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An analysis of NK landscapes: Interaction
structure, statistical properties and expected number

of local optima
Jeffrey Buzas and Jeffrey Dinitz

Abstract—Simulated landscapes have been used for decades to
evaluate search strategies whose goal is to find the landscape
location with maximum fitness. Understanding properties of
landscapes is important for understanding search difficulty. This
paper presents a novel and transparent characterization of NK
landscapes and derives an analytic expression representing the
expected number of local optima.

We prove that NK landscapes can be represented by para-
metric linear interaction models where model coefficients have
meaningful interpretations. We derive the statistical properties
of the model coefficients, providing insight into how the NK
algorithm parses importance to main effects and interactions. An
important insight derived from the linear model representation is
that the rank of the linear model defined by the NK algorithm is
correlated with the number of local optima, a strong determinant
of landscape complexity and search difficulty. We show that
the maximal rank for an NK landscape is achieved through
epistatic interactions that form partially balanced incomplete
block designs. Finally, an analytic expression representing the
expected number of local optima on the landscape is derived,
providing a way to quickly compute the expected number of
local optima for very large landscapes.

Index Terms—Balanced Incomplete Block Design, Orthant
Probability, Walsh function

I. INTRODUCTION

NKLANDSCAPES, defined over two decades ago,
continue to play an important role in the evalu-

ation of evolutionary search algorithms, and understanding
properties of landscapes is important for understanding search
difficulty. Applications of simulated landscapes include mod-
eling the capacity of enzymes to catalyze reactions or ligands
to bind to proteins, and the clinical effectiveness of medical
treatments [12], [4].
NK landscapes are defined by a straightforward, tunable

algorithm where N specifies the number of binary features
or loci and K the degree of epistatic interactions among the
loci [11]. NK landscapes are convenient because there are
only two tunable parameters (N and K), and yet they provide a
very rich set of landscapes. There is a large literature exploring
properties of NK landscapes, though there are few analytic
results, with [6] and [13] notable exceptions.

This paper provides a novel perspective on NK landscapes
and generalizations of NK landscapes, proving that these
landscapes can be characterized by parametric linear models
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comprised of main effects and interaction effects where the
model coefficients have meaningful interpretations. The NK
algorithm induces a statistical distribution on the paramet-
ric model coefficients. We derive the distribution of model
coefficients, showing how the NK algorithm, for K � N ,
automatically assigns the largest expected magnitude to main
effects, with the expected magnitude of interaction effects
typically decreasing with increasing order of interaction.

The linear model representation of the landscape suggests
that model rank should provide a measure of landscape com-
plexity. A simple method of assessing rank is provided, and we
determine conditions on N and K sufficient for the existence
of designs that achieve maximum rank. We then show that
the expected number of local optima is proportional to an
orthant probability, which can be calculated with reasonable
speed and accuracy for very large landscapes. Interestingly and
surprisingly, rank is both positively and negatively correlated
with the number of local optima. For fixed N , it is well-
known [5] that the number of local optima increases with K
(i.e. a positive correlation with landscape rank). We show that
when N and K are both fixed, there is a strong negative
correlation between rank and number of local optima for
classic NK landscapes. The statistical distribution of model
effect coefficients provides an explanation for this counter
intuitive phenomenon.

In related work, a proposal to use linear models with main
effects and interactions to construct landscapes was explored
in [16], [17] and [18]. These authors examined the effect of
epistatic interactions on the properties of landscapes using
metrics common in the experimental design literature, and they
noted the equivalence between Walsh function decompositions
and interaction models. An analysis of NK landscapes using
Walsh functions was given in [8].

II. GENERALIZED NK LANDSCAPES AND INTERACTION
MODELS

In this section we define the NK landscape and interaction
models. The models are represented as linear models in matrix
form, as this representation facilitates the study of model
properties. For simplicity, the model is first discussed for K
constant across loci. The model is then generalized to allow
varying K across loci.

A. NK landscapes
A general landscape is defined by a triple (χ, d, f) where

χ is a set of locations, d is a distance measure and f : χ→ R
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is a “fitness” function. NK landscapes are a map from
χ = ({0, 1})N to R where the fitness function f is built from
N binary loci and epistatic interactions formed between each
locus and K other loci where K can range from 0 to N − 1.

To describe NK landscapes more fully, for each k =
0, 1, . . . , 2N − 1 let xk ∈ ({0, 1})N represent k written in
base 2 and represented as a (binary) vector of length N . For
i = 1, . . . , N , let wi denote a 2K+1×1 vector of independent
random weights, where each component has mean µ/N and
variance σ2/N > 0 and otherwise arbitrary probability distri-
bution. Let fi(x) denote a function from ({0, 1})N → E2K+1

where E2K+1

denotes unit coordinate vectors in R2K+1

, i.e.
vectors of the form (0, 0, 1, 0, . . . , 0). The definition of the
function fi(x) depends on the epistatic interactions to the ith
locus. The function is defined explicitly below.

For k = 0, 1, . . . , 2N − 1, define pk =
∑N
i=1 fi(xk)wi.

Note that pk is the landscape fitness at location xk and that
E[pk] = µ and Var(pk) = σ2 as each pk is comprised of a
sum of N independent weights. The NK landscape is defined
by the fitness-location pairs (pk,xk) coupled with Hamming
distance.

B. Matrix representation of generalized NK landscapes

We begin by providing an explicit description for the
construction and representation of NK and generalized NK
landscapes as linear models in matrix form. For i = 1, . . . , N ,
let Vi = {i1, i2, . . . , iKi+1} where {i1, i2, . . . , iKi+1} ⊂
{1, 2, . . . , N} and i1 < i2 < · · · < iKi+1 with ij = i for some
j. Vi denotes the ith interaction set, comprised of locus i and
Ki loci that interact with locus i. Note that K isn’t restricted
to be constant across loci, and there are no restrictions on
the number of times locus i can appear in the interaction
sets. This represents a generalization of NK landscapes, with
the classic NK landscape occurring as the special case when
Ki ≡ K and each locus appears in exactly K + 1 interaction
sets. See [1], [2] and [21] for similar generalizations. An
additional generalization would be to not require locus i to
be a member of Vi. The results in this article would still hold
for this generalization.

With a slight abuse of notation, for each i write fi(x) =
fi(xi1 , . . . , xiKi+1

) where xi1 , . . . , xiKi+1
are the elements

of x corresponding to Vi. Thinking of {xi1 , . . . , xiKi+1
}

as a binary number, let ei(xi1 , . . . , xiKi+1
) be the decimal

representation of this number. Define the 1 × 2Ki+1 vector
fi(xi1 , . . . , xiKi+1

) = (0, . . . , 0, 1, 0, . . . , 0) where the 1 oc-
curs in column ei(xi1 , . . . , xiKi+1

)+1. Alternatively, if I2Ki+1

is the identity matrix of size 2Ki+1, then fi(xi1 , . . . , xiKi+1
)

is the (ei(xi1 , . . . , xiKi+1
) + 1)th row of I2Ki+1 .

To write the generalized NK model in matrix form, consider
the 1 × C vector f(x) = f1(x) | f2(x) | · · · | fN(x) where
C =

∑N
i=1 2Ki+1 and | denotes column concatenation. Define

the 2N × C model matrix

F =


f(x0)
f(x1)

...
f(x2N−1)

 . (1)

With this definition, the generalized NK landscape is p = Fw
where w = (w1

T | · · · | wN
T )T denotes the C × 1 vector of

independent random weights.
Example: To illustrate the definition of fi and the ma-

trix F , suppose N = 3, Ki = 1 for i = 1, 2, 3
and V1 = {1, 2}, V2 = {2, 3} and V3 = {1, 3}. A
generic location on the landscape is represented by x =
(x1, x2, x3) and the 23 locations are {x0,x1, . . . ,x7} =
{(0, 0, 0), (0, 0, 1), (0, 1, 0), . . . , (1, 1, 1)}. Then

f1(x1, x2) =


(1, 0, 0, 0) if x1 = 0, x2 = 0;
(0, 1, 0, 0) if x1 = 0, x2 = 1;
(0, 0, 1, 0) if x1 = 1, x2 = 0;
(0, 0, 0, 1) if x1 = 1, x2 = 1.

The functions f2(x2, x3) and f3(x1, x3) are defined similarly.
The matrix F is then

F =


f(x0)
f(x1)

...
f(x7)

 =


f1(0, 0) f2(0, 0) f3(0, 0)
f1(0, 0) f2(0, 1) f3(0, 1)
f1(0, 1) f2(1, 0) f3(0, 0)

...
...

...
f1(1, 1) f2(1, 1) f3(1, 1)



=



1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1


.

To our knowledge, NK landscapes have never been formal-
ized using the matrix representation given here. The rank of
F is a measure of the richness of the landscape, as it gives
the dimension of the domain for the vector p. We will show
that the rank of F is determined by N , {Ki}Ni=1 and the
structure of the interaction sets {Vi}Ni=1, and that using rank
as a measure of complexity provides refinement beyond using
only N and {Ki}Ni=1.

C. Interaction Model

Here we define the general form of parametric interaction
models, and in the next section relate them to NK landscapes.
Statisticians have long employed interaction models to study
the effects of multiple ‘treatments’ on an outcome, see for
example [14]. Interaction models are straightforward to define
and model parameters have meaningful interpretations. In
the evolutionary computing literature, these models seem to
have received little attention, with the exception of [16],[17]
and [18].

To define a general interaction model, for l = 1, . . . , L, let
Ul ⊂ {1, 2, . . . , N} and define x̃i = 2xi− 1 for i = 1, . . . , N
and where as before xi ∈ {0, 1}. Mathematical properties of
the interaction model and interpretation of model parameters
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are most easily obtained using the transformed values x̃i ∈
{−1, 1}.

The general form of an interaction model with L terms is

q(x̃) =

L∑
l=1

βUl

∏
j∈Ul

x̃j

where the β’s are coefficients that can take any value in R
and where we conform with the convention that when Ul = ∅,∏
j∈Ul

x̃j ≡ 1.

Example: Consider a model with N = 3 loci and U1 = ∅,
U2 = {1}, U3 = {2}, U4 = {3}, U5 = {1, 2}, U6 =
{1, 3}, U7 = {2, 3}. The interaction model is q(x̃) = β∅ +
β1x̃1 + β2x̃2 + β3x̃3 + β12x̃1x̃2 + β13x̃1x̃3 + β23x̃2x̃3. To
simplify notation, we write β1 instead of β{1} etc. In this
example, β1, β2 and β3 are main effects coefficients while
β12, β13 and β23 are two-loci interaction coefficients.

The intercept (β∅) and coefficients of the main effects
and interaction terms have meaningful interpretations. The
intercept coefficient represents the average of the fitness values
across the entire landscape. For the general interaction model,
it is not difficult to show that the main effect 2βi represents
the difference in fitness values when locus i is varied between
x̃i = 1 and x̃i = −1, averaged over the values of the
other N − 1 loci. 4βij represents the difference of differences
between fitness values for x̃i = 1 and x̃i = −1 when x̃j = 1
and x̃j = −1, averaged over all other x̃k for k 6= i, j. In
general, higher order interaction coefficients are interpreted
as average differences between lower order interactions. For
example, 8βijk represents the average difference in the two
factor interaction between loci i and j when x̃k = 1 and
x̃k = −1.

III. GENERALIZED NK LANDSCAPES AS INTERACTION
MODELS

Here we show that generalized NK landscapes can be
expressed as linear interaction models, and that the interactions
that are included in the model are completely determined by
the interaction sets Vi, i = 1, . . . , N . We also derive the
statistical properties of the interaction model coefficients and
show how to construct classic NK landscapes that maximize
the number of interaction terms.

Let 2Vi denote the power set for Vi, i.e. the set Vi and all
it’s subsets, including the empty set. Let T =

⋃N
i=1 2Vi , and

consider the interaction model

p(x̃) =
∑
U∈T

βU
∏
j∈U

x̃j . (2)

Evaluated at the 2N transformed values x̃1, . . . , x̃2N , the
model can be written in matrix notation as p = F̃ β where F̃
is an appropriately defined 2N ×L matrix, L is the number of
elements in T and β is an L×1 vector of coefficients. The ran-
dom vector β of main effects and interactions has distributional
properties dependent on the probability distribution of the
vector of weights w and the structure of the interaction sets Vi.
The distributional properties of β are studied in section III-A.

Note that the model defined in (2) always contains an intercept
and all main effects terms.

Example: Consider again the example in Section II-B,
where N = 3, Ki = 1 for i = 1, 2, 3 and V1 =
{1, 2}, V2 = {2, 3} and V3 = {1, 3}. Then T =
(∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}) and

F̃ =



1 −1 −1 −1 1 1 1
1 −1 −1 1 1 −1 −1
1 −1 1 −1 −1 −1 1
1 −1 1 1 −1 1 −1
1 1 −1 −1 −1 1 −1
1 1 −1 1 −1 −1 1
1 1 1 −1 1 −1 −1
1 1 1 1 1 1 1

 , β =


β∅
β1
β2
β3
β12
β23
β13

 .

The first column of F̃ corresponds to the intercept β∅, columns
two through four are for the main effects, and columns five
through seven are for the two loci interactions. Column five,
for example, corresponds to the interaction between loci 1 and
2, and is obtained by taking the product of the elements of
columns two and three, which correspond to the main effects
for loci 1 and 2.

The following proposition establishes that a generalized NK
landscape defined by interaction sets V1, . . . , VN is equivalent
to the interaction model given by (2), thereby clearly estab-
lishing the nonzero interaction effects induced by the NK
algorithm. The proof is given in the appendix.

Proposition 1. Let F denote the model matrix for the gen-
eralized NK landscape model defined in (1), and F̃ the
model matrix for the interaction model defined in (2). Then
C(F) = C(F̃) where C(·) denotes column space.

Equation (2) shows that the NK algorithm constructs an
interaction model in an interesting way. Note that the NK
algorithm dictates that the interaction model contain all sub-
interactions contained in higher order interactions. For exam-
ple, if an NK landscape has a fourth order interaction between
loci {1, 2, 3, 4}, then it also has the four third-order and six
second-order interactions defined by all subsets of size three
and two formed from the four interacting loci.

However, knowing which interactions have non-zero coef-
ficients is not sufficient to fully understand the structure of
NK landscapes. A complete understanding requires knowing
the statistical properties of the main effect and interaction
coefficients.

A. Induced properties of interaction model coefficients

While we have established that generalized NK landscapes
can be represented by interaction models and shown how the
epistatic interaction sets define the interaction terms included
in the model, additional insight into landscape properties
and a complete understanding of the representation requires
knowledge of the distributional properties of the interaction
model coefficients. This is addressed in the next proposition,
with proof given in the appendix.

Proposition 2. Consider a generalized NK landscape de-
fined by interaction sets V1, V2, . . . , VN and given by p =
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Fw = F̃ β with weight vector w where E[wi] = µ/N and
Var[wi] = σ2/N . For U ∈ T , let βU denote the coefficient of
the interaction term corresponding to U , and I(·) the indicator
function, i.e.

I(U ∈ 2Vi) =

{
0 if U 6∈ 2Vi ;
1 if U ∈ 2Vi .

Then
E [β∅] = µ

E [βU ] = 0, for U 6= ∅

Cov[βU , βU∗ ] = 0, for U 6= U∗

and

Var[βU ] =
σ2

N

N∑
i=1

2−(Ki+1)I(U ∈ 2Vi).

Some remarks are in order. First, if the weights w are
normally distributed, then the interaction model coefficients,
which are linear functions of w, are independent and normally
distributed with the indicated means and variances. For other
distributions on w, the exact distribution of the coefficients
is an often intractable convolution problem. However, as
both N and K increase, the central limit theorem can be
invoked to show that the coefficients will be approximately
normally distributed (contrast with approximate normality of
the fitnesses, which only requires N large). Regardless of the
distribution of w, the coefficients are uncorrelated.

For w normally distributed, E[|βU |] =
√

Var[βU ]2/π, i.e.
the expected magnitude of βU is proportional to it’s standard
deviation. More generally, the variance represents the expected
magnitude of the square of the coefficient (Var[βU ] = E[β2

U ]
for U 6= ∅). With this perspective, it is interesting to note
how the NK algorithm assigns importance (magnitude) to
the interaction terms. The expected squared magnitude of βU
depends on the frequency with which U ∈ 2Vi . Then for
the classic NK model where K is constant and K � N ,
main effects have the largest expected magnitude, second order
interactions would typically have larger expected magnitude
than third order interactions and so on. On the other hand,
when K = N − 1, all coefficients have the same expected
magnitude because each power set 2Vi contains main effects
and interactions of all orders.

When the coefficients are normally distributed, indepen-
dence of model coefficients means that, for example, knowing
the magnitude of a two loci interaction provides no informa-
tion on the magnitudes of the corresponding main effects of the
loci–the NK algorithm assigns magnitudes of the coefficients
completely independently.

The interaction model representation of a landscape with
binary loci is equivalent to the representation given by Walsh
functions [18]. While NK landscapes have been studied from
the perspective of Walsh functions [8], the above results
provide a transparent and explicit analysis of the Walsh coeffi-
cients for generalized NK landscapes, showing exactly which
Walsh coefficients are nonzero and the statistical properties
of these coefficients. For example, note that Theorems 4 and
5 in [8] follow immediately from the representation given in

equation (2).
An interesting property of generalized NK landscapes

gleaned from Propositions 1 and 2 is that two landscapes
defined by different interaction sets can lead to landscapes
with the same set of main effects and interactions, i.e.
identical matrices F̃ , but the variances of the coefficients
of the landscapes can be different, suggesting that the
properties of the resultant landscapes may also be differ-
ent. Consider, for example, the two landscapes defined by
the following interaction sets: V1A = {1, 2, 3, 4}, V2A =
{2, 3}, V3A = {1, 3}, V4A = {1, 3, 4}, V5A = {2, 5} and
V1B = {1, 4}, V2B = {1, 2, 3, 4}, V3B = {3}, V4B =
{4}, V5B = {2, 5}. Clearly TA =

⋃N
i=1 2ViA =

⋃N
i=1 2ViA =

TB so that the landscapes have identical column space, but by
Proposition 2, the variances of the terms are not all identical.
Consider, for example, the main effect for locus 1: From
Proposition 2, Var[β1A] = 7σ2/16N > Var[β1B ] = 5σ2/16N .

B. Rank of NK landscapes and maximal rank models

Here we show that the rank of the model matrix for an
NK landscape is determined by the interaction sets {Vi}Ni=1

that define the landscape. We derive the maximum achievable
rank and describe how interaction sets can be constructed to
maximize rank.

Proposition 3. rank(F̃) = M (T ) where M(·) denotes
counting measure and where T =

⋃N
i=1 2Vi .

Proof. The result follows immediately from noting that the
complete set of linear and interaction terms of all orders,
{1, x1, x2, . . . , xN , x1∗x2, . . . , xN−1∗xN , x1∗x2∗x3, . . . , x1∗
x2 ∗ · · · ∗ xN} comprise a Hadamard matrix, a linearly
independent set of (orthogonal) column vectors.

It follows from the proof of Proposition 3 that rank(F̃) ≡
[number of model interactions −(N +1)], i.e. model rank is a
one-to-one function of the total number of interactions in an
NK landscape.

The next results give an upper bound on the rank of an NK
landscape, and provide conditions under which maximal rank
designs exist for classic NK landscapes.

Proposition 4. For the classic NK landscape (K constant
across loci), max{rank(F̃)} ≤ min{2N , N2K+1+1−N(K+
1)} where the max is over all possible interaction sets {Vi}Ni=1

defining the landscape for fixed values of N and K.

Proof. The maximum rank occurs when there are no overlaps
in interactions between the inputs to the loci. In this case
each locus will contribute

∑K+1
j=2

(
K+1
j

)
= 2K+1 − (K + 2)

interactions of order two or higher. Summing over the N loci
and including the intercept and main effects terms gives the
result.

Proposition 4 begs the question as to when maximal rank
classic landscapes exist. Equation (2) shows that all classic
NK landscapes contain a main effect corresponding to each
loci. Then for both N and K fixed, maximizing rank is
equivalent to maximizing the number of interactions in the
model. From the proof of Proposition 4, it is evident that a
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necessary and sufficient condition is that each set Vi contain
unique pairs of loci, as this ensures no redundant two factor
interactions, and by extension no redundant higher order
interactions. We now give explicit cases when the maximum
rank given in Proposition 4 above can be achieved. The proof
of the following proposition is given in the appendix.

Proposition 5. There exist classic NK landscapes of maximal
rank for the following values of N and K.

1) K = 2 and all N ≥ 7.
2) K = 3 and all N ≥ 13.
3) K = 4 and all N ≥ 21 except possibly N = 22.
4) K = 5 and all N ≥ 31 except possibly N = 32, 33, 34.
5) K = 6 and all N ≥ 51.
6) K = 7 and N = 57, 64, 67, 69 and all N ≥ 71.
7) K = 8 and N = 73, 89 and all N ≥ 91.
8) K = 9 and N = 91 and all N ≥ 111.

It is not difficult to extend Proposition 5 to larger values of
K, and the approach for doing so is contained in the proof of
the result. It is worth noting, and not difficult to prove, that a
necessary condition for existence of maximal rank landscapes
is that N ≥ K2 +K + 1, because otherwise at least one pair
of loci must occur together in more than one set Vi.

Proposition 5 established the existence of maximum rank
NK landscapes. We now discuss the construction of these
landscapes, which is easily achieved through the use of what
we term NK difference sets. The combinatorial theory under-
lying these sets is detailed in the proof of Proposition 5 given
in the appendix. Table I provides the needed difference sets
for up to K = 9.

To construct a maximal rank classic NK landscape, recall
that an NK landscape is completely determined by it’s in-
teraction sets {Vi}Ni=1. Interaction sets resulting in maximal
rank designs are defined by incrementing the elements in the
difference sets by one (modulo N ) until N sets have been
defined. This process is illustrated in the following example.

Example: Consider constructing an NK landscape achiev-
ing maximum rank when N = 7 and K = 2. From Table
I, the NK difference set is {0, 1, 3}. Then define V1 =
{1, 2, 4}, V2 = {2, 3, 5}, V3 = {3, 4, 6}, V4 = {4, 5, 7}, V5 =
{5, 6, 1}, V6 = {6, 7, 2}, V7 = {7, 1, 3}. Note that increments
are modulo N , i.e. increments exceeding N “wrap around”.

TABLE I: NK difference sets used for constructing maximum
rank designs. The second column gives values of N such that
maximal NK landscapes exist.

K N NK Difference Set
2 N ≥ 7 {0, 1, 3}
3 N ≥ 13 {0, 1, 4, 6}
4 N ≥ 23 {0, 2, 7, 8, 11}
5 N ≥ 35 {0, 1, 4, 10, 12, 17}
6 N ≥ 51 {0, 1, 4, 10, 18, 23, 25}
7 N ≥ 71 {0, 4, 5, 17, 19, 25, 28, 35}
8 N ≥ 91 {0, 2, 10, 24, 25, 29, 36, 42, 45}
9 N ≥ 111 {0, 1, 6, 10, 23, 26, 34, 41, 53, 55}

The design constructed in the example is shown in Fig-

ure 1a. The ith column of the figure gives the elements in Vi.
Notice that no pair of loci appears together more than once
across columns. The landscape resulting from this design has
rank N2K+1+1−N(K+1) = 36, resulting from an intercept,
7 main effects, 21 two factor interactions and 7 three factor
interactions.

Contrast with Figure 1b which shows the design resulting
from choosing adjacent loci for the epistatic interactions. This
design has rank 29, resulting from an intercept, 7 main effects,
14 two factor interactions and 7 three factor interactions.

IV. NUMBER OF LOCAL OPTIMA

The number of local optima is perhaps the strongest measure
of landscape ruggedness and search difficulty [10], [19], [22].
For fixed N , it has been established empirically that the
number of local optima increase with K [5]. The result
is not surprising as increasing K increases the landscape
model rank by increasing both the number and order of
interactions defining the landscape. An unexplored question
is the association between the number of local optima and
landscape rank when N and K are both fixed.

We begin by providing an analytic expression for the
expected number of local optima on NK and generalized NK
landscapes.

Proposition 6. Consider a generalized NK landscape de-
fined by interaction sets V1, V2, . . . , VN and weight vector
w where the elements of w are independent normal random
variables with E[wi] = µ/N and Var[wi] = σ2/N . Then the
expected number of local optima on the landscape is given by
2NΦ(0; Σ) where

Φ(0; Σ) =

∫ ∞
0

∫ ∞
0

· · ·
∫ ∞

0

e−
1
2z

T Σ−1zdz1dz2 . . . dzN

and where Σ is an N × N symmetric matrix with elements
σij given by

σij =


2σ2

N

∑N
k=1 I(i ∈ Vk) if i = j;

σ2

N

(∑N
k=1 I(i ∈ Vk) +

∑N
k=1 I(j ∈ Vk)

−
∑N
k=1 I(i ∈ Vk or j ∈ Vk)

)
if i 6= j.

Proof. Let p∗ denote the fitness of a randomly selected lo-
cation on the landscape, and let p∗i denote the fitness one
hamming distance away obtained by flipping the value of
locus i. Let z = (p∗ − p∗1, p∗ − p∗2, . . . , p∗ − p∗N ) denote the
N × 1 vector of fitness differences. Then the probability that
the random location with fitness p∗ is a local optima is given
by the orthant probability Pr(z > 0), and the expected number
of local optima on the landscape is then 2NPr(z > 0). When w
is jointly normally distributed, it follows that z is multivariate
normal because it is a linear function of w. The mean of z
is clearly zero, and the variance matrix is straightforward to
derive and is given by Σ defined above. The derivation is
omitted. The orthant probability Pr(z > 0) is therefore given
by Φ(0; Σ).

Proposition 6 assumes w is multivariate normal. The utility
of this assumption is that the expected number of local optima
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(a) Maximal Rank Design

(b) Adjacent Loci Design

Fig. 1: Interaction sets for maximal and adjacent loci designs.

then depends on the multivariate normal orthant probability
Φ(0; Σ), allowing us to take advantage of the extensive and
decades long research on the numerical computation of mul-
tivariate normal probabilities (e.g. [7] and references therein).
We are then able to estimate the number of local optima for
very large landscapes without having to generate an actual
landscape and check individually whether each location is a

local optimum. Note the normality assumption implies that the
expected number of local optima is a function of only N and
Σ.

For arbitrary probability distributions for the weights w,
computation of the orthant probability Pr(z > 0) is typically
an intractable N dimensional integral. When the weights are
non-normal and N ,K are both large, the distribution of z
(see proof of Proposition 6) should be approximately normal
by the central limit theorem, and normal orthant probabilities
should then provide reasonable approximations to the expected
number of local optima.

To examine the utility of the analytic expression repre-
senting the expected number of local optima for weights
distributed other than normal, we performed a small simulation
study. For N = 15, 20 and K = 4, we generated landscapes
using interaction sets constructed from adjacent loci and where
the random weights w were generated from either the normal
(to provide a baseline), uniform or chi-squared distribution on
one degree of freedom (a highly skewed distribution). 100
landscapes were generated for the six combinations of N
and weight distribution. For each landscape, we counted the
number of local optima by brute force. Table II shows the
means and standard deviations of the number of local optima
and the expected number of local optima computed via the
normal orthant probability. Of course when the weights are
normally distributed, the empirical mean matches the expected
number of local optima to within a small fraction of a standard
deviation. The match was nearly as good for uniformly dis-
tributed weights. However, for the highly skewed chi-squared
distribution, the expected number of local optima computed
assuming normality well-overestimated the empirical mean.
Simulations for other values of N and K produced similar
results (not shown).

TABLE II: Empirical study of the number of local optima.
Table entries are mean number of local optima with standard
deviations in parentheses computed from 100 simulated land-
scapes with K = 4.

Expected Normal Uniform Chi-square
N = 15 121 121 (19) 123 (22) 92 (21)
N = 20 599 612 (141) 619 (141) 444 (100)

An empirical study was done to explore the relation between
landscape rank and the number of local optima for both classic
and generalized NK landscapes. For each combination of
N = 25, 50, 100 and K = 1, 2, . . . , 7, we first generated
interaction sets for 20 classic NK landscapes. For each value
of N and K, maximal rank landscapes were generated when
they were known to exist, and an adjacent loci interaction
design was also generated. Additional classic NK landscapes
were generated by randomly selecting an N ×N latin square
using the methods in [9] and then randomly selecting K + 1
rows from the latin square. The resulting N columns of K+1
elements comprise the N interaction sets that define a classic
NK landscape. For each landscape, the rank and the expected
number of local optima were computed. Multivariate normal
orthant probabilities representing the expected number of local
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optima were computed using the "mvtnorm" package in the
R computing environment, see [7].

As seen in Figure 2, there is a strong positive association
between the expected number of local optima and land-
scape rank for fixed N and increasing K. To two decimal
places, the correlations in Figure 2 for N = 25, 50, 100
are each 0.98 with respective 95% confidence intervals
(0.97, 0.99); (0.97, 0.99); (0.97, 0.98). Figure 3 provides ad-
ditional resolution with separate plots for K = 3, 4, 5 when
N = 50, showing very strong negative correlation between
rank and the number of local optima when N and K are both
fixed. To two decimal places, the correlations for K = 3, 4, 5
are each -1.00 with the upper endpoints for 95% confidence
intervals each ≤ −0.99 (computed on the non-log scale).
Results for N = 25 and 100 were similar. Note that landscapes
computed using adjacent loci to define interaction sets resulted
in landscapes with significantly lower rank and larger expected
number of local optima than randomly chosen landscapes.

The strong negative correlation seen in Figure 3 is perhaps
surprising. Recall that landscape rank is equivalent to the
number of terms in the interaction model representation, so
that larger rank corresponds to more interaction terms. It is
well known that landscapes with main effects but no interac-
tions have only a single peak. It would seem that additional
interaction terms would translate on average to more rugged
landscapes, but this is not the case when N and K are both
fixed.

This phenomenon is explained, at least partially, by noting
that when Proposition 2 is applied to any maximal design for
an NK landscape, it follows that main effects have variance
(K + 1)2−(K+1)σ2/N and interactions of all orders have
variance 2−(K+1)σ2/N giving a ratio of (K + 1)/1, demon-
strating that main effects can have considerably more influence
than interactions in maximal designs. This observation would
clearly extend to designs that are nearly maximal. Conversely,
for an adjacent loci design, the variation is spread more
equitably among main effects and interactions. For example,
applying Proposition 2, the ratio of variances for a main effect
and two factor interaction is (K + 1)/K for the adjacent loci
design.

Note also from Proposition 2 that for fixed N and K, the
variance of the main effects and the sum of the variances
of interaction coefficients is constant for all classic NK
landscapes, i.e. these quantities do not vary regardless of how
the interaction sets are defined. It follows that for fixed N
and K, designs that increase the number of interaction terms
must have a decreased average variance for the interaction
terms. In other words, additional model complexity achieved
through the addition of interaction terms is necessarily offset
by a reduction in their expected magnitude.

Additional simulations were done to assess the relation
between rank and number of local optima for generalized
NK landscapes. To construct generalized NK landscapes, we
kept the sizes of the interaction sets Vi constant for a given

landscape, but did not restrict the number of times that locus
i could appear in the interaction sets Vj for i 6= j (for classic
NK landscapes, locus i appears in exactly K interaction sets
Vj for i 6= j).

We randomly generated 20 generalized NK landscapes for
each combination of N = 25, 50, 100 and K = 1, 2, . . . , 7.
A strong positive association is again seen between rank and
expected number of local optima as K varies with N fixed,
see Figure 4. To two decimal places, the correlations and 95%
confidence intervals in Figure 4 for N = 25, 50, 100 are re-
spectively 0.99 (0.98,0.99); 0.98 (0.98,0.99); 0.98 (0.98,0.99).

However, the additional resolution provided by Figure 5
shows a weak positive association between landscape rank
and expected number of local optima. Much of the strength
of the association is driven by the maximal design, and if
the data point for the maximal design is left out, there is no
statistically significant correlation between rank and expected
number of local peaks for generalized NK landscapes for N
and K both fixed. To two decimal places, the correlations for
K = 3, 4, 5 in figure 5 are are respectively (95% confidence in-
tervals in parentheses) 0.57 (0.17,0.81); 0.81 (0.57, 0.92); 0.71
(0.39,0.88). . An explanation for the correlation in Figure 5 is
that for generalized NK landscapes the expected magnitude
of main and interaction effects can vary, and it is possible to
have expected magnitudes for a subset of interactions larger
than those for a subset of main effects.

V. CONCLUSION

Representation of NK landscapes as linear models in matrix
form provides a transparent connection to parametric linear
interaction models, and provides a straightforward means for
deriving the statistical properties of interaction model coeffi-
cients induced by the NK landscape algorithm. The interaction
model representation coupled with distributional properties of
model coefficients provides new insights into properties of NK
landscapes. Expressing the expected number of local optima as
a multivariate normal orthant probability provides additional
insight into aspects of NK landscapes that affect the number
of local optima, and also allows for quick computation of the
expected number of local optima.

The gaps in the data points seen in the horizontal axes
of Figure 4 and Figure 5 represent gaps in the ranks of
NK landscape models and clearly illustrate that classic NK
landscapes only represent a small subset of possible interaction
designs, see also [8] for a similar observation. While our
definition of generalized NK landscapes would fill in some
of the gaps, the definition still requires that lower order
interactions that are contained in higher order interactions
appear in the model.

The representation of NK landscapes as interaction models
immediately suggests a more general definition that allows for
main effects and interactions of any order to appear together
without restriction. Such landscapes could be constructed with
any rank ranging from 1 to 2N , and main effect and interaction
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Fig. 2: Classic NK landscapes: Expected number of local optima versus landscape rank (on log-log scale) for K=1 to 7. ? ≡
maximal rank design, N ≡ adjacent loci design, ◦ ≡ random design. Colors indicate different values for K.

coefficients could be generated with arbitrary variances and
correlation structures. In this vein, [16] defined a class of
tunable landscapes allowing general interaction structures and
studied the performance of GA on these landscapes.

Using arguments similar to those in Section IV, it is not
difficult to show that for a general interaction model with
normally distributed coefficients, the expected number of local
optima is represented by a normal orthant probability that
depends entirely on the variance/covariance matrix of the
vector of fitness differences. However, it is not obvious how
to select interactions and assign variances to coefficients that
will result in landscapes with large numbers of local peaks, or
more generally that are difficult to search. There are few results
regarding the size of normal orthant probabilities as a function
of properties of the variance/covariance matrix, though [20]
provide potentially useful results in this context.

An analysis of properties of multiobjective NK landscapes,
including the structure of Pareto optimal sets, is given in [23].
It seems possible to extend the methods for computing the
expected number of local optima given in this article to find
the probability that a landscape location is Pareto optimal in
the multi-objective case.

Characterizing the search difficulty of landscapes is itself

difficult [15], and the number of local optima is an imperfect
determinant of search difficulty [10], [15]. For example, the
needle-in-a-haystack landscape, which can be represented as
a parametric interaction model containing all possible inter-
actions where the magnitudes of all main and interactions
effects are equal, has equal fitness values at all locations with
the exception of a single peak which can only be found by
guessing. This illustrates that models with many interactions
can exhibit a high degree of neutrality (changing location does
not result in a change of fitness). While the maximal rank
designs for fixed N and K had smaller expected number of
local optima, they may posses other attributes that affect search
difficulty.

An attractive feature of the NK algorithm is that a very
rich set of landscapes can be generated with only two tuning
parameters. Whether a procedure with comparable simplicity
can be developed for constructing a more general class of
interaction models that are difficult to search is an area for
future research.

APPENDIX
PROOF OF PROPOSITIONS 1, 2 AND 5

The following is a proof of Proposition 1.
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Fig. 3: Classic NK landscapes: Expected number of local optima (on log scale) versus landscape rank for N = 50, K=3,4,5.
? ≡ maximal rank design, N ≡ adjacent loci design, ◦ ≡ random design.

Proof. We first construct a matrix representation for the inter-
action model. For the ith locus, let Si,1(x̃) denote the vector of
covariates corresponding to the inputs for locus i. For example,
if V1 = {1, 4, 6, 9}, then S1,1 = (x1, x4, x6, x9). Note that
there are Ki+1 elements in Si,1. More generally, let Si,m(x̃)
denote the set of

(
Ki+1
m

)
m-order interactions for the inputs

of locus i. For i = 1, . . . N , define the 1 × 2Ki+1 vector
f̃i(x) = (1, Si,1, Si,2, . . . , Si,(K+1)), and note that f̃i(·) can
take 2Ki+1 different values.

Consider the 1×C vector f̃(x) = {f̃1(x), f̃2(x), . . . , f̃N(x)}
where C =

∑N
i=1 2Ki+1. Define the 2N × C model matrix

F̃ ∗ =


f̃(x1)

f̃(x2)
...

f̃(x2N)

 . (3)

Note that F̃ ∗ 6= F̃ but clearly C(F̃ ∗) = C(F̃ ) as F̃ ∗

is comprised of all the columns in F̃ with some columns
repeated. F̃ ∗ is an overparameterized version of F̃ , and in
the following we show that C(F̃ ∗) = C(F ).

The proof uses two basic results. First, suppose two matrices
have the same column space. Choose l rows from the first

matrix and form a new matrix by expanding this matrix by row
concatenating each of the l rows j times. The same operations
are applied to the second matrix, that is the corresponding
l rows from the second matrix are repeated j times. The
expanded matrices are then easily seen to have the same
column space. The second result is that if C(Al) = C(Bl) for
l = 1, . . . N then C(A) = C(B) where A = A1 | A2 | · · · | AN
and B = B1 | B2 | · · · | BN and where | denotes column
concatenation.

Let yi = (xi, xi1 , . . . , xiKi
) and let yi,1,yi,2, . . . ,yi,2Ki+1

be the binary ordering of yi. Define

ãi =


f̃i(yi,1)

f̃i(yi,2)
...

f̃i(yi,2K+1)

 , ai =


fi(yi,1)
fi(yi,2)

...
fi(yi,2K+1)

 .

Then C(ai) = C(ãi) as ãi is a 2Ki+1×2Ki+1 full rank matrix,
and ai is the 2Ki+1× 2Ki+1 identity matrix. Next, let Fi and
F̃ ∗i denote columns

∑i−1
l=1 2Kl+1 +1 to

∑i
l=1 2Kl+1 of F and

F̃ ∗ respectively. Note Fi and F̃ ∗i are obtained from ai and ãi
by repeating rows of these matrices. Then by the first result
described at the start of the proof, C(Fi) = C(F̃∗i ).
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Fig. 4: Generalized NK landscapes: Expected number of local optima versus landscape rank (on log-log scale) for K=1 to 7.
? ≡ maximal rank design, ◦ ≡ random design. Colors indicate different values for K.

Finally, the result follows from the fact that F̃ ∗ = F̃ ∗1 | F̃ ∗2 |
· · · | F̃ ∗N and F = F1 | F2 | · · · | FN .

The following is the proof of Proposition 2.

Proof. Note that 2Nβ∅ = 1T F̃ β = 1TFw and the expectation
of the RHS is easily seen to be 2Nµ from which it follows
that E[β∅] = µ. Let F̃[k] denote the kth column of F̃ and
βU[k]

the corresponding interaction model coefficient. Then
for k > 1, E[βU[k]

] = E[F̃T[k]F̃ β] = E[F̃T[k]Fw] = 0 where
the last equality follows from 1T F̃[k] = 0 whenever k > 1.

To obtain the variance/covariance results, note that F̃ β =
Fw implies

β = 2−N F̃TFw

where we use the fact that the columns of F̃ are orthogonal,
each with norm 2N . Then

Var[β] = 2−2N F̃TFFT F̃ × Var[w] =
σ22−2N

N
F̃TFFT F̃ .

To evaluate F̃TF , let fi,j represent the jth column of Fi
where Fi represents the submatrix of F corresponding to the
interaction set Vi (columns

∑i−1
l=1 2Kl+1 + 1 to

∑i
l=1 2Kl+1

of F ). Then it is not difficult to show that

F̃T
[k]fi,j = h(i, j, k)2N−(Ki+1) (4)

where the function h(i, j, k) ∈ {−1, 1} when U[k] ∈
2Vi and zero otherwise (h(i, j, k) is defined explicitly be-
low), and where U[k] denotes the interaction term cor-
responding to F̃[k]. Let gk

T denote the kth row of
F̃TF . Then it follows from the identity above that
gk

Tgk =
∑N
i=1 2Ki+1

(
2N−(Ki+1)

)2
I(U[k] ∈ 2Vk) =∑N

i=1 22N−(Ki+1)I(U[k] ∈ 2Vk), and then that

Var[βU[k]
] =

σ2

N

(
1

2N

)2 N∑
i=1

22N−(Ki+1)I(U[k] ∈ 2Vi)

=
σ2

N

N∑
i=1

2−(Ki+1)I(U[k] ∈ 2Vi).

Finally, the covariance result will follow provided the rows
of F̃TF are orthogonal. We first define the function h(i, j, k)
appearing in (4). For j = 1, . . . , 2Ki+1, let e−1

i (j − 1) denote
the 1 × 2Ki+1 vector representation of j − 1 as a binary
number. The elements of e−1

i (j − 1), from left to right,
correspond to values for {xi1 , xi2 , . . . , xiKi+1

}, compare to
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Fig. 5: Generalized NK landscapes: Expected number of local optima (on log scale) versus landscape rank for N = 50,
K=3,4,5. ? ≡ maximal rank design, ◦ ≡ random design.

the definition of ei(·) in Section II-B. Define h(i, j, k) =
I(U[k] ∈ 2Vi)

∏
U[k]

2(e−1
i (j − 1) − 1) where the right hand

side represents the product of the values of the elements of
e−1
i (j − 1) corresponding to the loci in U[k]. For k = 1, we

have U[k] = U[1] = ∅, and then define h(i, j, 1) = 1 for all
i, j.

Example: Consider again the example in Section II-B, where
N = 3, Ki = 1 for i = 1, 2, 3 and V1 = {1, 2}, V2 = {2, 3}
and V3 = {1, 3}. The interaction model is p = β∅ + β1x̃1 +
β2x̃2 + β3x̃3 + β12x̃1x̃2 + β13x̃1x̃3 + β23x̃2x̃3.

For i = 1, j = 3, e−1
1 (3 − 1) = (1, 0). Then for k = 2,

U[2] = {1} and h(1, 3, 2) = 1. For k = 3, U[3] = {2} and
h(1, 3, 3) = −1. For k = 5, U[5] = {1, 2} and h(1, 3, 5) =
1 × −1 = −1. For k = 6, U[6] = {1, 3}, U[6] 6∈ 2V1 and
h(1, j, 6) = 0 for j = 1 to 4.

The inner product of row k and l of F̃TF is

N∑
i=1

2Ki+1∑
j=1

F̃T
[k]fi,jF̃

T
[l]fi,j =

N∑
i=1

22N−2(Ki+1)
2Ki+1∑
j=1

h(i, j, k)h(i, j, l).

Note that
∑2Ki+1

j=1 h(i, j, k)h(i, j, l) = 0 for all i follows from
orthogonality of F̃[k] and F̃[l]. Therefore the rows of F̃TF
are orthogonal, and it follows that Cov(βU , βU∗) = 0 for U 6=
U∗.

The following is a proof of Proposition 5. In proving
Proposition 5, we also define and demonstrate the properties
of the NK difference sets used to construct maximum rank
designs.

We begin with the notion of a packing design or just
packing for short. These are variants of well-known objects
from combinatorial design theory, see [3]; for completeness
we give the definition here.

A (N,κ)−packing design, consists of a set S on N elements
(called ”points”) and a collection of subsets of S (called the
”blocks”) all of size κ = K + 1 with the property that
each pair of points in S is contained in at most one of the
blocks. To obtain an NK landscape of maximum rank, one
can use the points and the blocks of a (N,κ) packing design
to construct the N interaction sets defining the landscape. The
next theorem gives this connection.

Proposition 7. If there exists an (N,κ) packing design, then
there exists a classic NK landscape with N loci and K =
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κ− 1 which achieves maximum rank.

Proof. As noted in the proof of Proposition 4, maximal rank
designs will occur when each pair of loci occurs at most once.
The existence of a (N,κ = K + 1) packing design ensures
that there are no redundant two factor interactions in the NK
interaction set specification, and by extension no redundant
interactions of order greater than two. Hence a NK landscape
of maximal possible rank will result.

In order to construct NK landscapes via Proposition 7 we
must construct (N,κ) packing designs. Constructing (N,κ)
packing designs is made easier by employing so called differ-
ence methods from combinatorial design theory. Let Zn be the
integers modulo n, so Zn = {0, 1, 2, . . . n− 1} with addition
modulo n. Define an (N,κ) difference set in ZN to be a subset
D = {x1, x2, . . . , xκ} ⊆ ZN of size κ with the property that
the list of all differences xi−xj (where xi, xj ∈ D and i 6= j)
contains each nonzero element at most one time.

An example of a (8, 3) difference set is D = {0, 1, 3}. Note
that in Z8, 1 − 0 = 1, 0 − 1 = 7, 3 − 0 = 3, 0 − 3 =
5, 3− 1 = 2, and 1− 3 = 6 and hence all of the differences
are different as required.

We can use a (N,κ) difference set in ZN to construct an
(N,κ) packing design and thus via Proposition 7 we will have
constructed a classic NK landscape with N loci and K = κ−1
which achieves maximum rank. The construction is given in
the next proposition.

Proposition 8. If there exists an (N,κ)−difference set in ZN ,
then there exists an (N,κ) packing design.

Proof. Let D = {x1, x2, . . . , xκ} be an (N,κ) difference set
in ZN . For g ∈ ZN define D+g = {x1+g, x2+g, . . . , xκ+g}.
D + g is called a translate of D. We claim the set of all
translates of D (namely {D + g : g ∈ ZN}) form the blocks
of an (N,κ) packing design. First note that there are exactly
N of these translates (one for each element in ZN ) and also
note that there are N points (the elements of ZN ). We must
show that any pair of elements a, b ∈ ZN that a and b are in at
most one of the translates of D. Assume to the contrary that the
pair {a, b} occurs in two of the translates, say {a, b} ⊆ D+p
and {a, b} ⊆ D + q where p 6= q are both elements of ZN .
Then a = xi + p and b = xj + p for some i and j and
also a = xk + q and b = xm + q for some k and m. Hence
a − b = xi − xj = xk − xm. From the difference property
of D this implies that i = k and j = m which in turn says
that p = q, a contradiction. Hence we have shown that the n
translates of an (N,κ) difference set in ZN give the blocks of
an (N,κ) packing design.
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