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ABSTRACT

Given a graph G with weighting w: E(G) ~ Z+, the strength of G(w) is the
maximum weight on any edge. The sum of a vertex in G(w) is the sum of
the weights of all its incident edges. The network G(w) is irregu/ar if the
vertex sums are distinct. The irregu/arity strength of G is the minimum
strength of the graph under all irregular weightings. In this paper we deter-
mine the irregularity strength of the m x n grid for certain m and n. In par-
ticular, for every positive integer d we find the irregularity strength for all
but a finite number of m X n grids where n - m = d. In addition, we pre-
sent a general lower bound for the irregularity strength of graphs. © 1992
John Wiley & Sons, Inc.

-r 1. INTRODUCTION

Let G = (V, E) be a simple graph with no K2 component and at most one
isolated vertex. A network G(w) consists of the graph G together with an
assignment w: E(G) ~ Z+. The strength s of G(w) is defined by s(G(w» =

max{w(e): e E E(G)}. For each vertex v E V(G), define the sum (or weight)
w(v)of v in G(w) by Leincidenttovw(e) and call G(w) irregular if for all distinct
u, v E V(G), w(u) # w(v). The irregularity strength leG) is defined to be
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min{s(G(w)): G(w) is irregular}. Thus the irregularity strength of a graph G
is the smallest strength of all irregular weightings of G; we call an irregular
weighting minimal if it has the smallest possible strength. The problem can
also be described as that of choosing positive weights for the nonzero entries
in a symmetric adjacency matrix such that the row sums are distinct [6].

The study of I(G) was proposed in [1]. There it was shown that (3p - 2q)/
3 :s; I(G) :s; 2p - 3 for a graph G with p vertices and q edges. In [10] the
following stronger lower bound was obtained (here r 1 represents the ceiling
function):

Theorem 1.1. Let d, be the number of vertices of degree kin V(G), then

The problem of studying irregularity strengths of graphs has proven to be
difficult; there are not many graphs for which the irregularity strength is
known. In [1] it was shown that I(K,,) = 3 and I(K2".2,,) = 3; I(P,,) was also
determined. That I(K2n+1,2n+l) = 4 was proven in [8]. Work has also been
done on binary trees, dense graphs, and the disjoint unions of paths, cycles,
and complete graphs [2,5,9,11]' Recently, the irregularity strengths of
wheels, k-cubes, and 2 x n grids has also been determined [4]. In each of
these cases it was found that I(G) = A(G) or A(G) + 1, and it is conjec-
tured that if T is a tree, then I(T) = A(T) or A(T) + 1. Results on irregular-
ity strengths of graphs are surveyed in [12].
In this paper we extend the work of [4] by finding the irregularity

strength of the m x n grid Xm,n' Figure 1 gives an irregular weighting of
strength A(X4,5) = 6 on X4,5. In this figure, the edge weights are given,
while the vertex sums are circled. It is easy to compute that if m, n 2: 3 (and
{m, n} =Ie- {3,5}), then

A(Xm,,,) = r(mn + 1)/41.

@5@6@3020
5 5 5 3 1@5@6@3@30
1 5 6 6 1

02@5@5@4G)
1 6 6 4 4

01@6@5@30
FIGURE 1. A minimal irregular weighting of X4.5.
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This can be simplified depending on the congruences of m and n modulo 4:

mn/4 + 1
mn/4 + 1

A(Xm,lI) = (mn + 2)/4
(mn + 3)/4
(mn + 1)/4

if m and n are both even
if n is odd and m == 0 (mod 4)
if n is odd and m == 2 (mod 4)
if m and n both odd and m == n (mod 4)
if m and n both odd and m =1= n (mod 4).

We will show for every positive integer d that I(Xm,lI) = A(Xm",) or
A(Xm,lI} + 1 for all but a finite number of m X n grids where n - m = d.
This finite number is easy to compute and is at most d + 13. As a spe-
cial case of the results of this paper we prove the conjecture from [7] that
I(XII,II) = A(XII,II) for all n 2: 3. Next, we sketch a proof of this conjecture,
as it illustrates well the techniques we use to prove the more general result.

We provide a recursive construction that, given a minimal irregular
weighting of X2k,2h yields a minimal irregular weighting of X2k+2,2k+2. The
construction (Construction 2 in Section 2) proceeds by ringing a 2k X 2k
grid G with 4(2k + 1)vertices to create a (2k + 2) X (2k + 2) grid G'. The
external edges, connecting the 4(2k + 1) vertices on the borders of G' to
each other and to the internal (nonborder) vertices in G', are weighted so
that the border vertices of G' will have distinct sums ranging from 2 to
4(2k + 1) + 1. The edges in G' that correspond to edges in G are given
weights based on the weights of the corresponding edges in G, but in such a
way that all of the internal vertices in G' will have weights that are
4(2k + 1) greater than the weights of the corresponding vertices in G.
Thus, since the vertex sums in G were distinct, the vertices in G' corre-
sponding to vertices in G will also have distinct sums. Further, the smallest
sum on any such vertex in G' will be 4(2k + 1) + 2, which is greater than
the largest sum on any external vertex ringing the internal (2k)2 vertices.

The construction requires that the weighting of G meets certain con-
straints; however, since the construction preserves those constraints, it can
be applied recursively. Thus, given a minimal weighting of X2k,2k that has
the essential properties, the construction provides minimal weightings of all
XII, II where n is even and n 2: 2k. In Section 2 we provide a minimal weight-
ing of X16, 16 that has the necessary ingredients for the construction.

To obtain minimal irregular weightings for XII, II, where n is odd, we use
a technique similar to Construction 2. Construction 4a begins with G, a
minimal irregular weighting of X2k,2h and creates a (2k + 1) X (2k + 1)
grid G' by adding a row and a column of vertices. The added 4k + 1 ver-
tices have weights ranging from 2 to 4k + 2, and the remaining (2k)2 ver-
tices in G' have weights that are 4k + 1 greater than the weights of their
corresponding vertices in G. Construction 4a cannot be applied recursively,
and requires G to have certain properties; however, all grids created by
Construction 2, as well as the weighting of X16, 16 provided in Section 2, have
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the necessary properties. Therefore, the weighting of X16,16, together with
Constructions 2 and 4a, prove that I(XII,II) = A(XII,II) for all n 2: 16.

In addition to the above constructions, Section 2 provides three other con-
structions that we use to prove a more general result. We will first present
the minimal irregular weighting of X16,16 that possesses the special proper-
ties essential in starting the induction. Construction 1 begins with a special
minimal irregular weighting of Xm,lI and produces a minimal irregular
weighting of Xm+2,1I+4' This construction can be used inductively. Construc-
tion 2 also begins with a special minimal irregular weighting of X,II,II and
produces a minimal irregular weighting of Xm+2,1I+2. This construction can
also be used inductively or can extend a weighting resulting from Construc-
tion l.

Constructions 3, 4a, and 4b can each only be used once, and follow the use
of either Construction 1 or 2. These three constructions begin with a mini-
mal irregular weighting of Xm,lI (derived from either Construction 1 or 2);
Construction 3 gives a minimal weighting of Xm,lI+l, while Constructions 4a
and 4b produce minimal weightings of Xm+1,11 + 1. These five constructions
when applied in the proper order produce minimal irregular weightings for
all Xm,lI where 2L(m + 2)/4J + 8 ~ n ~ 4Lm/2J - 15. (Note that L J is the
greatest integer function.)

Additionally, we present a general lower bound that identifies a large class
of graphs for which the lower bound on the irregularity strength is greater
than the lower bound A.

In Section 3 we will discuss some small cases of m and n, and will sum-
marize what is known about the irregularity strength of grids.

2. MAIN RESULT

We begin this section with some terminology. Certain edges in XIII,II will
have special names. We call the outermost edges the border edges; so all
edges (u, v) in E(Xm,II), where the degrees of u and v are both less than 4,
are border edges. All nonborder edges are called internal. The border edges
are further described as left, right, top, or bottom edges. When m and n are
both even and if these border edges are labeled 1,2,3, ... starting from a
corner vertex, then the edges with odd labels are termed heavy edges.

In Figure 2 we give a minimal irregular weighting w of the edges of X16,16

(A(XI6,16) = 65), which has the further property that wee) ~ 39 for any
heavy border edge e. Also, w has the property that there exists a one-factor
fin X16, 16 where, for every edge e E f, w(e) is no greater than 3 less than the
above constraints (w(e) ~ 36 for heavy border edges, wee) ~ 62 for other
edges in f); such a one-factor consists of the alternate horizontal edges in
each row. This weighting was found by the hill-climbing algorithm IS-l
from [7]. It was found in 151.5 minutes on a DECstation 5000 rated at
24 MIPS. This is the weighting that we will use to begin our induction;
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FIGURE 2. An irregular weighting of X16.16.

X16,16 is the smallest square grid that meets all of the special requirements
of each construction, Note that the inductive approach collapses without
such a starting point.

We will now define the special properties that are needed in a weighting
in order for the induction to work.

Definition. If m and n are both even, then an irregular weighting w of Xm•n

is Type 1 if for every edge e, wee) :::;(mn)/4 + 1 (= A(Xm•n)). Furthermore:

1. If e is a top or bottom heavy edge, then wee) :::;(m + 2)(n + 4)/4 -
(m + n + 1) - (m + 2).

2, If e is a left heavy edge, then wee) :::;(m + 2)(n + 4)/4 - 2m - 3.
3. If e is a right heavy edge, then wee) :::;(m + 2)(n + 4)/4 - m - n - 3.
4. There is a one-factor f in Xm•n that has the property that for all e E I.

wee) is less than or equal to the previous constraints minus three. Thus:

(a) If e is internal or a non heavy border edge, then wee) :::;(mm)/
4 - 2.

(b) If e is a top or bottom heavy edge, then wee) :::;(m + 2)(n + 4)/
4 - (m + n + 1) - (m + 2) - 3,
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(c) If e is a left heavy edge, then wee) :5 (m + 2)(n + 4)/4 - 2m - 6.
(d) If e is a right heavy edge, then wee) :5 (m + 2)(n + 4)/4 - m -

n - 6.

One can see that the weighting given in Figure 2 is a Type 1 weighting of
XI6,16. We can now give the first recursive construction.

Construction 1. If m, n ;:::16 are both even and if there is a Type 1
weighting for Xm,n, then there is a Type 1 weighting for Xm+2,n+4.

Proof. Assume that w is a Type 1 weighting for G = Xm,n' We will make
a new weighting w' for Xm+2,n+4 and will show that it also is Type 1. The
construction will be described presently. The reader is also directed to Fig-
ure 3, where this construction is pictured for the case of m == 0 (mod 4);
the edges are labeled with their weights, and heavy edges are represented
with thick lines.

To begin the construction, first add a ring of vertices around G and all of
the necessary connecting edges. Then add two more columns of vertices
(and necessary edges) to the right side to obtain Xm+2,n+4. The nonborder
edges of the original Xm,n will be termed internal edges. The left, right, top,
and bottom edges in the original Xm,n are called old left, right, top, and bot-
tom edges, respectively. The final two columns added to the right side are
called columns n + 3 and n + 4. We define the weighting function w' on
Xm+2,n+4 as follows:

2

0+1

n+4
0+1

""e
'"+

• t
"~-~
>.
>
:!

==

.+5
.+1

• • •
- -- - II 3 m+4

m+1 0 2111+0+5- ~ --
1+m+2 0+2 2

m+1 0 2m+o+5

5 m+6

== m+1 0
Ll
~ n+4 4~ ~ • • •c;. •

D 0+1 2m+n+5

2+n

Heavy: w'(e)=w(e)+m+n+ 2

n+4

4

Internal and
Non-heavy border
w'(e)=w(e)+m+nI2+

•

2 2 4 4

2 t ~ 0 • • •~ n+5 3eto
4

2m+n+5

5 m+6
n 2m+n+5

+1+m+2 n+3 1- m+l n 2m+n+5- 1• I 3 m+4

- n 2m+n+4- - -

.+4

Heavy: w'(e)=w(e)+m+o

• • .+2

n .+2

FIGURE 3. A labeling for Xm+2.n+4 when m "'"0 (mod 4).
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1. w'(e) = w(e) + ((m + n)/2 + 1) + (m/2 + 1), if e is an internal edge
or a nonheavy old border edge.

2. w'(e) = w(e) + (m + n + 1) + (m + 2), if e is an old top or bottom
heavy edge.

3. w'(e) = w(e) + (2m + 3), if e is an old left heavy edge.
4. w'(e) = w(e) + (m + n + 3), if e is an old right heavy edge.
5. w'(e) = n + 1, if e is a horizontal edge from the old left to the

new left.
6. w'(e) = 1, if e is a vertical edge from the old top or bottom to the

new top or bottom.
7. w'(e) = m + 1, if e is a horizontal edge from the old right to column

n + 2.
8. w'(e) = n, if e is a horizontal edge from column n + 2 to column

n + 3.
9. w'(e) = 2m + n + 5, if e is a horizontal edge from column n + 3 to

column n + 4; except if m == 0 (mod 4), then the bottom edge gets
weight 2m + n + 4.

10. The n + 1 edges along the new bottom have weights (from left
to right):

m == 0 (mod 4): 2,2,4,4,6,6, , n, n, n + 2;

m == 2 (mod 4): 1,3,3,5,5, , n - 1, n - 1, n + 'I, n + 1.

11. The m + 1 edges in the new left border have weights (from bottom
to top):

m == 0 (mod 4): 1,n + 5,3,n + 7,5, ... ,n + m/2 + 3,

m/2 + 1, n + m/2 + 2, ... ,5, n + 6, n + 4,1 ;

m == 2 (mod 4): 2, n + 4,4, n + 6, ... , m/2 + 1, n + m/2 + 3,

m/2, ... ,5,n + 6,3,n + 4,1.

12. The n + 1 edges in the path forming the new top are assigned weights
(going left to right): 1,2,3,4, ... , n, n + 1.

13. The m + 1 edges in column n + 2 have weights (from bottom to top):

m == 0 (mod 4): 3, n + 3,5, n + 5, ... , m/2 + 1, n + m/2 + 1,

m/2 + 3, n + m/2, ... , n + 4,5, n + 2,3;

m == 2 (mod 4): 4, n + 2,6, n + 4, ... , m/2 + 3, n + m/2 + 1,

m/2 + 2, ... ,n + 4,5,n + 2,3.
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14. The m + 1 edges in column n + 3 have weights (from bottom to top):

m == 0 (mod 4): m + 4,1, m + 6,3, ... , m + ml2 + 2,
ml2 - 1, m + ml2 + 4, m12, m + ml2 + 2, ... ,4,
m + 6,2,m + 4;

m == 2 (mod 4): m + 4,2, m + 6,4, ... , m + ml2 + 1,
ml2 - 1,m + ml2 + 3,m12 + 1,m + ml2 + 2,
ml2 -1, ... ,4,m + 5,2,m + 3.

15. The m + 1 edges in the path forming column n + 4 (the new right
edges) are assigned weights (going bottom to top):

m == 0 (mod 4): 2 + n, 1,4 + n, 3, , ml2 + n, ml2 - 1,
ml2 + 2 + n, m12, ml2 + n, ,4,4 + n, 2,2 + n;

m == 2 (mod 4): 2 + n, 2, 4 + n, 4, , n + ml2 - 1, ml2 - 1,
n + ml2 + 1, ml2 + 1, n + m12, ml2 - 1, ... ,4,
3 + n,2, 1 + n.

There are three main conditions that now must be checked: that the edge
weightings satisfy the conditions of Type 1, that the vertex sums are all dis-
tinct, and that there is a one-factor f in the new graph satisfying the definition
in Type 1. For all edges e one can check that the following four conditions
are all met under the hypothesis that m, n 2: 16:

1. If e is a nonheavy edge, then w'(e) ::::;(m + 2)(n + 4)/4 + 1.
2. If e is a top or bottom heavy edge, then w'(e) ::::;mnl4 + 5.
3. If e is a left heavy edge, then w'(e) ::::;mnl4 + n + 5.
4. If e is a right heavy edge, then w'(e) ::::;mnl4 + m + 5.

To prove that w' is an irregular weighting of Xm+2,n+4, it must be shown
that all of the vertex sums are distinct. Note that for each old vertex v in the
original Xm,n, w'(v) = w(v) + 4m + 2n + 8. So for all old vertices, w'(v) 2:

4m + 2n + 10. Since these were all distinct under the weighting w, they are
all distinct under the weighting w'. It can be checked that the vertex sums of
the new vertices are all distinct, and less than 4m + 2n + 10, under the
new weighting w'. Thus w' is an irregular weighting of the grid Xm+2,n+4.

We finally check that there is a one-factor fin Xm+2,n+4 satisfying condi-
tions 4(a)-4(d) of the definition of Type 1. Construct the one-factor f as fol-
lows: beginning from the bottom edge on the left side, take every other edge
up the left side, across the top until column n + 1, down column n + 2 to
the bottom, then across the bottom to the left. In columns n + 3 and n + 4
take every other vertical edge beginning with the bottom one. In the old Xm,n
take the edges that were in the special one-factor that exists by the indue-
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tive hypothesis. It is not difficult to check that all of these edges have weights
satisfying conditions 4(a)-4(d) of the definition of Type 1. This completes
the proof of this construction. I

Our next construction is very similar to Construction 1; however, this con-
struction extends Xm, n to Xm+2• n+2 by putting a ring around the smaller grid.
As an ingredient in this construction one can use a weighting of Xm,n result-
ing from the application of Construction 1 or this construction can be used
inductively. We must again begin with a definition.

Definition. If m and n are both even, then an irregular weighting w of Xm, n

is Type 2 if for every edge e, wee) :::;(mn)/4 + 1 (= A(Xm,n))' Furthermore:
1. If e is a top or bottom heavy edge, then wee) :::;(m + 2)(n + 2)/4 -

(m + n + 1).
2. If e is a left heavy edge, then wee) :::;(m + 2)(n + 2)/4 - m - 1.
3. If e is a right heavy edge, then wee) :::;(m + 2)(n + 2)/4 - n - 1.
4. There is a one-factor j in Xm,n that has the property that for all e E j,

wee) is less than or equal to the previous constraints minus three. Thus,

(a) If e is internal or a nonheavy border edge, then wee) :::;(mn)/4 - 2.
(b) If e is a top or bottom heavy edge, then wee) :::;(m + 2)(n + 2)/

4 - (m + n + 1) - 3.
(c) If e is a left heavy edge, then wee) :::;(m + 2)(n + 2)/4 - m - 4.
(d) If e is a right heavy edge, then wee) :::;(m + 2)(n + 2)/4 -n - 4.

It is easy to prove the following proposition:

Proposition 2.1. If m, n 2: 16, then any Type 1 weighting of Xm,n is also a
Type 2 weighting of Xm, n.

Construction 2. If there is a Type 2 weighting of Xm,n, then there is a
Type 2 weighting for Xm+2,n+2.

Proof. Assume that w is a Type 2 weighting for G = Xm,n' We will make
a new weighting w' for Xm+2,n+2 that we will also show to be Type 2. The
reader is directed to Figure 4 where this construction is pictured. To begin
the construction add a ring of vertices around G and all of the necessary
connecting edges. We use the same terminology as in Construction 1. De-
fine the weighting function w' on Xm+Z,n+2 as follows:

1. w'(e) = wee) + (m + n)/2 + 1, if e is an internal edge or a nonheavy
border edge.

2. w'(e) = wee) + (m + n + 1), if e is an old top or bottom heavy edge.
3. w'(e) = wee) + (m + 1), if e is an old left heavy edge.
4. w'(e) = wee) + (n + 1), if e is an old right heavy edge.
5. w'(e) = n + 1, if e is a horizontal edge from the old left to the

new left.
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FIGURE 4. A labeling for Xm+2.n+2 when m == 0 (mod 4).

6. w'(e) = 1, if e is a vertical edge from the old top or bottom to the
new top or bottom.

7. w'(e) = m + 1, if e is a horizontal edge from the old right to the new
right.

8. The n + 1 edges along the new bottom have weights (from left to
right):

m == 0 (mod 4): 2,2,4,4,6,6, , n, n, n + 2;

m == 2 (mod 4): 1,3,3,5,5, , n - 1, n - 1, n + 1, n + 1.

9. The m + 1 edges in the new left border have weights (from bottom
to top):

m == 0 (mod 4): 1, n + 5,3, n + 7,5, ... , n + ml2 + 3,
ml2 + 1, n + ml2 + 2, ... ,5, n + 6,3, n + 4,1;

m == 2 (mod 4): 2, n + 4,4, n + 6, ... ,m12 + 1, n + ml2 + 3,
mI2, ... ,5,n + 6,3,n + 4,1.

10. The n + 1 edges in the path forming the new top are assigned weights
(going left to right): 1,2,3,4, ... ,n, n + 1.
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11. The m + 1 edges in the new right column have weights (from bottom
to top):

m == 0 (mod 4): n + 3, n + 3, n + 5, n + 5, , n + ml2 + 1,
n + ml2 + 1,n + ml2 + 3, n + m12, ,n + 4,
n + 5, n + 2, n + 3 ;

m == 2 (mod 4): n + 4, n + 2, n + 6, n + 4, ... ,n + ml2 + 3,
n + ml2 + 1, n + ml2 + 2, ... ,n + 4, n + 5, n + 2, n + 3.

It is straightforward to check that for every edge e, w'(e) is less than the
number prescribed in the definition of Type 2. In checking the vertex sums,
note that the new border vertices all have distinct sums that are less than
2n + 2m + 6. One can also see that for each internal vertex v, w'(v) =

w(v) + 2n + 2m + 4; so they are also all distinct and w'(v) 2: 2n + 2m + 6.
Finally, the one-factor f of edges with weights satisfying the conditions stated
in the definition of Type 2 is composed of the edges in the one-factor in
Xm,1I (which exists by the inductive hypothesis) and every other edge on the
new border. I

We are now in a position to give the irregularity strength for a larger
class of grids. Define the feasible region to be

'!J' = {(x,y) E Z X Z: 2L(x + 2)/4J + 8:s y:s 4Lxl2J - 15}.

This is the infinite region in the first quadrant that is approximately bounded
by the two lines through (16,16) with slopes 1/2 and 2; it is the shaded re-
gion in Figure 5. In the main theorem of this paper (Theorem 2.7) we will
give the irregularity strength for all m X n grids where (m, n) is in the fea-
sible region. Here, from Constructions 1 and 2 along with Theorem 1.1 and
the weighting of the 16 X 16 grid displayed in Figure 2, we have the follow-
ing theorem:

16
FIGURE 5. The feasible region.
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Theorem 2.2. For every even m, n In the feasible region, I(Xm,n) =

A(Xm,n) = mm/4 + 1.

Next we present a construction that begins with a weighting w (with cer-
tain properties) on G = Xm,n for even m and n, and yields an irregular
weighting on Xm,n+l of strength A(Xm,n+l), We first define Type 3 weightings
that exhibit these necessary properties,

Definition. If m and n are both even, then an irregular weighting w on Xm,n
is Type 3 if for every edge e, wee) ~ (mn)/4 + 1 (= A(Xm,n»' Furthermore:

1. If e is a border heavy edge, then wee) ~ f(m(n + 1) + 1)/41 - m/2.
2. There is one-factor fin Xm,n that has the property that for all e E I.

(a) if e is not a heavy edge, then wee) ~ (mn)/4 - 2;
(b) if e is a heavy edge, then wee) ~ f(m(n + 1) + 1)/41 - m/2 - 3.

The following proposition enables us to input weightings of the grids from
the prior two constructions into Construction 3; it is easily verified.

Proposition 2.3. The following three classes of weightings are all Type 3
when m, n 2:: 16:

1. the weighting of X16, 16 in Figure 2;
2. the weighting of Xm+2,n+4 produced by applying Construction 1 to a

Type 1 weighting of Xm,n;
3. the weighting of Xm+2,n+2 produced by applying Construction 2 to a

Type 2 weighting of Xm,n'

Construction 3. If there is a Type 3 weighting of Xm"" then there is an ir-
regular weighting of Xm,n+l of strength A(Xm,n+l) and an irregular weighting
of Xm+1,n of strength A(Xm+1,n).

Proof. Assume that w is a Type 3 weighting for G = Xm,n' We will make
a new weighting w' for Xm,n+l that will be irregular and have strength of
A(Xm,n+I). The construction begins by adding a new column of m vertices to
the right side of G. We use the same terminology as in the previous con-
structions. As before, the weighting function w' on Xm,n+l is dependent on
whether m == 0 (mod 4) or m == 2 (mod 4).

1. If e is an internal edge or a nonheavy border edge, then

(a) w'(e) = wee) + Lm/4j + 3, if e E f and m == 2 (mod 4);
(b) w'(e) = wee) + Lm/4j, otherwise.

2. If e is a top, left, or bottom heavy edge, then

(a) w'(e) = wee) + 2Lm/4j + 3, if e E f and m == 2 (mod 4);
(b) w'(e) = wee) + 2Lm/4j, otherwise.



IRREGULARITY STRENGTH OF m x n GRID 367

3. If e is an old right heavy edge, then

(a) w'(e) = w(e) + 2Lm/4J + 2, if e E t and m == 2 (mod 4);
(b) w'(e) = w(e) + 2Lm/4J - 1, otherwise.

4. w'(e) = 1, if e connects an old right border vertex to a new right bor-
der vertex.

5. The m - 1 edges in the new right border are weighted from bottom to
top as follows:

m == a (mod 4): 2,2,4,4, ... , m/2 - 2, m/2 - 2, m/2,
m/2, m/2 - 1, m/2 - 2, ... ,3,2,1 ;

m == 2 (mod 4): 2,1,4,3, ... ,m/2 - 1,m/2 - 2,m/2 + 1,
m/2,m/2 - 2,m/2 - 2, ... ,5,5,3,3,1.

Again, one can check that for an edge e, w'(e) ::; A(Xm,lI+l). To see that
the weighting is irregular, note that since the weighting w on G was irregu-
lar, then all of the old vertices under weighting w' will also have distinct
sums; further, the m vertices in the new right border all have distinct sums
that are less than the sum of any of the old vertices under w'. I

We have shown that I(Xm,n+l) = A(Xm,n+l)' To show that I(Xm+1,1I) =

A(Xm+1,n), one merely needs to take the transpose of the weighting on Xm,n,
apply the above construction adding the new column (getting a weighting of
Xm,n+l), and then transpose again to get a weighting ofXm+1,1I with strength
A(Xm+1,n).

Next we will present a construction that begins with a weighting w on
G = Xm,n for even m and n where m == n (mod 4), and yields an irregular
weighting on Xm+1,n+l of strength A(XIIl+1,n+l). We first define Type 4 weight-
ings that exhibit the necessary properties for this construction.

Definition. If m and n are both even, then an irregular weighting won Xm,n
is Type 4 if for every edge e, w(e) ::; (mn)/4 + 1 (= A(Xm,n)). Furthermore:

1. If e is a border heavy edge, then w(e) ::; r«m + l)(n + 1) + 1)/4l -
(m + n)/2.

2. There is a one-factor tin Xm,n that has the property that for all e E t,
(a) if e is not a heavy edge, then w(e) ::; (mn)/4 - 2;
(b) if e is a heavy edge, then w(e) ::; r«m + l)(n + 1) + 1)/4l -

(m + n)/2 - 3.

The following proposition enables us to input weightings of the grids from
Constructions 1 and 2 into Constructions 4a and 4b; it is easily verified.
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Proposition 2.4. The following three classes of weightings are all Type 4
when m, n ;::::16:

1. the weighting of X16, 16 in Figure 2;
2. the weighting of Xm+2,n+4 produced by applying Construction 1 to a

Type 1 weighting of Xm,n;

3. the weighting of Xm+2,n+2 produced by applying Construction 2 to a
Type 2 weighting of Xm,n'

Construction 4a. If there is a Type 4 weighting of Xm,n where m == n
(mod 4), then there is an irregular weighting of Xm+1,n+1 of strength
A(Xm+1,n+I).

Proof. Assume that w is a Type 4 weighting for G = Xm, nand m == n
(mod 4). We will make a new weighting w' for Xm+l,n+1 that will be irregular
and have strength of A(Xm+l,n+l)' The construction, which is pictured in Fig-
ure 6 (for m == n == 0 (mod 4) and m < n), begins by adding a new column
of vertices to the right side of G and a new row to the bottom. The weight-
ing function w' on Xm+1,n+l is dependent on whether m == n == 0 (mod 4) or
m == n == 2 (mod 4).

--
Heavy:
a) e in the one-factor:

w'(e)=w(e)+(m+n)/2+1
b) e not in the one-factor

w'(e)=w(e)+(m+n)/2

e is an internal edge or
a non-heavy border edge
a) e in the one-factor:

w'(e)=w(e)+(m+n)/4+1
b) e not in the one-factor:

w'(e)=w(e)+(m+nl4)
+A+" 0 ••=- s;j =-~ .. ~-ne-factor: 1

w(e)+(m+n)/2
the one-factor:
w(e)+(m+n)/2-1 1---
• 1 1- - -- - -

Heavy:
a) e in the 0

w'(e)=
b) e not in

w'(e)=

• •-

2

2

4

• 0
•
•

m-2

m

m

,,'- __ ---.. ,-- __ ..J/- V
remaining n-m edges

FIGURE 6. A labeling for Xm+1,n+l when m == n == 0 (mod 4) and m < n.

2 3 m
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1. If e is an internal edge or a non heavy border edge, then

(a) w'(e) = w(e) + (m + n)/4 + 1, if e E f;
(b) w'(e) = w(e) + (m + n)/4, otherwise.

2. If e is a top or left heavy edge, then

(a) w'(e) = w(e) + (m + n)/2 + 1, if e E f;
(b) w'(e) = w(e) + (m + n)/2, otherwise.

3. If e is an old bottom heavy edge, then

(a) w'(e) = w(e) + (m + n)/2,if e E f;
(b) w'(e) = w(e) + (m + n)/2 - 1, otherwise.

4. If e is an old right heavy edge, then

(a) w'(e) = w(e) + (m + n)/2 - 1, if m == 0 (mod 4) and e tI- f;
(b) w'(e) = w(e) + (m + n)/2, if m == 0 (mod 4) and e E f;
(c) w'(e) = w(e) + m/2 - 1, if m == 2 (mod 4) and e tI- f;
(d) w'(e) = w(e) + m/2, if m == 2 (mod 4) and e E f

S. w'(e) = 1, if e connects an old bottom vertex to a new bottom vertex.
6. If e connects an old right vertex to a new right vertex, then

(a) w'(e) = 1, if m == 0 (mod 4);
(b) w'(e) = n/2 + 1, if m == 2 (mod 4).

7. If m == 2 (mod 4), then the weights on the new border edges are as
follows:

(a) The m edges in the new right border are weighted from top
to bottom:

n/2 + 2,2,n/2 + 4,4,...,n/2 + m/2 - 3,m/2 - 3,

n/2 + m/2 - 1, m/2 - 1, n/2 + m/2 + 1, m/2,
n/2 + m/2 - 1,...,S,n/2 + 4,3,n/2 + 2,1;

(b) The n edges along the new bottom are weighted from left to right:

3,2,S,4,...,n/2 - 3,n/2,n/2 - l,n/2 + l,n/2,
n/2 - 2,n/2 - 2, ... ,3,3,1,1.

8. If m == 0 (mod 4) and m = n, then weights on the new border edges
are as follows:

(a) The m edges in the path forming the new right border are as-
signed weights from top to bottom: 2,2,4,4, ... , m - 2, m - 2,
m,m + 1;

(b) The m edges in the path forming the new bottom border are as-
signed weights from left to right: 1,2,3, ... , m - 2, m - 1, m.
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9. If m == 0 (mod 4) and m =P n (we may assume m < n), then the
weights on the new border edges are as follows:

(a) The m edges in the path forming the new right border are assigned
weights from top to bottom: 2,2,4,4, ... ,m - 2, m - 2, m, m;

(b) The first m edges, starting from the left, in the path forming
the new bottom border are assigned weights: 1,2,3, ... , m - 2,
m - I,m;

(c) The remaining n - m edges in the bottom border are assigned
weights: First note that since m == n == 0 (mod 4) and m < n, then
n - m = 4k for some positive integer k. When k = 1, the four
(= n - m) remaining edges in the bottom border are, from left to
right, m + 2k, m + 2k + 1, m + 2k - 1, m + 2k. We call these
four edges the center edges. When k > 1, there are 2k - 2 edges
on either side of the center edges. The weights for the n - m re-
maining edges (where the center edges are enclosed in the box)
are m + 2, m + 2, m + 4, m + 4, ... ,m + 2k - 2, m + 2k - 2,

I m + 2k, m + 2k + 1,m + 2k - 1,m + 2k, I

m + 2k - 3, m + 2k - 2, ... ,m + 3, m + 4, m + 1, m + 2.

One can verify that for every edge e, w'(e) :=; A(Xm+,.n+,). Given that the
weighting w on G was irregular and that all old vertices have had their
sums increased by m + n + 1, then all of the old vertices under weighting
w' will have distinct sums greater than m + n + 2. It is easy to verify that
the vertices on the new borders all have distinct sums in the range of 2 to
m + n + 2. I

We now handle the construction of a weighting for Xm+1,n+l from a Type 4
weighting for Xm,n when m and n are both even and m =1= n (mod 4). We first
observe that in this case I(Xm,n) > A(Xm,n)' This observation is based on
the following theorem, which states that I(G) > A(G) whenever weightings
of strength A(G) are tight (all possible sums are used) and the sum of all
vertex sums is odd. (In the following theorem, d(G) and D(G) are the mini-
mum and maximum degrees respectively of a graph G.)

Theorem 2.5. I(G) > A(G) whenever D(G)A(G) - d(G) + 1 = IV(G)I and
anyone of the following three conditions hold:

1. IV(G)I == 1 (mod 4) and d(G), D(G)A(G) are both odd;
2. IV(G)I == 2 (mod 4);
3. IV(G)I == 3 (mod 4) and d(G), D(G)A(G) are both even'.

Proof. Let d = d(G), D = D(G), and A = A(G). In any irregular weight-
ing of a graph G with strength A, the smallest vertex sum will be at least
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d and the greatest vertex sum will be at most DA. When DA - d + 1 =

\V(G)i, then all of the sums from d to DA inclusive will be assigned to ver-
tices. Since each edge weight contributes to two vertex sums, the sum of all
vertex sums must be even. But when DA - d + 1 = IV(G)I, there are three
cases, which are stated in the theorem, where Z.P':di is odd; in these cases,
I(G) > A(G). I

Theorem 2.5 is a general statement of a technique used in [1], [4], and
[9]. Case 3 of the theorem provides the following corollary:

Corollary 2.6. When m, n are both odd, m, n 2: 3, and m =1= n (mod 4),
I(Xm.n) > A(Xm,n), with the exception of X3,s,

The grid X3,s is an exception to Corollary 2.6 because A(X3,s) = (mn +
1)/4 + 1 = 5. So, in this case, DA - d + 1 oF- \V(G)I.

We now give a construction that begins with a Type 4 weighting w on
G = Xm,n (where m and n are both even and m =1= n (mod 4)) and yields an
irregular weighting on X,n+l,n+l of strength A(Xm+1,Il+l) + 1. This, in con-
junction with Corollary 2.6, will show that I(Xm+1,n+l) = A(X,n+l,ll+l) + 1.

Construction 4b. If there is a Type 4 weighting of Xm,1l where m =1= n
(mod 4), then there is an irregular weighting of Xm+1,Il+l of strength
A(Xm+1,Il+l) + 1.

Proof. Assume that w is a Type 4 weighting for G = Xm.,,, m =1= n
(mod 4). We will make a new weighting w' for Xm+1,Il+l that will be irregular
and have strength of A(Xm+1,n+l) + 1. Without loss of generality we will as-
sume that m == 2 (mod 4) and n == 0 (mod 4). The construction begins by
adding a new column of vertices to the right side of G, and a new row to the
bottom. The weighting function w' on Xm+1,n+l is as follows:

1. If e is an internal edge or a nonheavy border edge, then

(a) w'(e) = w(e) + (m + n - 2)/4, if e $. f;
(b) w'(e) = w(e) + (m + n - 2)/4 + 4, if e E f.

2. If e is an old top or left heavy edge, then

(a) w'(e) = w(e) + (m + n - 2)/2, if e $. f;
(b) w'(e) = w(e) + (m + n - 2)/2 + 4, if e E f.

3. If e is an old bottom or right heavy edge, then

(a) w'(e) = w(e) + (m + n - 2)/2 - 1, if e $. f;
(b) w'(e) = w(e) + (m + n - 2)/2 + 3, if e E f.

4, w'(e) = 1, if e connects the old border to the new border.
5. The m edges in the new right border receive weights from top to

bottom: 2,2,4,4, ... ,m/2 - l,m/2 - l,m/2 + l,m/2,m/2 - l,m/
2 - 2, ... ,4,3,2,1.
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6. The n edges along the new bottom border receive weights from left
to right: m + 2, 2, m + 4,4, ... , m + nl2 - 2, nl2 - 2, m + n12,
nl2 + 1, m + nl2 + 1, nl2 - 1, m + nl2 - 2, nl2 - 3, ... , m + 4,
3,m + 2,1.

For every edge e, w'(e) :s A(Xm+"n+') + 1; only some of the edges in the
one-factor f will have weights of A(Xm+"n+') + 1. Given that the weighting
w on G was irregular and that all old vertices have had their sums increased
by m + n + 2, all of the old vertices under weighting w' will have distinct
sums greater than m + n + 3. The vertices on the new borders all have dis-
tinct sums in the range of 2 to m + n + 3; the sum m + n is not used. I

We now state what is known about the irregularity strength of grids for all
m, n pairs in the feasible region. From Theorem 2.2, Propositions 2.3 and
2.4, Constructions 3, 4a, and 4b, and Corollary 2.6, we have the following
theorem:

Theorem 2.7. For every m, n in the feasible region,

I(X ) = {A(Xm,n) + 1
m,n A(Xm,n)

if m, n are both odd and m =1= n (mod 4)
otherwise.

3. CONCLUSION

In this paper we have extended what is known about the irregularity strength
of the m X n grids, Xm,n' In [1] the irregularity strength of paths (XI".) was
determined, [4] gave the irregularity strength of X2,n, and [7] found the ir-
regularity strength of Xn,n for n :s 23. Here we determined I(Xm".) for all
(m, n) inside of the feasible region (defined below and in Section 2). Ad-
ditionally, we have used algorithm IS-1 from [7] to find minimal irregular
weightings for all Xm,n where 3 :s m, n :s 16; these weightings are listed in
[3]. Note that this result, together with Theorem 2.7, proves the conjecture
from [7] that I(Xn,n) = A(Xn,n) for all n 2:': 3. Figure 7 shows the set of
(m, n) pairs for which I(Xm,n) is known.

2 16
FIGURE 7. Grids for which the irregularity strength is known.
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Theorem 3.1 summarizes what is known about the irregularity strength
of grids. Recall that we define the feasibility region to be

?:F = {(x,y) E Z X Z: 2L(x + 2)/4J + 8:::; y :::; 4Lx/2J - IS}.

Theorem 3.1.

I(Xm,n) =

A(X1,n)

A(X1,n) + 1

A(X2,n)

A(X2,n) + 1

A(Xm,n)

A(Xm,n)

A(Xm,n) + 1

A(Xm,n)

A(Xm,n) + 1

if n > 2 and n *' 2 (mod 4)

if n > 2 and n == 2 (mod 4)

if n 2:: 2 and n *' 1 (mod 6)

[IJ

[IJ

[4J

[4J

[3J

if 3 :::;m, n :::;16 and mn *' 3 (mod 4) [3J

if 3 :::;m, n :::;16, mn oF- 15, and mn == 3 (mod 4) [3J

if (m, n) E ?:F and mn *' 3 (mod 4)

if (m,n) E Fand mn == 3 (mod 4).

if n 2:: 2 and n == 1 (mod 6)

if m = 3 and n = 5
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