
1, 8q, [8q + 1, 12q − 3](m ∪ n), 12q − 2, 12q − 1, 12q, 12q + 1, [12q + 2, 13q](f), [13q + 1, 14q −
1](j), [14q, 15q− 2](g), [15q− 1, 16q− 2](c), [16q− 1, 17q− 2](d), [17q− 1, 18q− 3](i), [18q−
2, 19q− 4](h), [19q− 3, 20q− 5](e), 20q− 4, 20q− 3, 20q− 2, 20q− 1, 20q} = [1, 20q] = [1, 5n].

We have shown that the array H is indeed an integer Heffter array H(n; 5).

We now present the main theorem of this section.

Theorem 4.3. There exists an integer Heffter array H(n; k) for all n ≡ 0 (mod 4) and
k ≡ 1 (mod 4) with 5 6 k 6 n− 3.

Proof. The proof is very similar to that of Theorem 3.3. As above, let h = n/2, where h
is necessarily even, and let k = 5 + 4s. When s = 0 we are done by Theorem 4.2. So we
assume that s > 1, and hence that 4 6 4s 6 n − 8. Begin with H = H(n; 5) constructed
in Theorem 4.2. We place s (shifted) H(n; 4) constructed in Theorem 2.2 in 4s empty
diagonals of the H(n; 5). These empty diagonals will again come in pairs of consecutive
diagonals. Specifically, for each 0 6 t 6 s − 1 place Ht = H(n; 4) ± (5n + 4nt) on the four
diagonals D2+2t, D3+2t, Dh+2+2t, and Dh+3+2t.

A few things need to be checked. The filled diagonals in H are D1, Dh, Dh+1, Dn−1, and
Dn. The diagonals that get filled with the Ht’s are D2, D3, . . . , D2s, D1+2s and Dh+2, Dh+3,
. . . , Dh+2s, Dh+2s+1. Since 4s 6 n− 8, then 2s + 1 6 h− 3 and also h + 2s + 1 6 n− 3. So
the filled diagonals in H, H1, H2, . . . , Hs are all disjoint.

The row and column sums in H as well as in each Ht, 0 6 t 6 s − 1 is zero, hence the
resulting array has row and column sum zero. Finally, note that the support of H is [1, 5n]
and for each Ht the support is [5n + 4nt + 1, 5n + 4nt + 4n] = [5n + 4nt + 1, 9n + 4nt]. So
the support in the final array is

[1, 5n] ∪
⋃s−1

t=0 [5n + 4nt + 1, 9n + 4nt]

= [1, 5n] ∪ [5n + 1, 9n] ∪ [9n + 1, 13n] ∪ · · · ∪ [5n + 4n(s− 1) + 1, 9n + 4n(s− 1)].

Since 9n + 4n(s− 1) = n(5 + 4s) = nk, the support is [1, nk], completing the proof.

5 Conclusion

In the paper [4], it was proven that the necessary conditions for the existence of an integer
H(n; k) are that n > k and nk ≡ 0, 3 (mod 4). Furthermore, this condition was proved to
be sufficient except possibly when n ≡ 0 or 3 (mod 4) and k ≡ 1 (mod 4). In Section 3
we proved that H(n; k) exist when n ≡ 3 (mod 4) and k ≡ 1 (mod 4) and in Section 4 we
proved that H(n; k) exist when n ≡ 0 (mod 4) and k ≡ 1 (mod 4). From this we have the
main result of this paper.

Theorem 5.1. There exists an integer Heffter array H(n; k) if and only if 3 6 k 6 n and
nk ≡ 0, 3 (mod 4).

In future work we will consider the case when the Heffter array H(n; k) is not an integer
Heffter array. In this case the only necessary condition is that 3 6 k 6 n.
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