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Abstract

In this note, we give a complete solution of the existence of orthogonal generalized equitable
rectangles, which was raised as an open problem in [4].
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1 Introduction

A latin square of order t is a t× t array defined on t symbols such that every symbol occurs exactly
once in each row and exactly once in each column. Two latin squares of order t, say A = (ai,j) and
B = (bi,j), are orthogonal if the t2 pairs (ai,j , bi,j), 1 ≤ i ≤ t, 1 ≤ j ≤ t, are distinct.

Suppose r ≤ t. An r × t latin rectangle is an r × t array defined on t symbols such that every
symbol occurs exactly once in each row and at most once in each column. Two r×t latin rectangles,
say A = (ai,j) and B = (bi,j), are orthogonal if the rt pairs (ai,j, bi,j), 1 ≤ i ≤ r, 1 ≤ j ≤ t, are
distinct. It is easy to see that orthogonal t × t rectangles are the same as orthogonal latin squares
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of order t. Orthogonal latin squares and orthogonal latin rectangles are well-studied combinatorial
objects (see, e.g., [1]).

Stinson introduced orthogonal equitable rectangles in a recent paper [4]. Orthogonal equitable
rectangles were motivated by a cryptographic application described in [3]. In fact, orthogonal
equitable rectangles are a natural variation of orthogonal latin rectangles. An open question in
[4] asked for necessary and sufficient conditions for the existence of a certain generalization of
orthogonal equitable rectangles, which we define now.

Suppose r, t, s1, s2 are positive integers such that rt = s1s2. Orthogonal generalized equitable
rectangles (OGER) are defined to be two r × t rectangles, say A and B, satisfying the following
properties:

1. A = (ai,j) is defined on a set S1 of s1 symbols and B = (bi,j) is defined on a set S2 of s2

symbols, where s1s2 = rt.

2. A is equitable on rows and equitable on columns: each of the s1 symbols in S1 appears ⌈ t
s1
⌉

or ⌊ t
s1
⌋ times in every row of A, and ⌈ r

s1
⌉ or ⌊ r

s1
⌋ times in every column in A.

3. B is equitable on rows and equitable on columns: each of the s2 symbols in S2 appears ⌈ t
s2
⌉

or ⌊ t
s2
⌋ times in every row, and ⌈ r

s2
⌉ or ⌊ r

s2
⌋ times in every column in B.

4. A and B are orthogonal: the rt pairs (ai,j , bi,j), 1 ≤ i ≤ r, 1 ≤ j ≤ t are all distinct.

We denote A and B as (r, t; s1, s2)-OGER.

Example 1.1 A (2, 6; 3, 4)-OGER:

1 1 2 2 3 3

2 2 3 3 1 1

1 2 1 2 3 4

3 4 2 1 4 3

An (r, t; s1, s2)-OGER is a generalization of a pair of orthogonal equitable rectangles, which are
discussed in [4]. In fact, an (r, t; r, t)-OGER is the same thing as a pair of orthogonal equitable
r × t rectangles. Furthermore, an (r, r; r, r)-OGER is just a pair of orthogonal latin squares of size
r.

Stinson [4] gave an almost complete solution for the existence of orthogonal equitable rectangles.
His solution only had a few possible exceptions, which were subsequently removed by Guo and Ge
[2]. The following theorem summarizes these existence results.

Theorem 1.2 There exists an (r, t; r, t)-OGER (i.e., a pair of orthogonal equitable r×t rectangles)
if and only if (r, t) 6∈ {(2, 2), (2, 3), (3, 4), (6, 6)}.

When {r, t} 6= {s1, s2}, orthogonal generalized equitable rectangles have no obvious crypto-
graphic applications. However, their construction is a natural and interesting new problem in
combinatorial designs. This problem at first glance seems difficult due to its generality: r, t, s1, s2

can be any positive integers that satisfy the equation rt = s1s2. Despite the generality of the
problem, we are able to completely solve it, using the result of Theorem 1.2 as a starting point, by
applying three recursive constructions and three constructions of OGERs for individual parameter
sets. The resulting solution is remarkably short.

2



2 Main Theorem

In this section, we prove our main theorem. We begin by stating two lemmas that indicate some
“symmetric” properties of OGERs.

Lemma 2.1 The following are equivalent:

• an (r, t; s1, s2)-OGER,

• an (r, t; s2, s1)-OGER,

• a (t, r; s1, s2)-OGER, and

• a (t, r; s2, s1)-OGER.

Lemma 2.2 There exists an (r, t; s1, s2)-OGER if and only if there exists an (s1, s2; r, t)-OGER.

Proof. Suppose A = (ai,j) and B = (bi,j), where 1 ≤ i ≤ r, 1 ≤ j ≤ t, form an (r, t; s1, s2)-OGER.
Construct two s1 × s2 rectangles A′ = (a′m,n) and B′ = (b′m,n), where a′m,n = i and b′m,n = j if and
only if (ai,j, bi,j) = (m,n). It is readily verified that A′ and B′ form an (s1, s2; r, t)-OGER.

We will make essential use of the Kronecker product. Let C = (ci,j) be an r1 × t1 array, and let
D = (di,j) be an r2 × t2 array. Define an r1r2 × t1t2 array E = C

⊗
D = (ei,j), where

ei,j = (cn,q, dm,p), for i = nr2 + m, j = qt2 + p, 0 ≤ m < r2, 0 ≤ p < t2.

E is the Kronecker product of C and D.
We now present the three recursive constructions we use.

Construction 2.3 If there exists a (c, b; c, b)-OGER and a (d, a; a, d)-OGER, then there exists a
(cd, ab; ac, bd)-OGER.

Proof. We begin with two OGERs. The first is a (c, b; c, b)-OGER consisting of rectangles C and
D and the second is a (d, a; a, d)-OGER consisting of rectangles E and F . Now let A = C

⊗
E

and B = D
⊗

F . We prove that A and B are the desired (cd, ab; ac, bd)-OGER.
For the ith row of A, where i = nd + m, the elements are (cn,q, em,p), 0 ≤ q < b, 0 ≤ p < a.

Since each symbol in C appears ⌈ b
c
⌉ or ⌊ b

c
⌋ times in a row and each symbol appears exactly once

in a row of E, each pair of the symbols appears ⌈ b
c
⌉ or ⌊ b

c
⌋ times in a row of A. In a similar way

we can check that conditions 2 and 3 of the definition are satisfied. Finally, it is straightforward to
prove that A and B are orthogonal.

Construction 2.4 If there exists an (m,n;n,m)-OGER, where (m,n) 6= (1, 1), then there exists
an (2m, 3n; 2n, 3m)-OGER.

Proof. First, suppose that n ≥ 2. Suppose A = (ai,j) and B = (bi,j), where 1 ≤ i ≤ m, 1 ≤ j ≤ n,
are an (m,n;n,m)-OGER. Let A1, A2 be two copies of A using two different symbol sets and let
B1, B2, B3 be three copies of B using three different symbol sets. For an m × n matrix X = (xi,j),
let X1 = (xi,j), where 1 ≤ i ≤ m, 1 ≤ j ≤ ⌈n

3
⌉, X2 = (xi,j), where 1 ≤ i ≤ m, ⌈n

3
⌉ + 1 ≤ j ≤ 2⌈n

3
⌉,

and the remainder of X as X3. Observe that X1 and X2 always have the same width. X3 has the
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same width as X1 and X2 when n ≡ 0 mod 3; when n 6≡ 0 mod 3, X3 is narrower than both X1

and X2.
Construct two 2m × 3n matrices C and D as follows:

C =
A1 A2 A1

A2 A2
1
, A3

1
, A1

1
A2

D =
B1

1
, B2

2
, B3

3
B1

2
, B2

3
, B3

1
B1

3
, B2

1
, B3

2

B1
3
, B2

1
, B3

2
B2

3
, B3

1
, B1

2
B1

1
, B2

2
, B3

3

In the above diagram, commas indicate matrices that are placed side by side.
It is easy to see that C and D form an (2m, 3n; 2n, 3m)-OGER. The only tricky part is to check

the alignment of the following subarrays of D (these subarrays will not be perfectly aligned when
n 6≡ 0 mod 3):

B2
3
, B3

1

B3

1
, B1

2

The important point is that there is no overlap of the two occurrences of B3

1
.

When n = 1, the construction given above does not work. But this does not cause any difficul-
ties. Note that the hypotheses require that m > 1 when n = 1. Using the fact that an (m, 1; 1,m)-
OGER is equivalent to a (1,m;m, 1)-OGER (Lemma 2.1), we can construct a (2, 3m; 2m, 3)-OGER
by the method described above. By Lemma 2.2, this is equivalent to a (2m, 3; 2, 3m)-OGER.

Similarly, we have the following construction.

Construction 2.5 If there exists an (m,n;n,m)-OGER, where (m,n) 6= (1, 1), then there exists
an (3m, 4n; 3n, 4m)-OGER.

Proof. Suppose A = (ai,j) and B = (bi,j), where 1 ≤ i ≤ m, 1 ≤ j ≤ n, are an (m,n;n,m)-OGER.
Let A1, A2, A3 be three copies of A using three different symbol sets and let B1, B2, B3, B4 be four
copies of B using four different symbol sets. For an m×n matrix X = (xi,j), denote X = X1X2X3

as in the proof of Construction 2.4.
Construct two 3m × 4n rectangles C and D as follows:

C =

A1 A2 A3 A1

A1
2
, A3

2
, A2

2
A3 A1 A2

A2
3
, A3

3
, A1

3
A1 A2 A3

D =

B1

1
, B2

2
, B3

3
B1

2
, B2

3
, B3

4
B1

3
, B2

4
, B3

1
B1

4
, B2

1
, B3

2

B1
3
, B3

1
, B2

4
B1

4
, B2

1
, B3

2
B1

2
, B2

3
, B3

4
B1

1
, B2

2
, B3

3

B2
2
, B3

3
, B1

1
B1

3
, B2

4
, B3

1
B1

4
, B2

1
, B3

2
B1

2
, B2

3
, B3

4

It is simple to show that C and D form an (3m, 4n; 3n, 4m)-OGER. As in the proof of Lemma 2.4,
there are certain subarrays of D that are not perfectly aligned when n 6≡ 0 mod 3:

B2

2
, B3

3

B3
1
, B2

4

B3
3
, B1

1

It is easy to check that there is no overlap of the two occurrences of B3

3
, nor is there an overlap of

B3

1
and B1

1
.

The case n = 1 is handled as in Construction 2.4.

4



Example 2.6 We illustrate the application of Construction 2.5 with m = 1, n = 4. The following
arrays A and B form a (1, 4; 4, 1)-OGER:

A = 1 2 3 4 B = 1 1 1 1

Then A1, A2, B1 and B2 have width 2, while A3 and B3 are empty.
We construct C and D, which form a (3, 16; 12, 4)-OGER;

C =

1 2 3 4 5 6 7 8 9 a b c 1 2 3 4

5 6 7 8 9 a b c 1 2 3 4 5 6 7 8

b c 9 a 1 2 3 4 5 6 7 8 9 a b c

D =

1 1 2 2 2 2 3 3 3 3 4 4 4 4 1 1

3 3 4 4 4 4 1 1 2 2 3 3 1 1 2 2

2 2 1 1 3 3 4 4 4 4 1 1 2 2 3 3

Construction 2.7 There exist a (6, 6; 4, 9)-OGER, a (6, 12; 8, 9)-OGER and a (12, 12; 9, 16)-OGER.

Proof. These three OGERs are each constructed using a similar technique. For positive integers r
and s, define c = lcm(r, s)/r. Then define an r × c array Dr,s having entries di,j = jr + i mod s,
0 ≤ j ≤ c − 1, 0 ≤ i ≤ r − 1. Suppose that c|t, and define Er,t,s to consist of t/c copies of Dr,s

placed side by side.
Next, suppose that π ∈ (Zr)

t and construct π(Er,t,s) from Er,t,s by rotating column j of Er,t,s

upwards cyclically by π(j) positions, for j = 0, . . . , t − 1.
It can be verified that the following arrays form the desired OGERs:

• π(E6,6,4) and π(E6,6,9), where π = (0, 0, 1, 1, 2, 2).

• π(E6,12,8) and π(E6,12,9), where π = (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2).

• π(E12,12,9) and π(E12,12,16), where π = (0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3).

Example 2.8 We illustrate the construction of a (6, 6; 4, 9)-OGER. First, we depict E6,6,4 and
E6,6,9:

0 2 0 2 0 2

1 3 1 3 1 3

2 0 2 0 2 0

3 1 3 1 3 1

0 2 0 2 0 2

1 3 1 3 1 3

0 6 3 0 6 3

1 7 4 1 7 4

2 8 5 2 8 5

3 0 6 3 0 6

4 1 7 4 1 7

5 2 8 5 2 8
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It is not hard to verify that these arrays are orthogonal, and each of them is equitable on columns.
Now apply the column rotations specified by π to these two arrays:

0 2 1 3 2 0

1 3 2 0 3 1

2 0 3 1 0 2

3 1 0 2 1 3

0 2 1 3 0 2

1 3 0 2 1 3

0 6 4 1 8 5

1 7 5 2 0 6

2 8 6 3 1 7

3 0 7 4 2 8

4 1 8 5 6 3

5 2 3 0 7 4

It can be verified that the resulting arrays are now orthogonal, equitable on rows and equitable on
columns. Therefore we have a (6, 6; 4, 9)-OGER.

At this point, we are in a position to prove our main result.

Theorem 2.9 Suppose r, t, s1 and s2 are positive integers such that rt = s1s2. Then there exists
an (r, t; s1, s2)-OGER if and only if (r, t; s1, s2) 6∈ {(2, 2; 2, 2), (2, 3; 2, 3), (3, 4; 3, 4), (6, 6; 6, 6)}.

Proof. Let b = gcd(t, s2), a = t/b, d = s2/b and c = r/d. Then gcd(a, d) = 1. It is clear that a, b
and d are integers; we prove now that c is also an integer. Since rt = s1s2, we have

c =
r

d
=

rt

dt
=

s1s2

dt
=

s1bd

dba
=

s1

a
.

On the other hand,
s1d

a
=

s1db

ab
=

s1s2

ab
=

s1s2

t
= r

is an integer. From the fact that gcd(a, d) = 1, it follows that c = s1/a is an integer.
Therefore we have that (r, t; s1, s2) = (cd, ab; ac, bd), where a, b, c and d are positive integers.

By Construction 2.3, if there exist a (c, b; c, b)-OGER and a (d, a; a, d)-OGER, then there exists an
(r, t; s1, s2)-OGER. So we just need to consider the exceptions from Theorem 1.2.

We consider three cases, as follows.

1. There is a (c, b; c, b)-OGER, where c and b are not both equal to one, but a (d, a; a, d)-
OGER does not exist. For (d, a; a, d) = (2, 2; 2, 2) or (6, 6; 6, 6), the designs are constructed
in Theorem 1.2. For (d, a; a, d) = (2, 3; 3, 2) or (3, 4; 4, 3), the designs are constructed in
Constructions 2.4 and 2.5.

2. There is a (d, a; a, d)-OGER, where d and a are not both equal to one, but a (c, b; c, b)-OGER
does not exist. This is equivalent to case 1, by Lemma 2.1.

3. Both (c, b; c, b)-OGER and (d, a; a, d)-OGER do not exist. When one of the missing OGERs
is of type (2, 2; 2, 2) or (6, 6; 6, 6), then the designs are constructed in Theorem 1.2. So we just
need to consider the exceptions (2, 3; 2, 3) and (3, 4; 3, 4). Using Lemmas 2.2 and 2.1, there are
three types of OGERs that we need to construct: (6, 6; 4, 9), (6, 12; 8, 9), and (12, 12; 9, 16).
These were handled in Construction 2.7.
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