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Using thwarts, new transversal designs are determined for orders 201, 336, 360,
365, 393, 429, 501, 749, 845, 1080, 1120, 1324, 1400, 1632, 1760, 1824, 1904, and for
numerous larger orders. Incomplete transversal designs with block size 8, and PBDs
having three consecutive block sizes, are also constructed from thwarts.  1996

Academic Press, Inc.

1. THWARTS

A transversal design of order n and block size k, or TD(k; n), is a triple
(X, G, B ), where X is a set of kn elements. G 5 hG1 , . . . , Gkj is a partition
of X into k sets each of size n; each class of the partition is a group. B is
a set of k-subsets of X, with the property that each B [ B satisfies uB >
Giu 5 1 for each 1 # i # k; sets in B are blocks. Finally, each unordered
pair of elements in X occurs together either in a group or in a single block,
but not both.
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A TD(k, n) is equivalent to k 2 2 mutually orthogonal latin squares
(MOLS) of order n. It is well known that a TD(q 1 1, q) exists when q is
a prime or prime power; the desarguesian TD is constructed from the finite
field GF(q). Moreover, q 1 1 is the largest possible block size for a TD of
order q.

Bounds on the block size have great importance in the construction of
combinatorial designs (see [1], for example). Many of these bounds arise
directly or indirectly from the TD(q 1 1, q) arising from the field; we
develop some further bounds of this type in this paper.

In the construction of transversal designs, a main ingredient is a certain
type of partial transversal design. An incomplete transversal design of order
n and block size k with holes of sizes h1 , . . . , hl , or TD(k; n) 2 ol

i51

TD(k; hi), is a quadruple (X, H, G, B ). X and G are as before. H 5 hH1 ,
. . . , Hlj is a set of pairwise disjoint subsets of X, with the property that
uHj > Giu 5 hj for 1 # j # l and 1 # i # k; each Hi is a hole. Then B is a
set of k-subsets of X as before, with the property that every unordered
pair of elements from X is either in a hole or group together, or in exactly
one block of B.

Colbourn et al. [8] explore the use of a restricted form of Wilson’s theorem
[13]. Let x be a nonnegative integer, and let I 5 hi1 , . . . , isj with 0 #
i1 , i2 , ? ? ? , is # x. Further suppose that 0 # s1 # s2 # ? ? ? # sx # n.
Let (X, G, B ) be a TD(k 1 x; n) with G 5 hG1 , . . . , Gk , H1 , . . . , Hxj.
Then an (x, I, s1 , s2 , . . . , sx)-thwart is a set S 5 <

x
j51 Sj , where Sj # Hj

with uSju 5 sj for each 1 # j # x, such that for every B [ B, uB > Su [ I.
We use the notation (x, I < ha.j, s1 , s2 , . . . , sx)-thwart for a set S in which
one block intersects S in a entries, and every other block B satisfies uB >
Su [ I.

N(n) denotes the largest value of k 2 2 for which a TD(k, n) exists, and
N.(n) is the largest value of k 2 2 for which a TD(k, n) having n disjoint
blocks exists.

Then a restriction of Wilson’s theorem (see [3]) is:

THEOREM 1.1. If a TD(k 1 x; n) exists having an (x, I, s1 , s2 , . . . , sx)-
thwart, and if for every i [ I there exists a TD(k; m 1 i) 2 iTD(k; 1), then
there exists a

TD Sk; mn 1 Ox
j51

sjD2 Ox
j51

TD(k; sj).

If, in addition, a TD(k; sj) exists for each 1 # j # x, then a TD(k; mn 1
ox

j51 sj) exists.
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If we impose the stronger condition that N.(m 1 i) $ k 2 2 for every
i [ I, we obtain the stronger conclusion that a

TD Sk; mn 1 Ox
j51

sjD2 mTD(k, n) 2 Ox
j51

TD(k; sj)

exists. Numerous variations of Wilson’s basic theorem are possible; see
[3, 7].

Colbourn et al. [8] employ elementary combinatorial methods along with
the structure of the TD(q 1 1, q) from the field in order to establish the
presence of certain thwarts. In particular, they examine the presence of
thwarts arising from TD(3, m) in TD(k, mn). We generalize this here to
explore the consequences of the presence of TD(l, m), in particular those
arising from a generalization of Baer subplanes.

Colbourn et al. also examine (3, h1, 2, 3j, a, b, c)-thwarts and observe
that in the TD( p 1 1, p) arising from fields of prime order, a simple
condition on a 1 b 1 c ensures the presence of the thwart. (The proof of
Lemma 5.1 in [8] does not indicate how to treat the case when n 5 pa is
not prime; however, a simple inductive argument on a suffices in that case.)
We investigate a similar situation here, but consider thwarts that are subsets
of two groups (‘‘levels’’) and one block (‘‘spike’’).

Interesting thwarts also arise from geometric structures in planes such
as ovals, hyperovals, and Denniston arcs [7]. For example Denniston arcs
give rise to the following thwarts.

THEOREM 1.2. For any integers r and s such that 0 , r # s, there exists
a TD(2s 1 1, 2s) containing a (2s 1 1 2 2s2r, h0, 2rj, 2r, . . . , 2r) 2 thwart.

2. BAER CONFIGURATIONS

A (p, a, b)-Baer configuration is a set X of pa 1 pb 1 1 points in a
projective plane of order pa, with the properties that, restricting the lines
of the plane to the ponts of X,

1. one point of X, the focus, lies on pa2b 1 1 lines each of size pb 1
1; and

2. the remaining points each lie on one line of size pb 1 1, and on
pb lines each of size pa2b 1 1.

We adopt the name ‘‘Baer’’ because the special case when a 5 2b is a
Baer subplane.
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It is easy to verify that if a projective plane of order pa contains a (p, a,
b)-Baer configuration, then every line of the plane meets the configuration
in 1, pa2b 1 1, or pb 1 1 points; all lines meet the configuration at least as
a tangent. Thus a Baer configuration, if present, forms a special type of
blocking set. It is in this context that they have been studied before.

THEOREM 2.1. The desarguesian projective plane of order pa contains a
(p, a, b)-Baer configuration whenever (a 2 b) is a divisor of a.

Theorem 2.1 appears (in different language) in Bruen [5], who credits
Ostrom with the result; a short proof appears in [4]. A Baer configuration
is essentially a sub-TD(pa2b 1 1, pb) in the TD(pa 1 1, pa) arising from
the plane. Indeed, deleting the focus of a Baer configuration yields:

COROLLARY 2.2. Let p be a prime, and a $ b $ 1 satisfy a 2 b u a.
Then there is a TD(pa 1 1, pa) containing a (pa2b 1 1, h1, pa2b 1 1j, p b,
. . . , pb)-thwart, and a (pa2b 1 1, h0, pa2bj, pa 2 pb, . . . , pa 2 pb)-thwart.

Applying Wilson’s theorem, we obtain:

THEOREM 2.3. 1. Let k # min(pa 2 pa2b 2 2, pb 2 1, N(m 1 1),
N.(m 1 pa2b 1 1)). Then there are k MOLS of order (m 1 1)pa 1 pb.

2. Let k # min(pa 2 pa2b 2 2, N(pa 1 1), N(pb 1 1), N.(m 1 1),
N.(m 1 pa2b 1 1)). Then there are k MOLS of order (m 1 1)pa 1 pb 1 1.

THEOREM 2.4. 1. Let k # min(pa 2 pa2b 2 2, N(pa 2 pb), N(m),
N.(m 1 pa2b)). Then there are k MOLS of order mpa 1 (pa2b 1 1)(pa 2 pb).

2. Let k # min(pa 2 pa2b 2 2, N(pa 1 1), N(pa 2 pb 1 1), N.(m),
N.(m 1 pa2b)). Then there are k MOLS of order mpa 1 (pa2b 1 1)(pa 2
pb) 1 1.

Table I reports on the consequences for the existence of MOLS up to
order 10,000, using Baer configurations. The column ‘‘old bound’’ reports
the previously available bound on N(n) from a 1993 update of Brouwer’s
table [2].

By retaining l levels (1 # l # pa2b), we obtain (l, h0, 1, lj, pb, . . . , pb)-
thwarts. Using p 5 17, a 5 2, b 5 1, m 5 31, and l [ h6, 10, 12, 18j, we
obtain N(n) $ 16 for n [ h9061, 9129, 9163, 9265j. In one case, we can also
truncate one of the levels in the thwart to obtain a (16, h0, 1, 15, 16j, 19,
. . . , 19, 13)-thwart in a TD(362, 361). Using m 5 16 establishes that
N(6074) $ 12.

We can also employ fewer levels in the complementary thwart; in each
of the applications here, an extra point is added as in Theorem 2.4(2).
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TABLE I

Order n Old bound N(n) $ p a b m Authority

201 7 8 2 4 3 11 Theorem 2.4(2)
336 7 8 2 5 4 9 Theorem 2.4(1)
360 7 8 3 3 2 12 Theorem 2.3(1)
365 7 10 2 4 2 19 Theorem 2.4(2)
393 7 8 2 4 3 23 Theorem 2.4(2)
429 7 10 2 4 2 23 Theorem 2.4(2)
749 7 10 2 4 2 43 Theorem 2.4(2)
845 7 10 2 4 2 49 Theorem 2.4(2)

1080 7 12 3 4 3 12 Theorem 2.3(1)
1120 15 16 2 6 5 16 Theorem 2.3(1)
1400 8 10 5 3 2 10 Theorem 2.3(1)
1632 15 24 2 6 5 24 Theorem 2.3(1)
1760 15 26 2 6 5 26 Theorem 2.3(1)
1824 15 26 2 6 5 27 Theorem 2.4(1)
1904 12 15 2 5 4 58 Theorem 2.3(1)
2240 15 16 2 7 6 16 Theorem 2.3(1)
2376 8 26 3 4 3 28 Theorem 2.3(1)
2720 15 31 2 6 5 41 Theorem 2.4(1)
3040 30 31 2 6 5 46 Theorem 2.3(1)
3472 11 15 2 5 4 107 Theorem 2.4(1)
3520 16 26 2 7 6 26 Theorem 2.3(1)
3648 15 26 2 7 6 27 Theorem 2.4(1)
3808 11 31 2 6 5 58 Theorem 2.3(1)
4480 15 16 2 8 7 16 Theorem 2.3(1)
4576 15 31 2 6 5 70 Theorem 2.3(1)
4640 15 31 2 6 5 71 Theorem 2.4(1)
5088 15 31 2 6 5 78 Theorem 2.3(1)
5152 15 31 2 6 5 79 Theorem 2.4(1)
5280 30 31 2 6 5 81 Theorem 2.4(1)
5440 15 40 2 7 6 41 Theorem 2.4(1)
6080 30 46 2 7 6 46 Theorem 2.3(1)
6496 15 31 2 6 5 100 Theorem 2.3(1)
6528 15 24 2 8 7 24 Theorem 2.3(1)
6560 18 31 2 6 5 101 Theorem 2.4(1)
6849 15 21 2 8 6 23 Theorem 2.4(2)
6880 15 31 2 6 5 106 Theorem 2.3(1)
6944 30 31 2 6 5 107 Theorem 2.4(1)
7400 13 24 5 3 2 58 Theorem 2.3(1)
7616 30 58 2 7 6 58 Theorem 2.3(1)
8096 30 31 2 6 5 125 Theorem 2.4(1)
8800 30 31 2 6 5 136 Theorem 2.3(1)
9152 30 63 2 7 6 70 Theorem 2.3(1)
9265 15 16 17 2 1 31 Theorem 2.3(1)
9280 30 63 2 7 6 71 Theorem 2.4(1)
9568 15 31 2 6 5 148 Theorem 2.3(1)
9632 15 31 2 6 5 149 Theorem 2.4(1)
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n N(n)$ p a b l m

501 12 2 4 2 3 29
1324 8 3 4 2 6 11
8113 25 2 8 4 5 27
8145 27 2 8 4 3 29

Next we consider the structure of the tangent lines to a Baer configura-
tion. Easy counting shows that pa 2 pa2b lines are tangent at the focus; at
every other point of the configuration, pa 2 pb lines are tangent. Points
not in the configuration come in two types. Those lying on a line that meets
the configuration in pb 1 1 points lie on pa tangent lines, while the remainder
lie on pa 2 p2b2a 1 1 tangent lines (one of them tangent at the focus).
Considering the structure induced by the tangent lines and the exterior
points of the configuration, and dualizing, the dual plane contains a certain
group divisible design:

THEOREM 2.5. Let p be a prime, a . b $ 1, and a 2 b u a. Then the
(dual of the) desarguesian plane contains a group divisible design with block
sizes hpa, pa 2 p2b2a 1 1j, and one group of size pa 2 pa2b, and pa 1 pb

groups of size pa 2 pb.

By way of example, take p 5 2, a 5 6, and b 5 4. Then there is a plane
of order 64 containing a h64, 61j-GDD of type 6014880. Using the standard
GDD construction for MOLS, we obtain N(3901) $ 48.

Baer configurations form a natural generalization of Baer subplanes; in
that restricted case, one can partition a plane of order q2 into Baer subplanes
of order q. The arithmetic does not in general support such a partition
except in the case of subplanes; however, it may be of interest to determine
possible intersections of Baer configurations in the plane.

3. TWO LEVELS AND A SPIKE

In this section, we establish the presence of a further useful thwart in
transversal designs of prime and prime power orders, extending an idea in
[9]. We first give some definitions.

Let A and B be subsets of Zn . Then define

A 2n B 5 ha 2 b mod n : a [ A, b [ Bj.

Now define

m(n, a, b) 5 minhuA 2n Bu : A, B # Zn , uAu 5 a, uBu 5 bj.
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We use the fact that the multiplicative group of the finite field of order q
(a prime power) is cyclic in order to establish the presence of certain thwarts:

THEOREM 3.1. For q a prime or prime power, there exists a TD(q 1 1,
q) containing the thwarts:

1. an (l 1 2, h0, 1, 2, (l 1 a 1 b).j, a 1 a, b 1 b, 1, . . . , 1)-thwart
for all 0 # l # q 2 1 2 m(q 2 1, a, b), and a, b [ h0, 1j.

2. an (l 1 2, h1, 2, 3, (l 1 2).j, q 2 a, q 2 b, 1, . . . , 1)-thwart for
all m(q 2 1, a, b) # l # q 2 1.

Proof. Consider the TD(q 1 1, q) arising from the finite field GF(q)
(i.e., the transversal design arising from the desarguesian projective plane).
This transversal design can be represented as ordered pairs from

(GF(q)) 3 (GF(q). < hR, Cj),

with groups GF(q) 3 hxj for x [ GF(q). < hR, Cj, and blocks defined by

h(i, R), ( j, C)j < h(i 1 lj, l) : l [ GF(q).j,

for i, j [ GF(q). Evidently Z 5 h(0, x) : x [ GF(q). < hR, Cjj is a block.
Using this transversal design, we prove the first statement above. Choose

A, B # Zq21 with uAu 5 a and uBu 5 b, so that A 2q21 B has cardinality
m(q 2 1, a, b). Let D # GF(q).\(A 2q21 B) satisfy uDu 5 l. Now let g be
a primitive root of GF(q), and define

X1 5 h(gi, R) : i [ Aj

X2 5 h(g j, C) : j [ Bj

X3 5 h(0, gk) : k [ Dj if q even
h(0, gk1(q21)/2) : k [ Dj if q odd

X4 5 h(0, R)j if a 5 1, h j otherwise,

X5 5 h(0, C)j if b 5 1, h j otherwise.

Now T 5 <5
i51 Xi is the desired thwart. Evidently T > Z contains l 1

a 1 b points (those of X3 < X4 < X5); that all other blocks have intersection
of size at most two with the thwart is verified as follows. Suppose to the
contrary that some block intersects the thwart in (ga, R), (gb, C), and (0,
gd). Then ga 1 gdgb 5 0, so ga2b 5 2gd. If q is even, 21 5 g0, so a 2
b ; d (mod q 2 1); but d [ A 2q21 B so d Ó D, a contradiction. If instead
q is odd, 21 5 g(q21)/2 so that a 2 b ; d 1 (q 2 1)/2 (mod q 2 1); but
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d 1 (q 2 1)/2) [ A 2q21 B, and the same contradiction is obtained. Hence
in either case, no block intersects the thwart in X1 , X2 , and X3 .

The presence of the second thwarts is proved similarly, complementing
the sets A, B, and A 2q21 B with respect to GF(q).. In this thwart, (0, R)
and (0, C) must be present to avoid having a block exterior to the thwart. n

Theorem 3.1(2) gives an example of a blocking set in the corresponding
projective plane, in which all points are contained in the union of three
lines. Cameron [6] gives an excellent discussion of such blocking sets.

Thwarts of this type were used in [9] to construct GDDs with three
consecutive block sizes. Here is an example of a class of GDDs that can
be obtained in this way.

COROLLARY 3.2. Suppose q is a prime or prime power and c, a, and b
are integers such that 0 # c # q 2 1 2 m(q 2 1, a, b). Then there exists a
group-divisible design having group type (q 2 1)c(q 2 a 2 1)1(q 2 b 2 1)1,
with all block sizes in the set hc 2 1, c, c 1 1j.

Proof. Take a 5 b 5 1 and l 5 q 2 1 in Theorem 3.1(1). Then delete
the q 2 1 2 c groups of the TD disjoint from the thwart, as well as all the
points in the thwart. n

In applying Theorem 3.1, the essential question is to determine m(n, a,
b). The Cauchy–Davenport theorem [11] provides the classical result in
this area:

THEOREM 3.3. For all n $ 1 and 0 # a, b # n, m(n, a, b) #
min(n, a 1 b 2 1). Moreover, when n is prime, m(n, a, b) 5 min(n, a 1
b 2 1).

When n is composite, the situation is somewhat more complex:

THEOREM 3.4. Let d $ 1. Then m(dn, da 1 s, db 1 t) # d · (a 1 b) 1
m(d, s, t) for 1 # s, t # d.

Kemperman [12] shows that the bound obtained is best possible.
We develop another application of Theorem 3.1, to the existence of

incomplete transversal designs with block size 8; see [10] for more informa-
tion on this problem. We use an application of Wilson’s theorem based on
Theorem 3.1, using the facts that TD(8, 7), TD(8, 8), TD(8, 9), and
TD(q 1 1, q) all exist; indeed a TD(8, 7) 2 TD(8, 1), TD(8, 8) 2 2TD(8,
1), and TD(8, 9) 2 3TD(8, 1) exist.

THEOREM 3.5. Let q be a prime or prime power. Let 1 # s, t # q 2 1,
and a, b [ h0, 1j.

A. Choose an integer u so that 1 # u min(q 2 9, q 2 3 2 m(q 2 1, s, t)).
(a) If a TD(8, 7 1 a 1 b 1 u) and a TD(8, s 1 a) both exist, then

a TD(8, 7q 1 u 1 s 1 t 1 a 1 b) 2 TD(8, t 1 b) exists.
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(b) If a TD(8, 7 1 a 1 b 1 u) and a TD(8, t 1 b) both exist, then
a TD(8, 7q 1 u 1 s 1 t 1 a 1 b) 2 TD(8, s 1 a) exists.

(c) If a TD(8, s 1 a) and a TD(8, t 1 b) both exist, then a TD(8,
7q 1 u 1 s 1 t 1 a 1 b) 2 TD(8, 7 1 a 1 b 1 u) exists.

B. Choose an integer u so that m(q 2 1, s, t) # u # q 2 9. Further
suppose that a 5 b 5 1.

(a) If a TD(8, 6 1 a 1 b 1 u) and a TD(8, q 2 1 2 s 1 a) both
exist, then a TD(8, 8q 1 u 2 2 2 s 2 t 1 a 1 b) 2 TD(8, q 2 1 2 t 1
b) exists.

(b) If a TD(8, 6 1 a 1 b 1 u) and a TD(8, q 2 1 2 t 1 b) both
exist, then a TD(8, 8q 1 u 2 2 2 s 2 t 1 a 1 b) 2 TD(8, q 2 1 2 s 1
a) exists.

(c) If a TD(8, q 2 1 2 s 1 a) and a TD(8, q 2 1 2 t 1 b) both
exist, then a TD(8, 8q 1 u 2 2 2 s 2 t 1 a 1 b) 2 TD(8, 6 1 a 1 b 1
u) exists.

Applications of Theorem 3.5 are given in Table II. In each case, a TD(8,
n) 2 TD(8, h) is constructed using the statement of the Theorem given in
column T. The column x gives the value of m(q 2 1, s, t).

TABLE II
Applications of Theorem 3.5

n h T q x s t u a b n h T q x s t u a b

100 12 B 13 4 4 4 4 1 1 106 5 A 13 8 4 7 2 1 1
107 6 A 13 6 6 6 3 0 1 123 13 B 16 5 5 5 5 1 1
124 14 B 16 5 5 5 6 1 1 125 15 B 16 5 5 5 7 1 1
148 18 B 19 9 6 8 10 1 1 155 10 A 19 9 7 9 5 0 1
181 22 B 23 11 7 10 14 1 1 178 22 B 23 11 10 10 14 1 1
196 24 B 25 16 6 14 16 1 1 194 24 B 25 16 6 16 16 1 1
195 24 B 25 12 9 12 16 1 1 213 26 B 27 13 10 11 18 1 1
212 26 B 27 13 11 11 18 1 1 228 28 B 29 20 4 20 20 1 1
229 28 B 29 14 10 13 20 1 1 227 28 B 29 14 12 13 20 1 1
226 28 B 29 14 13 13 20 1 1 244 30 B 31 20 6 20 22 1 1
242 30 B 31 20 8 20 22 1 1 243 30 B 31 15 12 15 22 1 1
293 36 B 37 27 5 26 28 1 1 292 36 B 37 27 6 26 28 1 1
290 36 B 37 27 8 26 28 1 1 291 36 B 37 24 12 21 28 1 1
324 40 B 41 32 4 32 32 1 1 323 40 B 41 30 9 28 32 1 1
325 40 B 41 30 10 25 32 1 1 322 40 B 41 30 10 28 32 1 1
341 42 B 43 28 11 26 34 1 1 340 42 B 43 28 11 27 34 1 1
339 42 B 43 28 12 27 34 1 1 371 45 B 47 23 20 22 37 1 1
372 46 B 47 23 20 22 38 1 1 370 46 B 47 23 22 22 38 1 1
388 48 B 49 40 6 38 40 1 1 387 48 B 49 36 9 36 40 1 1



302 COLBOURN, DINITZ, AND STINSON

4. CONCLUDING REMARKS

We have improved the lower bounds on the number of MOLS of several
orders by using thwarts. Also, we have given a brief description of known
constructions of thwarts and some applications to the construction of other
types of designs.

In closing, it is important to remark that the presence of the thwarts
examined here rests on relatively simple structure of the desarguesian plane,
inherited naturally from the arithmetic of the field. It is reasonable to expect
that other useful configurations can be found using more subtle properties
of finite fields.
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