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ON NONISOMORPHIC ROOM SQUARES

J. H. DINITZ AND D. R. STINSON

Abstract. Let NR(j) denote the number of nonisomorphic Room squares of side s.

We prove that for i sufficiently large, NR(j) > exp(cs-) for some absolute constant

c. More precisely, NR(.v) > .19exp(.04s2) for s » 153 odd; and NR(s) »

.19exp(.09i2) for i » 1001 odd.

I. Introduction. Let s be a positive odd integer, and let S be a set of size s + 1. A

Room square of side s is an s by s array, R, which satisfies the following properties:

(0) each cell of R either is empty or contains an unordered pair of elements

(symbols) of S,

(1) every symbol occurs in precisely one cell of each row and column of R,

(2) every unordered pair of symbols occurs in precisely one cell of R.

Room squares have appeared in the literature as early as 1850 (see Kirkman [5]).

They have been studied extensively since the 1960s, and the existence question was

solved in 1974 by Mullin and Wallis [8]. We state their result as

Theorem 1.1. There exists a Room square of side s if and only if s is an odd positive

integer other than 3 or 5.

For i = 1,2, let /?, be a Room square of side s based on the symbol set S,, and let

<t>: S] — S2 be a bijection. Rf is defined to be the Room square based on symbol set

52, in which x is replaced by $(*) for all x G Sx. We say that /?, and R2 aré

isomorphic Room squares if there exists some <b such that R2 can be obtained from

Rf by permutations of rows and columns. It is clear that isomorphism is an

equivalence relation. It is thus natural to ask how many nonisomorphic Room

squares exist for each side s. We will denote this quantity by NR(í). We are able to

show that NR(,î) > exp(c$2) for some absolute constant c, so that clearly NR(j)

grows extremely rapidly.

The transpose of a Room square R is the Room square RT obtained by interchang-

ing the roles of the rows and columns of R. Two Room squares Rx and R2 are

equivalent if /?, is isomorphic to either of R2 or R\ (this also clearly yields an

equivalence relation). The number of inequivalent Room squares will be denoted by

IR^s). The following lemma is immediate.

Lemma 1.2. IR(s) s* ̂ NR(í)
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176 J.H  DINITZANDD. R. STINSON

We note that strict inequality will hold if there exists a Room square of side s

which is isomorphic to its transpose. However, our lower bounds for NR(j) provide

bounds for lR(s) as well.

The question of determining the number of nonisomorphic designs of a given type

has been studied for several types of designs: Steiner triple systems (see [15]), Steiner

quadruple systems [4], and one-factorizations of complete graphs [1 and 7]. In [6],

Lindner establishes that IR(^) is very large for certain s, but our paper provides the

first proof that NR(i) > 1 for all but a finite number of sides s.

The number of inequivalent and nonisomorphic Room squares of side 7 was

determined exactly in [3 and 14].

2. A recursive construction. We obtain our lower bounds on NR(j) by using a

recursive construction for Room squares based on group divisible designs. A group

divisible design (GDD) is a triple (X, §,&) which satisfies:

(0) A1 is a finite set (elements of which are called points), and <? and & are sets of

nonempty subsets of X (elements of Q are called groups and elements of & are called

blocks),

(1) § is a partition of X,

(2) every block has size at least two, and the groups and blocks together contain

every unordered pair of points exactly once.

A transversal design (or TD(/c, «)) is a GDD with \X\= kn, having k groups of

size «, and n2 blocks of size k. It is well known that a TD(k, «) is equivalent to a set

of k — 2 mutually orthogonal Latin squares of order «.

Our recursive construction starts with a suitable transversal design, replaces each

block by an array called a frame, and then replaces each group by a Room square.

Let Xbe a set, and let {5,, S2,...,Sr) be a partition of X. An {S,, S2,...,Sr)-frame

is a square array F of size | A"|, with rows and columns indexed by X, which satisfies:

(0) every cell of F either is empty or contains an unordered pair of symbols of X,

(1) for every /', L«f,i <r, the cells of F(s, s'), with {s, s'} G S¡, are empty (these

empty cells are called holes),

(2) each symbol of X\S¡ occurs in precisely one cell of each row and each column

5 £ S¡ of F,

(3) the pairs occurring in F are precisely those [s, s'} with (s, s') G X2\ U(r=, S2.

Suppose R is a Room square of side í on symbol set S U {oo} (| 51 = s ). Index the

rows and columns of R so that {oo, 5} occurs in cell (s, s) for each s G S. If the

contents of these cells are deleted, an {{s}: s G S}-frame is formed. Conversely,

given such a frame, one can "complete" it to a Room square by filling in the holes

(i.e. cells (s, s)), appropriately.

The type of an (S,,.. .,5r}-frame is the multiset {|S,| : 1 < /' < r). We will use the

notation 1''2'2 • • • to describe the type of frame where there are precisely î, S-'s of

size i (i > 1). Thus the above discussion demonstrates that a Room square of side í

is equivalent to a frame of type 1*.

The following two frames are essential ingredients in our recursive construction.

Lemma 2.1. There exist frames of type l9 and 183'.
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NONISOMORPHIC ROOM SQUARES 177

Proof. A frame of type l9 is equivalent to a Room square of side 9, which exists

by Theorem 1.1. The frame of type l9 in Figure 1 was given by Beaman and Wallis

in [2]. The frame of type 183' was found by the first author and is presented in

Figure 2. Both frames were found by the use of the computer.

Figure 1. A frame of type l9
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Figure 2. A frame of type ls3'
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Let (X, §, ($,) be a TD(9, «), where § = {G,: 1 < i < 9}, and let W G G9. Denote

t =| W\. Define a function S, with domain X, by

S(x) =
x ifxGX\W,

{xt: 1 ̂ /<3}     if* E W.
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178 J. H  DINITZ AND D. R  STINSON

For every A G 6£, let FA be any (S^x): x G ^}-frame. (Such a frame is of type l9

or l83'.)ThenF = UAeij FA is a { Uxec S(x): 1 *£ ii< 9}-frameof type«8(« + 2i)'

by [11, Construction 2.2], Now, we complete F to a Room square of side 9« + 2t.

Let oo E UxexS(x), and place a Room square, on symbol set {oo} U ( U K6G 5(a:))

in the hole of F induced by Uvec S(x), for 1 < i < 9. The resultant array is a

Room square by [12, Theorem 3.1]. We summarize this as

Lemma 2.2. Suppose there is a TD(9, «), with n odd, and 0 < t < «. // /Aere e\x«?

Room squares of sides n and n + 2t, then there exists a Room square of side 9« + 2t.

Our basic method is as follows. We construct a large number of distinct Room

squares on a specified symbol set. We can obtain a naive upper bound on the

number of Room squares isomorphic to a given Room square. The quotient of these

two quantities provides a lower bound on the number of nonisomorphic Room

squares. This is done in the next section.

3; A bound. We first prove that there are many distinct frames of the types l9 and

183' (on fixed symbol sets).

Lemma 3.1. There are at least 9! distinct frames of type l9, on a fixed symbol set.

Proof. The frame F9 of Figure 1 is an {{/}: 1 =£ / < 9}-frame. For n a permuta-

tion of {1,2,... ,9}, let F9" be the frame defined by F9[l(Yl(t), Yl(j)) = {IT(¿), 11(0}

where F9(i, j) = {s, t). It is easily seen that F9U is also a {{/}: 1 < i < 9}-frame. We

show that the 9! permutations of {1,2,... ,9} give rise to distinct frames.

Suppose that F9n = F$. Then, clearly F9"*~' = F9. Thus, it suffices to show that

F9n ^ F9 for all IT. This can be established with only a moderate amount of

case-work.

If F(i, j) is nonempty, then F(Yl(i), Yl(j)) must be nonempty. Thus, there are

only 36 possibilities for {11(0, n( ;')}, determined by the filled cells of F9. We let

/ = 1, / = 3, and consider each case.

All cases are handled similarly. We give an example. Suppose (11(1), 11(3)) = (2,7).

Then {11(4), 11(9)} = {3, 4} = F9(2, 7). If 11(4) = 4 and 11(9) = 3, then

F(I1(4), 11(9)) = F(4,3) must be empty. It is not, so we have a contradiction. Thus,

suppose 11(4) = 3 and 11(9) = 4. Then {3,11(7)} = (11(4), 11(7)} = F(II(9), 11(5))
= F(4,11(5)). Since F(4,2) = {3,6}, we have 11(5) = 2 and LT(7) = 6. Then
F(I1(4), 11(7)) = F(3,6) must be empty. It is not, so we have a contradiction in this

case as well.

The other cases are handled similarly.

Lemma 3.2. There are at least 8!(3!)3 distinct frames of type 8'3', on a fixed symbol

set.

Proof. We start with the {{1,2,3}, {/'}: 4 =s i « ll}-frame Fxx presented in

Figure 2. Let a and ß be permutations of {1,2,3} and let II be a permutation of

(1,2,...,11} such that (11(1), 11(2), 11(3)} = {1,2,3}. Define the frame F,a/n as

follows:

for4 < i,j < 11, Fxa^n(U(i), IK;)) = {11(0,11(0};
for 1 *£ i « 3, 4 <j< 11, F,V-n(a(0, H(;)) = [U(s), 11(0};
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and for 4 < i < 11, 1 <j < 3, Fxaxm(U(i), ß(j)) = {rr(s), Yl(t)}, where, in each

case Fu(i, j) = {s, t}. It is easily shown that each F,a,^n thus constructed is a

{{1,2,3}, {/'}: 4 < z < ll}-frame. We assert that the (3!)38! frames thus produced

are distinct.

Again, it suffices to show that F"xß-n ¥" Fxx for any a, ß, II. Consider F,,(7,5) =

{8,11}. Then F^-n(U(7), Yl(5)) = {(8), n(ll)}. Now 11(5), 11(7), 11(8), 11(11) E

{4,5,..., 11} so we see from Fu that {11(8), 11(11)} = {8,11}, {9,10}, {4,7} or

{5,6}. These four cases are easily disposed of, as in Lemma 3.1, proving the result.

Theorem 3.3. Suppose there exists a TD(9, «), with « odd and 0 < / < ». Then

there are at least

(9ï)<"-'>" . (g! (3!)3)"' • (2(«!)2)8 • 2((« + 200*

distinct Room squares of side 9« + 2t, on a fixed symbol set.

Proof. We apply Lemma 2.2. In the construction of the Room square of side

9« + 2r, there are (« — t)n blocks which miss W, each of which correspond to a

frame of type l9. The remaining tn blocks correspond to a frame of type 183'. We

thus obtain (9!)("~')"(8!(3!)3)'" distinct frames of type «8(« + 20'-

Now we fill in the holes of this frame. Let R be any Room squares of side «, by

permuting rows and columns of R, and transposing (i.e. interchanging the function

of rows and columns), we can obtain 2(«!)2 distinct Room squares of side «. We fill

in eight Room squares of side « and one of side « + 2t; so each frame can be

completed in at least (2(«!)2)82((« + 2O02 ways.

It is easily seen that all the Room squares obtained by this construction are

distinct.

Corollary 3.4. Suppose there exists a TD(9, «) and 9« =£ s < 11, where « and s

are odd. Then

(9')"229(«')18

NR(0 ^-K   '  t        -•
((11«)!) (11« + 1)!

Proof. First, write 5 = 9« + 2t, where 0 =s t < «. We divide the lower bound for

the number of distinct Room squares of side s obtained in Theorem 3.3 by the

number of possible distinct Room squares isomorphic to a given Room square of

side 5. This number can be at most ((9« + 2t)\)2(9n + 2t + 1)! (allowing permuta-

tions of rows, columns and symbols). Thus,

x     (9!)("">"(8!(3!)3)'"(2(«!)2)82((« + 20!)2
NR(i) = NR(9« + 20 > }—L

((9n + 2t)l) (9n + 2t + 1)!

(9!)" 29(«!)'

((11«)!)2(11«+ 1)!'

We examine the behavior of the above quantity with the following version of

Stirlings's formula (see [9]).
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Lemma 3.5. «!= (277«)'/2(«/e)"e°» where 1/(12« + 1) < a„ < 1/12«.

Theorem 3.6. Suppose there is a TD(9, « ) and 9« < s < 11« where n and s are odd.

Then

NR(i) > c ■ expi«2ln(9!) - 15«ln(«) - (33In 11 - 15)« + y ln(«)),

where c = (22V5/(9 • 113))'/2.

Proof. From Corollary 3.4, we have

29 • (9M«2 • («')'8NR(s)>        l   >"—K-^—
((11«)!)3(11«+1)

^       29(9!)" (2^n)\n/e)^e
>8"    l8/(l2n+l)

(227T«)3/2(ll«A)33"e3/(12l""(ll«+ 1)

29(9!)"2(27r«)9(«/e)'8,'

>(227r«)3/2(ll«/e)33"- 12«

)29     _15 \ >/2

(Lemma 3.5)

/ 229  tt15 \ i n        \
=    -r\     exp «2ln(9!) - 15«ln(«) - (33 In 11 - 15)« + y ln(«)  .

The above bound is dependent upon the existence of certain transversal designs.

The following result is well known.

Lemma 3.7. Let « have prime power factorization trpf. If k *£ 1 + minfp"'}, then

there exists a TD(k, n).

One can then prove the following by use of the above lemma and a simple

arithmetic argument (see [13]).

Corollary 3.8. If s ^ 153, then there is a positive integer «, with 9« < 5 < 11«,

such that a TD(9, « ) exists.

Elementary calculus shows that the bound of Corollary 3.6 is an increasing

function of « (for « > 9, for example). Thus we have

Theorem 3.9. For s > 153 odd,

NR(i) > c • exp( -^ ln(9!) - ^s\n(s) + ( || - ]f ln(l l))s + f bu»),

where c = (22V5/(9 • 1116))1/2 > .19.

Corollary 3.10. (1) For s > 153, s odd, NR(j) > .19eM'2 > 1.

(2) Fors > 1001, s odd, NR(í) > .19e 09i2.

(3) NR(1001) > 1040850.

4. Summary and remarks. We have shown that the number of nonisomorphic (and

inequivalent) Room squares grows extremely rapidly. The techniques in this paper

are quite general. A similar argument involving group-divisible designs could be

used, for example, to show that the number of nonisomorphic (v, k, 1) balanced

incomplete block designs approaches infinity as v approaches infinity.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



nonisomorphic room squares 181

References

1. B. A. Anderson, M. M. Barge and D. Morse, A recursive construction of asymmetric 1 -factorizations,

Aequationes Math. 15 (1977), 201-211.

2. I. R. Beaman and W. D. Wallis, A skew Room square of side 9, Utilitas Math. 8 (1975), 382.

3. K. B. Gross, Equivalence of Room designs. I and II, J. Combin. Theory Ser. A 16 (1974), 264-265;

17(1974), 299-316.
4. A. Hartman, Counting quadruple systems, Congr. Numer. 33 (1981), 45-54.

5. T. P. Kirkman, Note on an unanswered prize question, Cambridge and Dublin Math. J. 5 (1850),

255-262.

6. C. C. Lindner, An algebraic construction for Room squares, SIAM J. Appl. Math. 22 (1972), 574-579.

7. C. C. Lindner, E. Mendelsohn and A. Rosa, On the number of 1 -factorizations of the complete graph,

J. Combin. Theory Ser. B 20 (1976), 265-282.
8. R. C. Mullin and W. D. Wallis, The existence of Room squares, Aequationes Math. 13 (1975), 1-7.

9. H. Robbins, Stirlings formula, Amer. Math. Monthly 62 (1955), 26-29.
10. A. Rosa, Room squares generalized, Ann. Discrete Math. 8 (1980), 43-57.

11. D. R. Stinson, Some constructions for frames. Room squares, and subsquares, Ars. Combin. 12 (1981),

229-268.

12._Some results concerning frames. Room squares, and subsquares, J. Austral. Math. Soc. Ser. A

31(1981), 376-384.

13._, The existence of Howell designs of odd side, J. Combin. Theory Ser. A 32 (1982), 53-65.

14. W. D. Wallis, A. P. Street and J. S. Wallis, Combinatorics: Room squares, sum-free sets, Hadamard

matrices. Lecture Notes in Math., Springer-Verlag, Berlin, 1972.

15. R. M. Wilson, Nonisomorphic Steiner triple systems. Math. Z. 135 (1974), 303-313.

Department of Mathematics, University of Vermont, Burlington, Vermont 05405

Department of Computer Science, University of Manitoba, Winnepeg, Manitoba, R3T 2N2

Canada

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


