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1 Introduction and Definitions

Much has been written about the construction of sets of mutually orthogonal
latin squares (MOLS). In [8], a lengthy survey of these constructions is given.
Existence of MOLS is tabulated in [1], historical information appears in [9,
21], and proofs of many of the existence results appear in [1, 4, 21]. Rather
than repeat these surveys here, we instead explore how some of the available
constructions can be applied to a similar problem that has not been studied
quite as extensively. We begin with some definitions.

A latin square of side n is an n × n array in which each cell contains a
single element from an n-set S, such that each element occurs exactly once
in each row and exactly once in each column. A latin square L of side n is
symmetric if L(i, j) = L(j, i) for all 1 ≤ i, j ≤ n. A latin square L of side n is
idempotent if L(i, i) = i for all 1 ≤ i ≤ n. Two latin squares L and L′ of the
same order are orthogonal if L(a, b) = L(c, d) and L′(a, b) = L′(c, d), implies
a = c and b = d. An equivalent definition for orthogonality is: Two latin
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squares of side n, L = (ai,j) (on symbol set S) and L′ = (bi,j) (on symbol set
S ′), are orthogonal if every element in S × S ′ occurs exactly once among the
n2 pairs (ai,j, bi,j), 1 ≤ i, j ≤ n.

A set of latin squares L1, . . . , Lm is mutually orthogonal, or a set of MOLS,
if for every 1 ≤ i < j ≤ m, Li and Lj are orthogonal. One of the most
fundamental questions in combinatorics is: What is the size of the maximum
set of mutually orthogonal latin squares of order n? Let N(n) denote this
number. It is easily shown that for all n, N(n) ≤ n− 1. Good lower bounds
for N(n) are more difficult to establish. In Table 1 we give the current best
lower bound for N(n) for n ≤ 50 when n is not a power of a prime. In the
case that n is a prime power, that N(n) = n − 1 is well known, as we see
later. Lower bounds for N(n) for n ≤ 10, 000 are tabulated in [1], along with
explicit constructions for small values of n. The dates of the results in Table
1 are interesting, pointing again to the fact that much research has been done
recently in this area.

Order N(n) ≥ Year Reference(s)
6 1 1900 [25]
10 2 1960 [5]
12 5 1961 [17]
14 3 1985 [27]
15 4 1978 [24]
18 3 1978 [30]
20 4 1989 [28]
21 5 1991 [20]
22 3 1978 [30]
24 5 1992 [2, 22]
26 4 1994 [7]
28 5 1995 [1]
30 4 1993 [3]

Order N(n) ≥ Year Reference(s)
33 5 1994 [1]
34 4 1994 [1]
35 5 1995 [32]
36 5 1994 [23]
38 4 1993 [3]
39 4 1977 [18]
40 7 1994 [2]
42 5 1995 [1]
44 5 1995 [1]
45 6 1995 [1]
46 4 1974 [31]
48 6 1996 [33]
50 6 1974 [31]

Table 1: Best Current Lower Bounds on N(n)

We consider the analogue of orthogonal latin squares in the case where
the latin squares are required to be symmetric. Suppose that L and M
are idempotent, symmetric latin squares of the same order. Then L and
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M are orthogonal symmetric latin squares if, for any two elements x and y,
there exists at most one ordered pair (i, j) with i < j such that L(i, j) = x
and M(i, j) = y. Orthogonal symmetric latin squares are not orthogonal
latin squares, but they are as “orthogonal” as possible, given that they are
symmetric. Necessarily, n is odd.

A set of symmetric latin squares L1, . . . , Lm is pairwise orthogonal sym-
metric, or a set of POSLS, if for every 1 ≤ i < j ≤ m, Li and Lj are orthog-
onal. For odd n, let ν(n) denote the maximum size of a set of POSLS(n).
Questions about ν(n), analogous to those asked about N(n), are natural.
One remark should be made immediately. While it is trivial to prove an
attainable upper bound for N(n), at this time a comparable upper bound for
ν(n) has eluded researchers. In fact, there are two conflicting conjectures. It
has been conjectured by Gross, Mullin, and Wallis [15] that ν(n) ≤ (n−1)/2,
while Teirlinck [26] has conjectured that ν(n) ≤ n−2, with equality infinitely
often. We return to the discussion of upper bounds for ν in Section 4.

n ν(n) ≥ n ν(n) ≥ n ν(n) ≥ n ν(n) ≥
1 = ∞ 27 13 53 17 79 39
3 = 1 29 13 55 5 81 5
5 = 1 31 15 57 5 83 41
7 = 3 33 5 59 29 85 5
9 = 4 35 5 61 21 87 5
11 5 37 15 63 5 89 11
13 5 39 5 65 5 91 5
15 4 41 9 67 33 93 5
17 5 43 21 69 5 95 5
19 9 45 5 71 35 97 5
21 5 47 23 73 9 99 5
23 11 49 5 75 5 101 31
25 7 51 5 77 5 103 51

Table 2: Best Current Lower Bounds on ν(n)

In Table 2, we give the current best lower bound for ν(n) for small values
of n. These bounds come essentially from only three sources. In [19] it was
shown that if q ≡ 3 (mod 4), then ν(q) ≥ (q − 1)/2. In [11] it was shown
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that if n ≥ 11 (n 6= 15), then ν(n) ≥ 5. The other results are all in the case
when q is a prime power and q ≡ 3 (mod 4); these can be found in [10]. One
can contrast this small number of sources with the much larger number of
sources for the small values of N(n) given in Table 1. An extensive survey
for all results on ν(n) is [13].

2 Transversal Designs and Villa Designs

Many combinatorial objects are intimately related to sets of MOLS. In this
section and the next we examine some parallels between these objects, and
similar objects that are related to sets of mutually orthogonal symmetric
latin squares.

The first and most fundamental of these structures is the transversal
design. A transversal design of order or groupsize n, and blocksize k, denoted
TD(k, n), is a triple (V,G,B), where

1. V is a set of kn elements;

2. G is a partition of V into k classes (called groups), each of size n (in
each group the elements are labeled 1, . . . , n);

3. B is a collection of k-subsets of V (called blocks);

4. every unordered pair of elements from V is either contained in exactly
one group, or is contained in exactly one block, but not both.

A transversal design is idempotent if it contains each block in which every
entry is i, for 1 ≤ i ≤ n. The existence of a TD(k, n) is equivalent to
the existence of k − 2 mutually orthogonal latin squares of order n. To
motivate our analogue in the case of symmetric latin squares, we review this
equivalence.

Let (V,G,B) be a TD(k, n). Now given any block B ∈ B, say that B
contains the element r from the first group and c from the second group. For
1 ≤ t ≤ n − 2 construct a latin square Lt by letting Lt(r, c) = x if block B
contains the element x in group number t + 2. The conditions on the TD
imply that each of the Lt are indeed latin and are pairwise orthogonal. This
construction can be reversed. Obviously, N(n) is the maximum k such that
there exists a TD(k + 2, n).
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We now define a new structure which is intended to be the analogue of
transversal designs in the case where the latin squares in the construction of
the preceding paragraph are orthogonal symmetric latin squares.

A villa design of order or groupsize n, and blocksize k, denoted V D(k, n),
is a triple (V,G,B), where

1. V is a set of kn elements;

2. G = {G1, . . . , Gk} is a partition of V into k classes (called groups), each
of size n (denote Gi = {gi1, . . . , gin});

3. B is a collection of k-subsets of V (called blocks), each containing ex-
actly one element from each group;

4. For {i, j} ⊂ {1, 2, . . . n}, i 6= j, there is either

(a) exactly one block containing {g1i, g2j} and no block containing
{g2i, g1j}; or

(b) exactly one block containing {g2i, g1j} and no block containing
{g1i, g2j};

5. For 3 ≤ h ≤ k and 1 ≤ i, j ≤ n, with i 6= j, element ghi is contained in
exactly one block intersecting {g1j, g2j};

6. If 3 ≤ h < ` ≤ k and 1 ≤ i, j ≤ n, with i 6= j, the pair {ghi, g`j}
appears in at most one block;

7. If 1 ≤ h < ` ≤ k and 1 ≤ i ≤ n, the pair {ghi, g`i} appears in no block.

There is a natural connection between villa designs and orthogonal sym-
metric latin squares.

Theorem 2.1 There exists a villa design V D(k, n) if and only if there exist
k − 2 pairwise orthogonal symmetric latin squares of order n.

Proof: The proof is very similar to the proof that a TD(k, n) is equivalent
to k − 2 MOLS. Let (V,G,B) be a V D(k, n). Given any block B ∈ B say
that B contains g1r and g2c. For 1 ≤ t ≤ k − 2 construct a latin square
Lt by letting Lt(r, c) = x and Lt(c, r) = x if block B contains the element
g(t+2)x in group Gt+2. Also let Lt(i, i) = i for 1 ≤ i ≤ n. Conditions 4 and
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7 of the definition of VD imply that these squares are well defined and that
they are symmetric and idempotent. Condition 5 implies that each of these
squares is indeed a latin square, while condition 6 ensures that these squares
are orthogonal symmetric latin squares. Again, this construction is easily
reversed, proving the theorem. 2

Obviously, ν(n) is the maximum k such that there exists a V D(k + 2, n).
Much of the progress in finding new lower bounds for N(n) has been facili-
tated by the use of recursive and direct constructions for transversal designs.
Villa designs are introduced here in order to help researchers make renewed
progress on questions concerning ν(n). Indeed we are able for the first time
to give an analogue of what is arguably the most powerful TD construction,
the Wilson construction, to the symmetric latin square case. This is done in
Section 5.

3 Other Equivalences

We now examine several other analogies between MOLS and POSLS. Let S
be a set of n + 1 elements (symbols). A Room square of side n (on symbol
set S) is an n× n array, F , which satisfies the following properties:

1. every cell of F either is empty or contains an unordered pair of symbols
from S,

2. each symbol of S occurs once in each row and column of F ,

3. every unordered pair of symbols occurs in precisely one cell of F .

A Room square of side n is standardized (with respect to the symbol ∞) if
the cell (i, i) contains the pair {∞, i}. The existence of a pair of orthogonal
symmetric latin squares A and B on the symbol set {1, 2, . . . n} is equivalent
to the existence of a Room square R of side n. Merely put the pair {x, y}
in cell (r, c) of R if A(x, y) = r and B(x, y) = c. Similarly, to construct a
Room square from a V D(4, n), put the pair {x, y} in cell (r, c) if the block
B of the V D contains g1x ∈ G1, g2y ∈ G2, g3r ∈ G3 and g4c ∈ G4. Both of
these constructions are easily reversed.

The notion of Room square generalizes to higher dimensions. A Room
d-cube of side n is a d-dimensional cube of side n with the property that every
2-dimensional projection is a Room square of side n. The constructions of the
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previous paragraph carry over to this higher dimensional case. For example,
given a set of d pairwise orthogonal symmetric latin squares A1, A2, . . . , Ad

all on the symbol set {1, 2, . . . n} now put the pair {x, y} in cell (c1, c2, . . . cd)
of R if Ai(x, y) = ci for all 1 ≤ i ≤ d.

A graeco-latin square of side n is an n× n array where each cell contains
an ordered pair ordered pair of elements and in addition, if a new square L
is made from the first element from each of the cells and a second square
R is made from the second element of each of the cells, then L and R are
orthogonal latin squares of side n. With this definition, the existence of
a graeco-latin square of side n is equivalent to the existence of a pair of
orthogonal latin squares of side n. (The term graeco-latin is derived from
the the fact that the first elements are often taken from the Greek alphabet,
while the second elements are from the Latin alphabet).

Room squares and graeco-latin squares again evoke the similarity between
these two concepts. One of the main differences is that Room squares have
unordered pairs in each cell, while the pairs in the graeco-latin squares are
ordered.

A further set of analogous objects are best described in graph terminology.
A 1-factor of a graph G is a set of edges from G which contain each vertex
exactly once. A 1-factorization of a graph G is a set F = {F1, . . . , Fk}
of edge-disjoint 1-factors of G whose edge-sets partition the edge-set of G.
Two 1-factorizations F = {F1, . . . , Fk} and G = {G1, . . . , G`} of a graph are
orthogonal if each 1-factor of F has at most one edge in common with each
1-factor of G.

The existence of k orthogonal 1-factorizations of the complete bipartite
graph Kn,n is equivalent to the existence of k orthogonal latin squares of side
n, while the existence of k orthogonal 1-factorizations of the complete graph
Kn is equivalent to the existence of k orthogonal symmetric latin squares of
side n.

The proof is essentially the same in both cases. Given a 1-factorization
F = {F1, . . . , Fn} of Kn,n construct a square L = L(i, j) by L(i, j) = x if the
edge (i, j) is in Fx. An n × n square so constructed is indeed latin square.
Given a set of k orthogonal 1-factorizations, the k latin squares formed by
this procedure can be shown to be orthogonal.

When the underlying graph is Kn, in order to have a 1-factor it is neces-
sary that n be even. So a 1-factor contains n/2 edges and a 1-factorization
contains n − 1 1-factors. Given a 1-factorization F = {F1, . . . , Fn−1} of Kn
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construct a square L = L(i, j) by L(i, j) = x and L(j, i) = x if the edge {i, j}
is in Fx. Also let L(i, i) = i for 1 ≤ i ≤ n − 1. Here we have constructed a
symmetric idempotent latin square of side n−1. Given a set of k orthogonal
1-factorizations of Kn the k symmetric latin squares formed by this procedure
can be shown to be a set of symmetric orthogonal latin squares.

We summarize our discussions in the following two corollaries.

Corollary 3.1 The existence of the following are equivalent:
1. N(n) ≥ k;
2. k pairwise orthogonal latin squares of side n;
3. A transversal design TD(k, n);
4. A set of k pairwise orthogonal 1-factorizations of the graph Kn,n.

Corollary 3.2 The existence of the following are equivalent:
1. ν(n) ≥ k;
2. k pairwise orthogonal symmetric latin squares of side n;
3. A villa design V D(k, n);
4. A set of k pairwise orthogonal 1-factorizations of the graph Kn+1;
5. A Room k-cube of side n.

There are even more equivalent combinatorial structures. See [1, 12, 13]
for further examples.

4 Finite Fields and the Upper Bounds

In this short section we briefly discuss the direct construction of MOLS and
POSLS from algebraic structures like groups and fields.

The most basic construction gives a pair of orthogonal latin squares for
every odd order n. Merely take the addition and subtraction tables in the
group Zn to get two orthogonal latin squares of side n. This construction
was known to Euler [14], the first mathematician who had an interest in latin
squares. There is no known comparable direct method (in Zn or any other
group) to get a pair of orthogonal symmetric latin squares.

Now let q be a prime power. In this case there is a well-known construction
that gives q − 1 MOLS of side q. For each α ∈ GF(q)\{0}, define the latin
square Lα(i, j) = i+αj, where i, j ∈GF(q) where all the algebra is performed
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in GF(q). The set of latin squares {Lα|α ∈GF(q)\{0}} is a set of q−1 MOLS
of side q.

In the case of orthogonal symmetric latin squares there is also a construc-
tion in the Galois field. The interested reader can find this construction in
[13]. The theorem states that if q = 2kt + 1 where t is odd, then there are
t POSLS of side q. When k = 1, then t = (q − 1)/2 which is one of the
conjectured upper bounds for sets of POSLS of side q.

A set of n− 1 MOLS of side n is called a complete set of MOLS(n) since
it meets the upper bound. In this case it is known that the existence of a
complete set of MOLS is equivalent to the existence of a projective plane
of order n and indeed a complete set of MOLS exists for all prime power
orders. Interestingly, in the case where the upper bound for the number of
MOLS is met, there exists an extremely nice geometric object (the projective
plane) that is equivalent to this set of MOLS. This is not known to be the
case for symmetric latin squares. Not only is there no upper bound known
that is attained infinitely often, but no nice geometric object is known to
be equivalent to a “complete” set (whatever that might mean) of orthogonal
symmetric latin squares. This is a crucial difference between the status of
N(n) and ν(n).

5 Splitting a Transversal Design

In this section we set up a framework for dealing with questions about ν(n)
by using known constructions for MOLS and TDs. Our goal is to exploit the
substantial knowledge about transversal designs to generate new discoveries
concerning lower (and hopefully also upper) bounds for ν(n). This framework
revolves around a connection between villa designs and transversal designs.

Let V1 = (V,G,B1) be a villa design V D(k, n) and let B3 be the set
of idempotent blocks Bi (i.e. for each 1 ≤ i ≤ n, Bi is the block con-
taining the element i from each group). If there exists another villa design
V2 = (V,G,B2) with the property that T = (V,G,B1∪B2∪B3) is a transversal
design TD(k, n), then V1 is called an embeddable villa design (an EVD). Con-
versely, if a idempotent transversal design TD(k, n) can be decomposed into
two villa designs V D(k, n) (plus the idempotent lines), then the transversal
design is called splittable (STD).

Suppose that R is a standardized Room square of side r in which the
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entry {∞, x} has been replaced by {x, x} for every x. Wallis [29] calls R an
embedded Room square if it is possible to order every entry of R, replacing
{x, y} by either (x, y) or (y, x), and then to add further entries in such a
way that the resulting array is a graeco-latin square of side r. We have
the following proposition whose proof is left as an exercise for the interested
reader.

Proposition 5.1 The existence of an embedded Room square of side r is
equivalent to the existence of an embeddable villa design of order r and block-
size 4, an EV D(4, r).

A villa design V D(k, n) has
(

n
2

)
blocks while a TD(k, n) has n2 blocks so

since
(

n
2

)
+

(
n
2

)
+n = n2, the existence of a EV D(k, n) is at least numerically

possible. Indeed the following theorem proves their existence in the case
when k = 3.

Lemma 5.2 All V D(3, n) are embeddable in a TD(3, n).

Proof: Let V1 be a V D(3, n). We construct V2, also a V D(3, n), which is
disjoint from V1. Let {g1a, g2b, g3c} be any block in V1. Then let {g1b, g2a, g3c}
be a block in V2. From the properties of a villa design the blocks of V1 are
disjoint from the blocks of V2 and the union of all these blocks, plus the
idempotent blocks, gives an idempotent TD(3, n). 2

In the next theorem we give an infinite class of EVDs for larger blocksize.
We first need some definitions. Let G be an additive abelian group of odd
order n. A starter in G is a set of unordered pairs S = {{si, ti} : 1 ≤ i ≤
(n− 1)/2} which satisfies the following two properties:

1. {si : 1 ≤ i ≤ (n− 1)/2} ∪ {ti : 1 ≤ i ≤ (n− 1)/2} = G\{0}

2. {±(si − ti) : 1 ≤ i ≤ (n− 1)/2} = G\{0}

Let S = {{si, ti} : 1 ≤ i ≤ (n − 1)/2} and T = {{ui, vi} : 1 ≤ i ≤
(n− 1)/2} be two starters in G. Without loss of generality, we may assume
that si − ti = ui − vi, for all i. Then S and T are said to be orthogonal
starters if ui − si = uj − sj implies i = j, and if ui 6= si for all i.

Orthogonal starters were developed to construct sets of POSLS (see [13]).
In our new terminology we have: The existence of k pairwise orthogonal
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starters in an abelian group G of order n implies the existence of a VD(k, n).
It is instructive to see how this construction works. Let S1, S2, . . . Sk be a
set of orthogonal starters in an abelian group of order n. From each starter
S = {{si, ti} : 1 ≤ i ≤ (n−1)/2} define the translate S+α = {{si+α, ti+α} :
1 ≤ i ≤ (n−1)/2}. Then from the properties of starters, given any unordered
pair {x, y} ⊂ G there is precisely one α ∈ G such that {x, y} ∈ S + α.
Now to construct a VD(k, n), for each {x, y} ∈ G define the block Bx,y as
the set of points {g1x, g2y, g3α1 , g4α2 , . . . gk+2,αk

} where Si + αi is the unique
translate of the starter Si that contains the pair {x, y}. Using the conditions
on orthogonality of starters, it can be shown that the set of blocks Bx,y where
{x, y} ∈ G defines a VD(k, n).

The most important class of orthogonal starters are the Mullin-Nemeth
starters. Suppose q is a prime power with q ≡ 3 (mod 4). Let R denote the
set of residues in the multiplicative group of GF (q) and let N denote the
set of nonresidues. Now, for every a ∈ N , define Ta = {{x, ax} : x ∈ R}.
The (q− 1)/2 starters thus obtained are termed the Mullin-Nemeth starters.
They have the property that they are all pairwise orthogonal. Thus there
exists a V D((q + 3)/2, q) for all prime powers q ≡ 3 (mod 4). The following
theorem states that this VD is indeed embeddable.

Theorem 5.3 Let q ≡ 3 (mod 4) be a prime power. Then there exists a
EV D((q + 3)/2, q).

Proof: Begin with V1 = (V,G,B1) , the V D((q +3)/2, q) that is constructed
from the Mullin-Nemeth starters. We assume that the groups are labeled
G1, G2 and Ga for each a ∈ N , the nonresidues of GF(q). For a block
B ∈ V1, define −B by gi(−x) ∈ −b if gix ∈ B and let B2 = {−B|B ∈ B1}. We
show that (V,G,B1 ∪ B2 ∪ B3) is an idempotent TD((q + 3)/2, q), where B3

is the set of idempotent lines.
Let a ∈ N . For every x ∈ R there is exactly one block Bx of V1 that

comes directly from the Mullin-Nemeth starter Ta (and not a translate of it).
The block Bx contains the points g1x, g2(ax) and for each c ∈ N it contains
gcαc where Tc + αc is the unique translate of the starter Tc that contains the
pair {x, ax}. Let BTa denote this set of blocks. Then αa = 0 for all blocks
bx ∈ BTa ; in other words, all blocks in BTa contain the point ga0.

Let c ∈ N . We must show, given any u 6= v, that exactly one block from
either V1 or V2 contains {gau, gcv}. Now, all blocks of B1 are translates of the
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blocks in BTa and all blocks in B2 are translates of the blocks {−B|B ∈ BTa}.
So, it suffices to show that if a block Bx ∈ BTa contains the point gcω, then
there is no block in BTa that contains the point gc(−ω).

The definition of αc ensures that {x, ax} = αc + {z, cz} for some z ∈ R;
again, the block Bx contain the point gcαc . Let By (y ∈ R) be another
block from the Mullin-Nemeth starter Ta. Since x and y are both quadratic
residues, there exists another residue r ∈ R where xr = y. So {y, ay} =
{xr, axr} = rαc + {rz, crz}. Since rαc is in the same residue class as αc, the
points in group c that are contained in blocks from BTa are precisely either
the set of residues or the set of nonresidues. In either case, (since −1 is not a
residue) if a block Bx ∈ BTa contains the point gcω, then there is no block in
BTa that contains the point gc(−ω). The proof is complete when the conditions
on groups 1 and 2 are checked. This is straightforward and is omitted here.
2

It can be shown further that the idempotent TD((q+3)/2, q) constructed
in Theorem 5.3 can itself be extended to an idempotent TD(q, q) — an affine
plane of order q. The q− 2 idempotent MOLS that correspond to this plane
can each be described by the equation La(x, y) = ax + (1 − a)y where the
square La corresponds to the the ath group of the transversal design. The
original villa design and its negative are embedded in the rows indexed by
the nonresidues of GF (q).

The basic motivation for the study of EVDs or STDs is to develop a
general machinery which can, for example, apply standard recursive con-
structions for TDs to generate STDs, and hence to obtain new VDs and
Room cubes. Indeed, the following theorem is a variant of Wilson’s cele-
brated recursive construction for transversal designs. In this case, however,
when certain ingredient TDs are splittable, so is the resulting design. In this
way, we translate theorems on TDs into theorems on Room cubes.

Again we need some definitions in order to proceed. We must define the
notion of holes in both TDs and VDs. For transversal designs it has been
well studied; see [8]. A TD(k, n + u; u) is a triple (V,G,B), where

1. V is a set of k(n + u) elements;

2. G is a partition of V into k classes (called groups); each of size n + u
(in each group the elements are labeled 1, . . . , n,∞1, . . .∞u);

3. B is a collection of k-subsets of V (called blocks);
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4. every unordered pair of non-infinity elements from V is either contained
in exactly one group, or is contained in exactly one block, but not both;

5. every infinity element and every non-infinity element from different
groups are in exactly one block;

6. no block contains two infinity elements.

A VD(k, n + u; u) is defined similarly. Essentially it has the same prop-
erties as a VD, except that two infinity type elements occur together in no
blocks. The meaning of STD(k, n + u; u) and EVA(k, n + u; u) is also clear.

Theorem 5.4 (a) If there exists a STD(k + 1, n), a STD(k,m + ui; ui) for
1 ≤ i ≤ n, and a STD(k, u) where u =

∑
ui, then there exists a STD(k,mn+

u).
(b) If there exists a EV D(k +1, n), a EV D(k,m+ui; ui) for 1 ≤ i ≤ n, and
a EV D(k, u) where u =

∑
ui, then there exists a EV D(k,mn + u).

Proof: Obviously these two statements are equivalent. We prove (a). With-
out the requirement that the TD be splittable, this statement is the simplest
variant of Wilson’s theorem beyond simple multiplication. A proof of Wil-
son’s theorem is given in [6]; the statement here employs the STD(k + 1, n)
as the master design, the STD(k,m + ui; ui) for 1 ≤ i ≤ n as ingredient
designs in the inflation, and the STD(k, u) to fill the hole which results.

Now the split of the STD(k + 1, n) partitions the transversal design into
B1, B2, and B3 where B1 and B2 are V D(k + 1, n)s and B3 is the set of
idempotent blocks. To split the final design, we find the EV D(k,mn + u)
which it contains. First, for each block in B2, erase all blocks which arise
from the inflation of the block. Second, for each block in B3, employ the fact
that the STD(k,m+ui; ui) is splittable to retain only an EV D(k,m+ui; ui)
from the blocks obtained in the inflation. Finally, employ the fact that
the STD(k, u) is splittable to retain only an EV D(k, u) from the blocks
obtained in the inflation. All blocks obtained in the inflation of blocks from
B1 are retained. It is now easy to verify that this is a V D(k,mn + u),
and that interchanging the roles of B1 and B2, and retaining the alternate
EV D(k,m + ui; ui) and EV D(k, u), we obtain a disjoint V D(k,mn + u)
which supplies the embedding. 2
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In the previous theorem, it is not necessary that the VDs be embeddable.
Of course, if the ingredients are not embeddable then neither is the resulting
design. The following is a Wilson-type construction for VDs.

Theorem 5.5 If there exists a V D(k + 1, n), a V D(k,m + ui; ui) for 1 ≤
i ≤ n, a TD(k,m + ui; ui) for 1 ≤ i ≤ n, and a V D(k, u) where u =

∑
ui,

then there exists a V D(k,mn + u).

Naturally, the previous two theorems extend to more sophisticated appli-
cations of Wilson’s theorem. However, we content ourselves here with this
basic one.

6 Conclusion

MOLS and transversal designs have been extensively explored, and difficult
and elegant construction techniques have been found. POSLS and Room
cubes have not been attacked with the same success, or with the same dili-
gence. We believe that one reason for this is the difficulty of exploiting results
on transversal designs in the symmetric case. For this reason, we have intro-
duced villa designs (designs with many “rooms”), and shown that one of the
more powerful recursive techniques for MOLS, Wilson’s theorem, can now be
employed for a restricted class of sets of POSLS. The eventual value of this
“translation”, by embedding villa designs into transversal designs, remains
very much to be seen. Nevertheless, since examples of embeddable villa de-
signs, and a powerful recursive construction, have both been found here, we
expect that a study of Room cubes via this embedding approach will prove
fruitful.
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