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ABSTRACT 

We construct seven new examples of perfect one-factorizations, in the 
complete graphs K170, K730. K1370. K1850t and K3126. These are 
generated by two- and four-quotient starters in finite fields. We also find 
several examples of perfect one-factorizations that are not isomorphic to 
previously known examples. 

1. INTRODUCTION 

A onefactorization of a complete graph K,, is a partition of the edge-set of K,, 
into 2n - 1 one-factors, each of which contains n edges that partition the vertex 
set of K,,. One-factorizations have been the subject of much interest over the 
years; a good survey is given in [ 171. In this paper, we study one-factorizations 
with the additional property that every pair of distinct one-factors forms a 
Hamiltonian cycle. Such a one-factorization is termed perfect; we denote a per- 
fect one-factorization by P1F. 

Two infinite classes of PlFs of K,, are known to exist. When n is prime, the 
one-factorization known as GA,, is perfect [I]; and when 2n - I is prime, the 
one-factorization known as GK,, is perfect [16,1]. PlFs of several other orders 
have been constructed by ad hoc methods. PlFs of K,,, Kzs,  K244, and K344 were 
found by Anderson [2,3] and Anderson and Morse [6] in the mid-1970s. Quite 
recently, a P1F of K3, was found by Seah and Stinson [20]; a nonisomorphic 
example was found by Kobayashi, Awoki, Nakazaki, and Nakamura [14]. A 
PlF of Ks0 was found by Ihrig, Seah, and Stinson in [ 131, and a P1F of K4 was 
found by Seah and Stinson in [22]. PlFs of K,,,, and K,,,, were found by 
Kobayashi and Kiyasu-Zen’iti in [15]. Most of these PlFs have been con- 
structed by the method of starters, which are defined in Section 2. 
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In this paper, we construct PlFs of seven new orders from starters in finite 
fields. We find PlFs in K , 2 h ,  K , j O r  K j j O ,  K,,,,, K,,,,, K215)K, and K,,,,. Note that 
these graphs all have p m  + 1 vertices, where p is prime. 

Although the authors believe it is undoubtedly true that a P1F of K,,, exists 
for all 2n = 4,6,  . . . , we are still far from being able to prove it. Recent work 
of Ihrig [9-121 gives some indications as to why PlFs are so difficult to con- 
struct. Roughly speaking, Ihrig proves that most PlFs that have reasonably 
large automorphism groups are already known. 

Finally, we mention that, up to isomorphism, there is a unique PIF of K,,, when 
n = 4, 6, 8, or 10. There are precisely 5 nonisomorphic PlFs of K,, [18] and 
precisely 21 nonisomorphic P lFs  of K14 having nontrivial automorphism groups 
[ 19,2 I]. Starter-generated and even-starter-generated PlFs of Kz,, are enumer- 
ated for 2n 5 22 in [4]. In [8], 5 nonisomorphic PlFs of K24 are presented. 

2. STARTERS AND ONE-FACTORIZATIONS 

Most of the known constructions for (perfect) one-factorizations use starters. A 
starter in an additive abelian group G of order 2n - 1 is a set S = { { x , , y , } ,  
{x2. y,}, . . . , {xn-  ,, y,- ,}} such that every nonzero element of G occurs as 

(1) an element in exactly one pair of S ,  and 
(2 )  a difference of exactly one pair of S. 

For example, { ( I ,  6}, {2,5},  {3,4}} is a starter in Z j .  
Define S *  = S U ( 0 , ~ ) .  For any f: E G,  define S*  + g = {{x, + g , y ,  + 

d3 { x 2  + g , ~ ,  + g},. . . , { x n - ,  + g,y,-, + g},{g,xH, where + g = g + 
CQ = ~0 for all g E G. Then, it is easy to see that F = {S* + g : g  E G} is a 
one-factorization of K,". Further, F contains G in its automorphism group. 

This fact makes it easier than it would otherwise be to determine if F is per- 
fect. Instead of checking all ( n  - 1) ( 2 n  - I )  pairs of one-factors to see if they 
form Hamiltonian cycles, it suffices to check only n - 1 pairs of one-factors, as 
follows. Choose any n - 1 nonzero group elements g,,g,, . . . ,g,,-, such that 
no two of them sum to zero. Then, it is easy to see that F is perfect if and only 
if S* U (S* + g,) is a Hamiltonian cycle, for 1 9 i 5 n - 1 .  

We will employ starters with more algebraic structure, which will enable us to 
determine the perfection of the resulting one-factorizations with even less work. 
We use a special type of starter defined by Dinitz in [7], which we now describe. 

Suppose q = 2"t + 1 is an odd prime power, where t is odd. Let w be a 
primitive element in GF(q),  and let C, be the (unique) subgroup of G *  of order 
t and index 2*, where G *  denotes the multiplicative group G\{O}. Denote the 
cosets of Co by C, (0 5 i i 2" - I ) ,  where C, = w'C,. 

A starter S in GF(q) is said to be a 2*-'-quorient c o w  starter (or 2" I-QCS) 
if the following property is satisfied: 

for all pairs {x, y } ,  {x', y ' }  E S, if x ,x '  E C, for some i ,  then y/x = y'/x'. 
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For any z E GF(q), z # 1, define Clz = (l/(z - l))C,. Given a list of 2"-' 
field elements from GF(q), say A = (a,, . . . , U ~ ~ - I L ~ ) ,  define S(A) = {{x, a,x}: 
x E Cyl,O 5 i 5 2"-' - l}. If S(A) is a starter, then it is a 2"-'-QCS. The 
conditions for S(A) to be a starter were given explicitly in the case 2"-' = 2 in 
[7, Lemma 3.11. In a similar fashion, we have the following, which we state 
without proof 

Lemma 2.1. Suppose q = 2 9  + 1 is an odd prime power, where t is odd. 
Then, S(A) is a 2"-'-QCS in GF(q) if and only if the following conditions are 
satisfied: 

Remark. 
a suitable set A .  

It is not difficult to see that any 2"-'-QCS can be written as S(A) for 

Example. 25 = 52 = 233 + 1. GF(25) can be constructed from the irreduc- 
ible polynomial x2 + x + 2 over GF(5). Then, x is a primitive element. It is 
easy to verify using Lemma 2.1 that S ( ~ ' , x ' ~ , x ~ ~ , n ' ~ )  is a 4-QCS. 

The 2"-'-QCS are plentiful, but usually do not generate PlFs. Of course, we 
are interested in the situation where 2"-'-QCS generate PlFs. In the case where 

1, it has been shown in [3] and [8] that the starter S(A) generates a uni- 2"-1 = 

form one-factorization: for any two pairs of one-factors, {Fl, F,} and {F3, F4}, 
the two-factor F ,  U F2 = F3 U F4. We generalize this result to a > 1 in the 
following theorem: 

Theorem 2.2. Suppose S(A) is a 2"-'-QCS in GF(q), where q = 2"t + 1 is an 
odd prime power and t is odd. Let g,,g2 # 0. Then, $A)* U (S(A)* + g , )  = 
S(A)* U (S(A)* + g2) if g 2 / g ,  E C, U C,U-I. 

Proof. First we prove that S(A)* U (S(A)* + gl )  = S(A)* U (S(A)* + g,) 
if g,/g, E Co. Denote g,/g, = g E C,. Then gS(A)* = S(A)* and g(S(A)* + 
gl) = (S(A)* + g2). Hence, g(S(A)* U (%A)* + gl)) = S(A)* U (S(A)* + g 2 ) .  
Next, we prove that S(A)* U (S(A)* + gl) = S(A)* U (S(A)* + g,) if g 2 / g ,  E 
C,=-i. Suppose g,/g,  E CZa-i; then -g , /g ,  = g E C,. Then (-g)S(A)* = 
- S(A)* and (-g)(S(A)* + gl) = (-S(A)* + g,). But, -S(A)* U (-S(A)* + 
g2)  S(A)* U @(A)* - 8,) = @(A)* + g 2 )  U S(A), as desired. 

Consequently, it is not difficult to determine if a 2"-'-QCS, S(A), generates a 
PIF. We have the following: 
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Corollary 2.3. Suppose S(A)  is a 2"-'-QCS in GF(q),  where q = 2"r + 1 is an 
odd prime power and t is odd. For 0 5 i 5 2"-' - 1,  let g, E C,. Then S(A) 
generates a PIF if and only if S(A)* U (S(A) + g,) is a Hamiltonian cycle, for 
0 5 i 5 20-1 - 1 .  

Proof. Consider the union of two one-factors, (S(A)* + g') U (S(A)* + 
g " ) ( g '  f g " ) .  It is clear that ( S ( A ) *  + g')  U ( S ( A ) *  + g") = S ( A ) *  U 
@(A)* + g" - g'), so it suffices to consider pairs of one-factors of the form 
S(A)* U @(A)* + g )  where g # 0. If g/g ,  E C,, for some i ,  0 5 i 5 2"-l - 
1, then S(A)* U (S(A)* + g)  is a Hamiltonian cycle, from the hypotheses and 
Theorem 2 . 2 .  Otherwise, g /g ,  E C,a-~ ,  for some i, 0 5 i 5 2"-' - 1. In this 
case as well, S(A)* U (S(A)*  + g)  is a Hamiltonian cycle. 

Example (continued). The starter S(A) = S ( x ' ,  x13, x'O, xI4) in GF(25) gener- 
ates a PIF. In view of Corollary 2.3,  it suffices to check that S ( A ) *  U 
(S(A)* + x') is a Hamiltonian cycle, for 0 5 i 5 3. 

We can determine the automorphism groups of the resulting one-factorizations. 
Suppose F is a P l F  arising from S ( A ) ,  a 2"-'-QCS in GF(q),  and denote by 
Aut(F) its automorphism group. It is clear that F contains the additive group of 
GF(q), namely (Z,)", as a subgroup. It is also easy to verify that multiplication 
by any element in C, is also an automorphism. Hence, Aut(F) contains as a 
subgroup the semidirect product [ (Zp)"]Z, ,  which is a group of order qt. In fact, 
the following theorem of Ihrig tells us  that this must be the entire automor- 
phism group: 

Theorem 2.4. ([12, Theorem 4.1(b)]). Suppose F is a PIF of K,,,, and Aut(F) 
contains G as a subgroup, where G has order 2n - 1 and G acts transitively on 
the one-factors. If F is not isomorphic to GK,,, then Aut(F) is a semidirect prod- 
uct [GW, where H is a subgroup of Aut(G), [HI is odd, and IHI divides n - 1. 

Remark. In [5], Anderson proves that Aut(GK,,) = [Z2n-,]Z2n-2. 

Hence, we have the following: 

Theorem 2.5. Suppose q = 2'2 + 1 = p"  is an odd prime power, where t is 
odd. Suppose that a 2"-'-QCS in GF(q) generates a perfect one-factorization F 
not isomorphic to GKqtl .  Then, Aut(F) is the semidirect product [(Zp)"]Z,, and 
hence has order qt. 

Proof. By Theorem 2.4, Aut(F) has the form [(Z,)"]H, where [HI is odd 
and IH I divides 2"-'t. Hence, IH I divides t .  But H contains C,, (zZ,) as a sub- 
group, and (C,I = t .  Hence, H = Z,. 

Example (continued). 
S(x1,x13,x10,x14) in GF(25) has automorphisrn group [(Z,)*]Z,. 

The one-factorization of K,, generated from the 4-QCS 
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Starters that generate isomorphic one-factorizations will be termed isornor- 
phic. We can determine certain conditions under which distinct 2"-'-QCS in 
GF(q) will be isomorphic. For any starter S = { { x l , y , } :  1 5 i 5 (q  - 1) /2}  in 
GF(q),  and for any c # 0,  define CS = {{cx,,cy,}: 1 5 i 5 (q  - 1)/2}. It is 
clear that CS is a starter if S is, and that they are isomorphic. If S is a 2"-'-QCS, 
then cS will also be one, with parameters as given by the following theorem (in 
the special case of 2-QCS, this result was proved in [7]): 

Theorem 2.6. Suppose q = 2"t + 1 is an odd prime power, where t is 
odd. Suppose that S(u,, . . . , U ~ ~ - I L ~ )  is a 2"-'-QCS in GF(q), and c E C,. Then 
cS(a0,. . . , u ~ - I - , >  = S ( l / U - p - l - i , ~ o ,  . . . , ~ y - 1 - 2 ) .  

Proof. We have that 

cS(u,, . . . , u 2 ~ - - - , )  = { {~x,u,cx} :  x E c,'!, o 5 i 5 2"-' - I} 

= {{cx, q x } :  x E ( I&, - I))C,, 0 5 i 5 2*-l - 11 
= {{y,a,y}: y E ( l / u ,  - l ) )cf+l ,O 5 i 5 2"-, - 1) 

(where y = cx) . 

Hence, cS(u,, . . . , aZe-i-,) = S(b, a,, . . . , U ~ ~ - I L ~ ) ,  where b is determined as 
follows: When i = 2*-' - 1. we obtain 

(where z = a Z a - i ~ , y )  

Hence, b = l/u2a-i-l, and thus 

Using Theorem 2.6 ,  it is easy to determine cS(A) for any c # 0. If c E C,, 
then we would apply Theorem 2 . 6  i times. It is interesting to note that 
-S(a,, . . . , U ~ ~ - I - , )  = S(l/a,, . . . , l / ~ ~ a - ~ - ~ ) ,  since -1 E C2a-~ .  

Example (continued). By Theorem 2.6 ,  we see that S ( ~ I , x ~ ~ , x ~ ~ , x ~ ~ )  = S(x'O, 
X I ,  X I 3 ,  XI,) = S(X'4,XlO, x ' , x ' 3 )  = S(x",  x14, xI0, X I )  = S(x23, X I , ,  x14, XI,) s 
S(x 14, 2 3 ,  x II, x 14) = S(x 10, x I4,x23, n 1,) = S(x 13, x 10, x 14,x23). 

Finally, we consider the effect of a Frobenius automorphism on a starter. 
Suppose q = p m  = 2"t + 1 is an odd prime power, where f is odd and p is 
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prime, and S = { { x , , ~ ! } :  1 5 i 5 (4  - 1)/2} is any starter in GF(q).  Then we 
define the starter S" = {{x,!,yr}: 1 5 i 5 (q - 1)/2}. Sp will be a starter pro- 
vided S is, and the two starters will be isomorphic. 

Define n: Z I u  -+ ZZa by n(i) = p i  modulo 2". It is clear that n is a permuta- 
tion. Then, we have the following: 

Theorem 2.7. Suppose q = p m  = 2"t + 1 is an odd prime power, where t is 
odd and p is prime. Suppose that S(a,,, . . . , u z m - I - , )  is a 2n-'-QCS in GF(q). 
Then S(u,, . . . , U ~ ~ - I - ~ ) ~  = S(bo , .  . . , bza-i-,), where 

Proof. Let 0 5 i 5 2"-' - I .  Then 

If n(i) < 2"-', then let j = n(i) and let b, = up. Then, 

If n(i) 2 2" I ,  then let j = n(i) - 2"-' and let b, = I / a p .  Note that 
C, = -C,,,, and that n(i + 2" I )  = n(i) + 2"-' (mod 2"). Then, 

It remains to show that the j ' s ,  as defined above, take on every value from 0 
to 2"-' - I exactly oncc. This is a simple verification, which we leave to the 
interested reader. 
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Example (continued). In GF(25), the permutation 7 ~ :  z8 + z8 can be com- 
puted to be (0)(15)(2)(37)(4)(6) .  Then, S(xI,xI3,xI0,x ) - S(xS,xl7,x2, 
x2,). We obtain a total of 16 distinct starters isomorphic to S ( x ' , ~ " , x ~ ~ , x ' ~ )  by 
combining the isomorphisms of Theorems 2.6 and 2.7. 

14 5 - 

3. NEW PERFECT ONE-FACTORIZATIONS 

Using 2-QCS and 4-QCS, we found PlFs of seven new orders, as follows: 

Theorem 3.1. There exist PlFs of the complete graphs K,,,, KI7,, K730, K,,,,, 
K185,, K219X3 and K3126. 

Proof. 

KI2,  

The starters are displayed below. 

125 = 5 ,  = 2231 + 1.  Construct GF(5') from the polynomial 
x3 + x2 + 2, which is irreducible over Z,. Then, x is a generator. S(x9,x4') = 
S(2.x' + 4x + 4,x2 + 2x + 3) generates a PIF  of K,,,, as does S ( X ' ~ , X ~ ~ )  = 

S(4x + 2,4x2 + 3x). 
169 = 132 = z32l + 1. Construct GF(13,) from the polynomial x2 + 

12x + 2, which is irreducible over 2,'. Then, x is a generator. S ( X , X ' , X ~ ~ ,  
, I 4 )  = S(x, 12x + 6,2x + 3,2) generates a P1F of Kl7,. 

K730 729 = 3, = 2'91 + 1.  Construct GF(3,) from the polynomial x6 + 
x5  + x4 + x 3  + x2 + x + 1 ,  which is irreducible over Z,. Then, g = x 2  + 
x + 2 is a generator. S(g,g36,g217,g580) = s(x2 + x + 2, 2x3 + x2 + 2x + I ,  
x5  + 2x3 + 1,x5 + x3 + 1) generates a PIF of K,,,. 

1369 = 372 = 2'161 + 1, Construct GF(372) from the polynomial 
x2 + 36x + 22, which is irreducible over Z,,. Then, x is a generator. S ( X ~ ~ ' , X ~ ,  
x773,x1317) = S(29x + 11,12x + 21,36x + 33,3x + 22) generates a P1F of 

1849 = 43, = 2,231 + 1. Construct GF(43') from the polynomial 
x2 + 42x + 34, which is irreducible over Z4,. Then, x is a generator. S(x5,', 
x878,x'358,x957) = S(31x + 15,22x + 38,34x + 37,3x + 9) generates a P1F 

2197 = 13, = 22549 + 1. Construct GF(13,) from the polynomial 
x3 + 12x + 12, which is irreducible over Z13. Then, g = x + 2 is a generator. 
S(g7,g557) = S(12x2 + l l x  + 7, 6x2 + lox)  generates a P1F of K2198. 

3125 = 5 ,  = 22781 + 1. Construct GF(5,) from the polynomial 
x 5  + 4x + 4,  which is irreducible over Z,. Then, g = 2x is a generator. 
S(g" ,g2097)  = S(3x3 + x2  + 3x,2x4 + x' + 3x2 + 3x + 3) generates a P1F 

We also found PlFs of several other orders that are not isomorphic to previously 
known PlFs. These are presented in Table 1. The elements in the sets of A in 
Table 1 are all written as powers of the given primitive element. 

K,,, 

K,370 

Kn7o. 
KIEs0 

Of K1850' 

K2198 

K,,,, 

Of K3126. 
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TABLE 1. Perfect One-Factorizations of K p m ,  Arising from 2“-’-Quotient 
Coset Starters 

Irreducible Primitive Quotients in A (Powers 
P” Polynomial Element of Primitive Element) 

25 = 52 x 2 + x + 2  X 1,13,10,14 
49 = 72 x 2 + x + 3  X 1,5,1,30,33,42,38,36 
81 = 34 x 4  + x3  + 2x + 1 x + l  1,2,37,71,66,73,52,72 
121 = 112 x 2  + x + 7 X 1,7,51,65 
361 =1g2  x 2 + x + 3  X 1,9,129,79 
841 = 29’ x 2  + x + 3 X 1,18,343,170 

We did a complete enumeration of the 4-QCS in GF(25), which generate 
PIFs, and found 16 of them. These are all isomorphic, by Theorems 2.6 and 
2.7, as noted in the examples. 

We also did an exhaustive enumeration of 2-QCS in GF( 125), which generate 
PlFs; there are 24 of them. The isomorphisms from Theorems 2.6 and 2.7 tell 
us that we have at most 2 nonisomorphic starters among the set of 24, forming 
2 orbits of 12 starters each. One starter from each orbit was presented above. 
We can prove that starters from different orbits are indeed nonisomorphic by 
use of a type of invariant called the train of the one-factorization. The train of a 
one-factorization is a particular digraph having outdegree one (a complete de- 
scription is given in [8]). We computed the indegree sequence of the trains of 
the 2 PlFs; since these indegree sequences are different, the PlFs are noniso- 
morphic. We present the vectors obtained by dividing each element in the inde- 
gree sequences by 125. 

S(9,41): (2635,3256, 1457,434,62,31) 

S(18,38): (3100,2636, 1333,682,93,31) 

In Table 2, we summarize the known results on PlFs of K p r ~ ~ + l ,  as follows. 
We list all prime powers p‘” of moderate size, where m > 1. For each value, we 
indicate the known PlFs of K,,t+z+,. It is easy to see that the new PlFs are not 
isomorphic to the previously known PIFs, by considering their automorphism 
groups. Anderson proved in [5]  that Aut(GAz,,) = [Z2,3]Z,,-l. Also, the known 
PlFs of Kso all have automorphism groups [Z,,]Z,. These are different from the 
automorphism groups of the PlFs generated from 2”-’-QCS (Theorem 2.5). 

4. SUMMARY 

There remain three cases for which 2n - I is a prime power less than 1000 and 
a PIF of Kz,, is not known to exist. These are 2n = 290, 530, and 962. I t  
would be nice to use the methods of this paper to find PlFs of these orders, but 
we have been unable to do so. 
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TABLE 2. Known Perfect One-Factorizations of Kpm+l 

p m  = 2"t + 1 2"-'-QCS P1 F? Other PlFs? 
~ ~ ~ 

9 = 32= 2 3  + 1 No GA 10 
27 = 33 = 2'13 + 1 
81 = 34 = 245 + 1 GAS' 
243 = 35 = 2'121 + 1 
729 = 36 = 2391 + 1 
2187 = 37 = 2'1093 + 1 

125 = 53 = 2'31 + 1 

3125 = 55 = 2'781 + 1 

343 = 73 = 2'171 + 1 

121 = 112 = 2315 + 1 
1331 = 113 = 2'665 + 1 
169 = 132 = 23Zl + 1 
2197 = 133 = 2'549 + 1 
289 = 17' = 2=9 + 1 
4913 = 173 = 24307 + 1 

6859 = 1g3 = 2'3429 + 1 
529 = 232 = 2433 + 1 
841 = 29' = 23105 + 1 
961 = 31' = 2615 + 1 
1369 = 372 = 23161 + 1 
1681 = 41' = 24105 + 1 
1849 = 43' = 23231 + 1 

Yes [3] 
Yes (Table 1) 
Yes [6] 
Yes (Theorem 3.1) 
No 

Yes (Theorem 3.1) 

Yes (Theorem 3.1) 

Yes [6] 

Yes (Table 1) 
Yes [15] 
Yes (Theorem 3.1) 
Yes (Theorem 3.1) 
??? 
??? 

Yes [ 151 
??? 
Yes (Table 1) 
??? 
Yes (Theorem 3.1) 
??? 
Yes (Theorem 3.1) 

25 = 52 = 233 + 1 

625 = 54 = 2439 + 1 ??? GA626 

Yes (Table 1) GA26 

49 = 7' = 243 + 1 Yes (Table 1) r131 

2401 = 74 = 2=75 + 1 ??? GA2402 
GA 122 

361 = 19' = 2345 + 1 Yes (Table 1) GA362 

ga542 

We had hoped that it might be possible to prove theoretically that there is al- 
ways a 2"-'-quotient starter-generated P1F in K, , ,  whenever q = 2 9  + l is a 
prime power and t is odd. At least in the case a = 1, this is not true. For 
q = 9, there is no P1F of K , ,  having (Z,)' contained in its automorphism 
group. This is easily seen, since GA,, is the only P l F  of K, , ,  and Aut(GA,,) = 
[Z,,]Z,. More distressing, there is no P1F of K2188 generated from a one-quotient 
starter in GF(2187). This suggests that a general existence theorem for 2"-'- 
quotient starter-generated P 1Fs might be difficult. 
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