On orthogonal generalized equitable rectangles

H. Cao*
Department of Mathematics and Computer Science
Nanjing Normal University
Nanjing 210097, Jiangsu, P.R. China
caohaitao@njnu.edu.cn
J. Dinitz
Department of Mathematics and Statistics
University of Vermont
Burlington VT 05405, U.S.A.
Jeff.Dinitz@uvm.edu
D. R. Stinson ${ }^{\dagger}$
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, ON, N2L 3G1, Canada
dstinson@uwaterloo.ca
D. Kreher
Department of Mathematics
Michigan Technological University
Houghton, MI 49931-1295, USA
kreher@math.mtu.edu
R. Wei ${ }^{\ddagger}$
Department of Computer Science
Lakehead University
Thunder Bay ON, P7B 5E1, Canada
rwei@lakeheadu.ca

July 31, 2008

Abstract

In this note, we give a complete solution of the existence of orthogonal generalized equitable rectangles, which was raised as an open problem in [4].

Key words: orthogonal latin squares, orthogonal equitable rectangles,

1 Introduction

A latin square of order t is a $t \times t$ array defined on t symbols such that every symbol occurs exactly once in each row and exactly once in each column. Two latin squares of order t, say $A=\left(a_{i, j}\right)$ and $B=\left(b_{i, j}\right)$, are orthogonal if the t^{2} pairs $\left(a_{i, j}, b_{i, j}\right), 1 \leq i \leq t, 1 \leq j \leq t$, are distinct.

Suppose $r \leq t$. An $r \times t$ latin rectangle is an $r \times t$ array defined on t symbols such that every symbol occurs exactly once in each row and at most once in each column. Two $r \times t$ latin rectangles, say $A=\left(a_{i, j}\right)$ and $B=\left(b_{i, j}\right)$, are orthogonal if the $r t$ pairs $\left(a_{i, j}, b_{i, j}\right), 1 \leq i \leq r, 1 \leq j \leq t$, are distinct. It is easy to see that orthogonal $t \times t$ rectangles are the same as orthogonal latin squares

[^0]of order t. Orthogonal latin squares and orthogonal latin rectangles are well-studied combinatorial objects (see, e.g., [1]).

Stinson introduced orthogonal equitable rectangles in a recent paper [4]. Orthogonal equitable rectangles were motivated by a cryptographic application described in [3]. In fact, orthogonal equitable rectangles are a natural variation of orthogonal latin rectangles. An open question in [4] asked for necessary and sufficient conditions for the existence of a certain generalization of orthogonal equitable rectangles, which we define now.

Suppose r, t, s_{1}, s_{2} are positive integers such that $r t=s_{1} s_{2}$. Orthogonal generalized equitable rectangles (OGER) are defined to be two $r \times t$ rectangles, say A and B, satisfying the following properties:

1. $A=\left(a_{i, j}\right)$ is defined on a set S_{1} of s_{1} symbols and $B=\left(b_{i, j}\right)$ is defined on a set S_{2} of s_{2} symbols, where $s_{1} s_{2}=r t$.
2. A is equitable on rows and equitable on columns: each of the s_{1} symbols in S_{1} appears $\left\lceil\frac{t}{s_{1}}\right\rceil$ or $\left\lfloor\frac{t}{s_{1}}\right\rfloor$ times in every row of A, and $\left\lceil\frac{r}{s_{1}}\right\rceil$ or $\left\lfloor\frac{r}{s_{1}}\right\rfloor$ times in every column in A.
3. B is equitable on rows and equitable on columns: each of the s_{2} symbols in S_{2} appears $\left\lceil\frac{t}{s_{2}}\right\rceil$ or $\left\lfloor\frac{t}{s_{2}}\right\rfloor$ times in every row, and $\left\lceil\frac{r}{s_{2}}\right\rceil$ or $\left\lfloor\frac{r}{s_{2}}\right\rfloor$ times in every column in B.
4. A and B are orthogonal: the $r t$ pairs $\left(a_{i, j}, b_{i, j}\right), 1 \leq i \leq r, 1 \leq j \leq t$ are all distinct.

We denote A and B as $\left(r, t ; s_{1}, s_{2}\right)$-OGER.
Example 1.1 $A(2,6 ; 3,4)-O G E R$:

1	1	2	2	3	3
2	2	3	3	1	1

1	2	1	2	3	4
3	4	2	1	4	3

An $\left(r, t ; s_{1}, s_{2}\right)$-OGER is a generalization of a pair of orthogonal equitable rectangles, which are discussed in [4]. In fact, an ($r, t ; r, t)$-OGER is the same thing as a pair of orthogonal equitable $r \times t$ rectangles. Furthermore, an $(r, r ; r, r)$-OGER is just a pair of orthogonal latin squares of size r.

Stinson [4] gave an almost complete solution for the existence of orthogonal equitable rectangles. His solution only had a few possible exceptions, which were subsequently removed by Guo and Ge [2]. The following theorem summarizes these existence results.

Theorem 1.2 There exists an ($r, t ; r, t)-O G E R$ (i.e., a pair of orthogonal equitable $r \times t$ rectangles) if and only if $(r, t) \notin\{(2,2),(2,3),(3,4),(6,6)\}$.

When $\{r, t\} \neq\left\{s_{1}, s_{2}\right\}$, orthogonal generalized equitable rectangles have no obvious cryptographic applications. However, their construction is a natural and interesting new problem in combinatorial designs. This problem at first glance seems difficult due to its generality: r, t, s_{1}, s_{2} can be any positive integers that satisfy the equation $r t=s_{1} s_{2}$. Despite the generality of the problem, we are able to completely solve it, using the result of Theorem 1.2 as a starting point, by applying three recursive constructions and three constructions of OGERs for individual parameter sets. The resulting solution is remarkably short.

2 Main Theorem

In this section, we prove our main theorem. We begin by stating two lemmas that indicate some "symmetric" properties of OGERs.

Lemma 2.1 The following are equivalent:

- an ($\left.r, t ; s_{1}, s_{2}\right)-O G E R$,
- an $\left(r, t ; s_{2}, s_{1}\right)$-OGER,
- $a\left(t, r ; s_{1}, s_{2}\right)-O G E R$, and
- $a\left(t, r ; s_{2}, s_{1}\right)-O G E R$.

Lemma 2.2 There exists an $\left(r, t ; s_{1}, s_{2}\right)$-OGER if and only if there exists an $\left(s_{1}, s_{2} ; r, t\right)$-OGER.
Proof. Suppose $A=\left(a_{i, j}\right)$ and $B=\left(b_{i, j}\right)$, where $1 \leq i \leq r, 1 \leq j \leq t$, form an $\left(r, t ; s_{1}, s_{2}\right)$-OGER. Construct two $s_{1} \times s_{2}$ rectangles $A^{\prime}=\left(a_{m, n}^{\prime}\right)$ and $B^{\prime}=\left(b_{m, n}^{\prime}\right)$, where $a_{m, n}^{\prime}=i$ and $b_{m, n}^{\prime}=j$ if and only if $\left(a_{i, j}, b_{i, j}\right)=(m, n)$. It is readily verified that A^{\prime} and B^{\prime} form an $\left(s_{1}, s_{2} ; r, t\right)$-OGER.

We will make essential use of the Kronecker product. Let $C=\left(c_{i, j}\right)$ be an $r_{1} \times t_{1}$ array, and let $D=\left(d_{i, j}\right)$ be an $r_{2} \times t_{2}$ array. Define an $r_{1} r_{2} \times t_{1} t_{2}$ array $E=C \otimes D=\left(e_{i, j}\right)$, where

$$
e_{i, j}=\left(c_{n, q}, d_{m, p}\right), \text { for } i=n r_{2}+m, j=q t_{2}+p, 0 \leq m<r_{2}, 0 \leq p<t_{2} .
$$

E is the Kronecker product of C and D.
We now present the three recursive constructions we use.
Construction 2.3 If there exists $a(c, b ; c, b)-O G E R$ and $a(d, a ; a, d)-O G E R$, then there exists a ($c d, a b ; a c, b d)-O G E R$.

Proof. We begin with two OGERs. The first is a $(c, b ; c, b)$-OGER consisting of rectangles C and D and the second is a $(d, a ; a, d)$-OGER consisting of rectangles E and F. Now let $A=C \otimes E$ and $B=D \otimes F$. We prove that A and B are the desired ($c d, a b ; a c, b d)$-OGER.

For the i th row of A, where $i=n d+m$, the elements are ($c_{n, q}, e_{m, p}$), $0 \leq q<b, 0 \leq p<a$. Since each symbol in C appears $\left\lceil\frac{b}{c}\right\rceil$ or $\left\lfloor\frac{b}{c}\right\rfloor$ times in a row and each symbol appears exactly once in a row of E, each pair of the symbols appears $\left\lceil\frac{b}{c}\right\rceil$ or $\left\lfloor\frac{b}{c}\right\rfloor$ times in a row of A. In a similar way we can check that conditions 2 and 3 of the definition are satisfied. Finally, it is straightforward to prove that A and B are orthogonal.

Construction 2.4 If there exists an ($m, n ; n, m$)-OGER, where $(m, n) \neq(1,1)$, then there exists an ($2 m, 3 n ; 2 n, 3 m$)-OGER.

Proof. First, suppose that $n \geq 2$. Suppose $A=\left(a_{i, j}\right)$ and $B=\left(b_{i, j}\right)$, where $1 \leq i \leq m, 1 \leq j \leq n$, are an ($m, n ; n, m$)-OGER. Let A_{1}, A_{2} be two copies of A using two different symbol sets and let B_{1}, B_{2}, B_{3} be three copies of B using three different symbol sets. For an $m \times n$ matrix $X=\left(x_{i, j}\right)$, let $X^{1}=\left(x_{i, j}\right)$, where $1 \leq i \leq m, 1 \leq j \leq\left\lceil\frac{n}{3}\right\rceil, X^{2}=\left(x_{i, j}\right)$, where $1 \leq i \leq m,\left\lceil\frac{n}{3}\right\rceil+1 \leq j \leq 2\left\lceil\frac{n}{3}\right\rceil$, and the remainder of X as X^{3}. Observe that X^{1} and X^{2} always have the same width. X^{3} has the
same width as X^{1} and X^{2} when $n \equiv 0 \bmod 3 ;$ when $n \not \equiv 0 \bmod 3, X^{3}$ is narrower than both X^{1} and X^{2}.

Construct two $2 m \times 3 n$ matrices C and D as follows:

$$
C=\begin{array}{|c|c|c|}
\hline A_{1} & A_{2} & A_{1} \\
\hline A_{2} & A_{1}^{2}, A_{1}^{3}, A_{1}^{1} & A_{2} \\
\hline
\end{array} \quad D=\begin{array}{|c|c|c|}
\hline B_{1}^{1}, B_{2}^{2}, B_{3}^{3} & B_{2}^{1}, B_{3}^{2}, B_{1}^{3} & B_{3}^{1}, B_{1}^{2}, B_{2}^{3} \\
\hline B_{3}^{1}, B_{1}^{2}, B_{2}^{3} & B_{3}^{2}, B_{1}^{3}, B_{2}^{1} & B_{1}^{1}, B_{2}^{2}, B_{3}^{3} \\
\hline
\end{array}
$$

In the above diagram, commas indicate matrices that are placed side by side.
It is easy to see that C and D form an $(2 m, 3 n ; 2 n, 3 m)$-OGER. The only tricky part is to check the alignment of the following subarrays of D (these subarrays will not be perfectly aligned when $n \not \equiv 0 \bmod 3)$:

B_{3}^{2}, B_{1}^{3}
B_{1}^{3}, B_{2}^{1}

The important point is that there is no overlap of the two occurrences of B_{1}^{3}.
When $n=1$, the construction given above does not work. But this does not cause any difficulties. Note that the hypotheses require that $m>1$ when $n=1$. Using the fact that an $(m, 1 ; 1, m)$ OGER is equivalent to a $(1, m ; m, 1)$-OGER (Lemma 2.1), we can construct a $(2,3 m ; 2 m, 3)$-OGER by the method described above. By Lemma 2.2 , this is equivalent to a $(2 m, 3 ; 2,3 m)$-OGER.

Similarly, we have the following construction.
Construction 2.5 If there exists an ($m, n ; n, m$)-OGER, where $(m, n) \neq(1,1)$, then there exists an ($3 m, 4 n ; 3 n, 4 m$)-OGER.

Proof. Suppose $A=\left(a_{i, j}\right)$ and $B=\left(b_{i, j}\right)$, where $1 \leq i \leq m, 1 \leq j \leq n$, are an $(m, n ; n, m)$-OGER. Let A_{1}, A_{2}, A_{3} be three copies of A using three different symbol sets and let $B_{1}, B_{2}, B_{3}, B_{4}$ be four copies of B using four different symbol sets. For an $m \times n$ matrix $X=\left(x_{i, j}\right)$, denote $X=X^{1} X^{2} X^{3}$ as in the proof of Construction 2.4.

Construct two $3 m \times 4 n$ rectangles C and D as follows:

$C=$| A_{1} | A_{2} | A_{3} | A_{1} |
| :---: | :---: | :---: | :---: |
| $A_{2}^{1}, A_{2}^{3}, A_{2}^{2}$ | A_{3} | A_{1} | A_{2} |
| $A_{3}^{2}, A_{3}^{3}, A_{3}^{1}$ | A_{1} | A_{2} | A_{3} |

$D=$| $B_{1}^{1}, B_{2}^{2}, B_{3}^{3}$ | $B_{2}^{1}, B_{3}^{2}, B_{4}^{3}$ | $B_{3}^{1}, B_{4}^{2}, B_{1}^{3}$ | $B_{4}^{1}, B_{1}^{2}, B_{2}^{3}$ |
| :--- | :--- | :--- | :--- |
| $B_{3}^{1}, B_{1}^{3}, B_{4}^{2}$ | $B_{4}^{1}, B_{1}^{2}, B_{2}^{3}$ | $B_{2}^{1}, B_{3}^{2}, B_{4}^{3}$ | $B_{1}^{1}, B_{2}^{2}, B_{3}^{3}$ |
| $B_{2}^{2}, B_{3}^{3}, B_{1}^{1}$ | $B_{3}^{1}, B_{4}^{2}, B_{1}^{3}$ | $B_{4}^{1}, B_{1}^{2}, B_{2}^{3}$ | $B_{2}^{1}, B_{3}^{2}, B_{4}^{3}$ |

It is simple to show that C and D form an $(3 m, 4 n ; 3 n, 4 m)$-OGER. As in the proof of Lemma 2.4, there are certain subarrays of D that are not perfectly aligned when $n \not \equiv 0 \bmod 3$:

B_{2}^{2}, B_{3}^{3}
B_{1}^{3}, B_{4}^{2}
B_{3}^{3}, B_{1}^{1}

It is easy to check that there is no overlap of the two occurrences of B_{3}^{3}, nor is there an overlap of B_{1}^{3} and B_{1}^{1}.

The case $n=1$ is handled as in Construction 2.4.

Example 2.6 We illustrate the application of Construction 2.5 with $m=1, n=4$. The following arrays A and B form a (1,4;4,1)-OGER:

$$
A=\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 4 \\
\hline
\end{array} \quad B=\begin{array}{|l|l|l|l|}
\hline 1 & 1 & 1 & 1 \\
\hline
\end{array}
$$

Then A^{1}, A^{2}, B^{1} and B^{2} have width 2 , while A^{3} and B^{3} are empty.
We construct C and D, which form a $(3,16 ; 12,4)$-OGER;

$C=$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 6 | 7 | 8 | 9 | a | b | c | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| b | c | 9 | a | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c |\quad| 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 3 | 4 | 4 | 4 | 4 | 1 | 1 | 2 | 2 | 3 | 3 | 1 | 1 | 2 | 2 |
| 2 | 2 | 1 | 1 | 3 | 3 | 4 | 4 | 4 | 4 | 1 | 1 | 2 | 2 | 3 | 3 |

Construction 2.7 There exist a $(6,6 ; 4,9)-O G E R$, $a(6,12 ; 8,9)$-OGER and $a(12,12 ; 9,16)$-OGER.
Proof. These three OGERs are each constructed using a similar technique. For positive integers r and s, define $c=\operatorname{lcm}(r, s) / r$. Then define an $r \times c$ array $D_{r, s}$ having entries $d_{i, j}=j r+i \bmod s$, $0 \leq j \leq c-1,0 \leq i \leq r-1$. Suppose that $c \mid t$, and define $E_{r, t, s}$ to consist of t / c copies of $D_{r, s}$ placed side by side.

Next, suppose that $\pi \in\left(\mathbb{Z}_{r}\right)^{t}$ and construct $\pi\left(E_{r, t, s}\right)$ from $E_{r, t, s}$ by rotating column j of $E_{r, t, s}$ upwards cyclically by $\pi(j)$ positions, for $j=0, \ldots, t-1$.

It can be verified that the following arrays form the desired OGERs:

- $\pi\left(E_{6,6,4}\right)$ and $\pi\left(E_{6,6,9}\right)$, where $\pi=(0,0,1,1,2,2)$.
- $\pi\left(E_{6,12,8}\right)$ and $\pi\left(E_{6,12,9}\right)$, where $\pi=(0,0,0,0,1,1,1,1,2,2,2,2)$.
- $\pi\left(E_{12,12,9}\right)$ and $\pi\left(E_{12,12,16}\right)$, where $\pi=(0,0,0,1,1,1,2,2,2,3,3,3)$.

Example 2.8 We illustrate the construction of a $(6,6 ; 4,9)$-OGER. First, we depict $E_{6,6,4}$ and $E_{6,6,9}$:

0	2	0	2	0	2
1	3	1	3	1	3
2	0	2	0	2	0
3	1	3	1	3	1
0	2	0	2	0	2
1	3	1	3	1	3

0	6	3	0	6	3
1	7	4	1	7	4
2	8	5	2	8	5
3	0	6	3	0	6
4	1	7	4	1	7
5	2	8	5	2	8

It is not hard to verify that these arrays are orthogonal, and each of them is equitable on columns. Now apply the column rotations specified by π to these two arrays:

0	2	1	3	2	0
1	3	2	0	3	1
2	0	3	1	0	2
3	1	0	2	1	3
0	2	1	3	0	2
1	3	0	2	1	3

0	6	4	1	8	5
1	7	5	2	0	6
2	8	6	3	1	7
3	0	7	4	2	8
4	1	8	5	6	3
5	2	3	0	7	4

It can be verified that the resulting arrays are now orthogonal, equitable on rows and equitable on columns. Therefore we have a $(6,6 ; 4,9)$-OGER.

At this point, we are in a position to prove our main result.
Theorem 2.9 Suppose r, t, s_{1} and s_{2} are positive integers such that $r t=s_{1} s_{2}$. Then there exists an $\left(r, t ; s_{1}, s_{2}\right)$-OGER if and only if $\left(r, t ; s_{1}, s_{2}\right) \notin\{(2,2 ; 2,2),(2,3 ; 2,3),(3,4 ; 3,4),(6,6 ; 6,6)\}$.

Proof. Let $b=\operatorname{gcd}\left(t, s_{2}\right), a=t / b, d=s_{2} / b$ and $c=r / d$. Then $\operatorname{gcd}(a, d)=1$. It is clear that a, b and d are integers; we prove now that c is also an integer. Since $r t=s_{1} s_{2}$, we have

$$
c=\frac{r}{d}=\frac{r t}{d t}=\frac{s_{1} s_{2}}{d t}=\frac{s_{1} b d}{d b a}=\frac{s_{1}}{a} .
$$

On the other hand,

$$
\frac{s_{1} d}{a}=\frac{s_{1} d b}{a b}=\frac{s_{1} s_{2}}{a b}=\frac{s_{1} s_{2}}{t}=r
$$

is an integer. From the fact that $\operatorname{gcd}(a, d)=1$, it follows that $c=s_{1} / a$ is an integer.
Therefore we have that $\left(r, t ; s_{1}, s_{2}\right)=(c d, a b ; a c, b d)$, where a, b, c and d are positive integers. By Construction 2.3, if there exist a $(c, b ; c, b)$-OGER and a $(d, a ; a, d)$-OGER, then there exists an $\left(r, t ; s_{1}, s_{2}\right)$-OGER. So we just need to consider the exceptions from Theorem 1.2.

We consider three cases, as follows.

1. There is a $(c, b ; c, b)$-OGER, where c and b are not both equal to one, but a $(d, a ; a, d)$ OGER does not exist. For $(d, a ; a, d)=(2,2 ; 2,2)$ or $(6,6 ; 6,6)$, the designs are constructed in Theorem 1.2. For $(d, a ; a, d)=(2,3 ; 3,2)$ or $(3,4 ; 4,3)$, the designs are constructed in Constructions 2.4 and 2.5.
2. There is a $(d, a ; a, d)$-OGER, where d and a are not both equal to one, but a ($c, b ; c, b)$-OGER does not exist. This is equivalent to case 1 , by Lemma 2.1.
3. Both $(c, b ; c, b)$-OGER and $(d, a ; a, d)$-OGER do not exist. When one of the missing OGERs is of type $(2,2 ; 2,2)$ or $(6,6 ; 6,6)$, then the designs are constructed in Theorem 1.2. So we just need to consider the exceptions $(2,3 ; 2,3)$ and $(3,4 ; 3,4)$. Using Lemmas 2.2 and 2.1, there are three types of OGERs that we need to construct: $(6,6 ; 4,9),(6,12 ; 8,9)$, and $(12,12 ; 9,16)$. These were handled in Construction 2.7.

References

[1] C.J. Colbourn and J. H. Dinitz. The CRC Handbook of Combinatorial Designs, Second Edition. Chapman \& Hall/CRC Press, 2007.
[2] W. Guo and G. Ge. The existence of generalized mix functions. Designs Codes and Cryptography, to appear.
[3] T. Ristenpart and P. Rogaway. How to enrich the message space of a cipher. Lecture Notes in Computer Science 4593 (2007), 101-118 (Fast Software Encryption, FSE 2007).
[4] D. R. Stinson. Generalized mix functions and orthogonal equitable rectangles. Designs Codes and Cryptography, 45 (2007), 347-357.

[^0]: *research supported by NSF of China grant 10501023 and 60673070
 ${ }^{\dagger}$ research supported by NSERC Discovery grant 203114-06
 ${ }^{\ddagger}$ research supported by NSERC Discovery grant 239135-06

