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Abstract

In this short note, we prove a conjecture of Anderson, Hamilton
and Hilton [1] on the existence of referee squares.

1 Introduction

Let n be an odd integer. A referee square of order n is an n × n array R
based on S = {1, 2, . . . , n} such that

1. each cell is either empty or contains an unordered pair of distinct sym-
bols on S,

2. each i ∈ S occurs precisely once in each row (except the ith) and in
each column (except ith column), and does not occur in the ith row
and ith column,
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3. each unordered pair of distinct elements of S occurs in exactly one cell
of R,

4. the main diagonal cells are non-empty.

Note the close relationship between referee squares and the more well-
known object, the Room square (see [4] for a survey of Room squares).

Referee squares were first introduced in [1] where it was conjectured that
they exist for all odd orders n ≥ 3 with n 6= 5. In 1998 Y.S. Liaw [5] made
progress towards this conjecture by proving the following:

Theorem 1.1 (Liaw [5]) There exists a referee square of order n for any
odd composite integer n and for all 3 ≤ n ≤ 47 except that there is no referee
square of order 5.

In this short note, we solve the existence problem completely by proving
the following result.

Theorem 1.2 If n ≥ 3, n 6= 5 and n odd, there exists a referee square of
order n.

2 Constructions

The main recursive construction uses frames. But in order to apply the
recursion, a few small orders are needed first. In order to obtain these we
use variant of a strong starter.

A strong referee starter S of order v in Zv is a set of unordered pairs
S = {{si, ti} : 1 ≤ i ≤ (v − 1)/2} which satisfies the following properties:

1. {si : 1 ≤ i ≤ (v − 1)/2} ∪ {ti : 1 ≤ i ≤ (v − 1)/2} = {1, 2, . . . , n− 1}

2. {±(si − ti) : 1 ≤ i ≤ (v − 1)/2} = Zv\{0} = {1, 2, . . . , n− 1}

3. if si + ti ≡ sj + tj (mod v), then i = j

4. for some i, si + ti ≡ 0 (mod v).
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In [5] (Theorem 2.1) it is proven that a referee square of order v exists
if there exists two starters with distinct distances and which contains a zero
distance. It is easy to show that given a strong referee starter S, the two
starters S and −S satisfy this property. Hence the existence of a strong
referee starter of order v, implies the existence of a referee square of order v.

Lemma 2.1 There exist referee squares of orders n = 53, 59, 61, 79.

Proof: For each of these orders we give a strong referee starter. In each case,
the pair with difference 1 has sum congruent to zero modulo n.

n = 53

26,27 43,45 34,37 20,24 8,13 5,11 3,10 6,14 40,49 47,4 18,29 30,42 41,1 9,23
17,32 19,35 38,2 33,51 12,31 16,36 39,7 46,15 21,44 28,52 25,50 22,48

n = 59

29,30 12,14 1,4 27,31 45,50 49,55 13,20 40,48 34,43 56,7 36,47 41,53 22,35
18,32 46,2 9,25 11,28 33,51 57,17 6,26 3,24 52,15 19,42 58,23 39,5 54,21 10,37
16,44 38,8

n = 61

30,31 32,34 6,9 4,8 40,45 52,58 37,44 47,55 24,33 26,36 28,39 59,10 12,25 50,3
14,29 7,23 5,22 60,17 35,54 43,2 41,1 57,18 53,15 48,11 13,38 16,42 19,46 21,49
27,56 51,20

n = 79

39,40 74,76 58,61 37,41 44,49 23,29 68,75 6,14 22,31 9,19 59,70 36,48 7,20
66,1 2,17 26,42 60,77 51,69 63,3 5,25 11,32 12,34 27,50 38,62 28,53 45,71
30,57 55,4 43,72 73,24 15,46 35,67 64,18 78,33 65,21 56,13 52,10 16,54 8,47

Now for the frame constructions. Let S be a set, and let {S1, S2, . . . , Sn}
be a partition of S. An {S1, S2, . . . , Sn}-Room frame is an |S| × |S| array, F ,
indexed by S, that satisfies the following properties:
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1. Every cell of F either is empty or contains an unordered pair of distinct
symbols of S.

2. The subarrays Si × Si are empty, for 1 ≤ i ≤ n (these subarrays are
referred to as holes).

3. Each symbol x 6∈ Si occurs in row (or column) s, for any s ∈ Si.

4. The pairs in F are those {s, t}, where (s, t) ∈ (S × S) \ ∪n
i=1(Si × Si).

As is usually done in the literature, we refer to a Room frame simply as
a frame. The type of a frame F is defined to be the multiset {|Si| : 1 ≤
i ≤ n}. We usually use an “exponential” notation to describe types: a type
tu1
1 tu2

2 . . . tuk
k denotes ui occurrences of holes of size ti, 1 ≤ i ≤ k.

Theorem 2.2 Suppose there exists a frame of type tu1
1 tu2

2 . . . tuk
k , if there ex-

ists a referee square for ti, 1 ≤ i ≤ k, then there exists a referee square of
order

∑k
i=1 tiui.

Proof: Fill in each hole Si × Si of side t × t by putting in a referee square
of order t containing the symbols of Si. 2

Let K be a set of positive integers. A group divisible design K-GDD is a
triple (X ,G,A) where

1. X is a finite set of points,

2. G = {S〉 : ∞ ≤ 〉 ≤ \} is a set of subsets of X , called groups, which
partition X ,

3. A is a collection of subsets of X with sizes from K, called blocks, such
that every pair of points from distinct groups occurs in exactly 1 block,
and

4. no pair of points belonging to a group occurs in any block.

The type of a GDD is defined to be the multiset {|Si| : 1 ≤ i ≤ n}. Again
the “exponential” notation is used to describe types: a type tu1

1 tu2
2 . . . tuk

k

denotes ui occurrences of groups of size ti, 1 ≤ i ≤ k. The following is the
Fundamental Frame Construction (see [4]).
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Theorem 2.3 Let (X ,G,A) be a GDD, and let w : X→ Z+∪{0} be a weight
function on X . Suppose that for each block A ∈ A, there exists a frame of
type {w(x) : x ∈ A}. Then there is a frame of type {

∑
x∈Gi

w(x) : Gi ∈ G}.

We are now in position to solve the existence problem for referee squares.
Denote [a, b] as the set of odd integer between a and b and let R denote the
set of positive integers n such that there exists a referee square of order n.

Lemma 2.4 If 7 ≤ n ≤ 187, then there exists a referee square of order n.

Proof: If 7 ≤ n ≤ 51, the result is obtained by Liaw [5]. When n =
53, 59, 61, 79, the result is obtained from Lemma 2.1. For n = 55, 57, 63, 65, 77
and 145, the result is obtained by Liaw since n is composite.

From a 5-GDD of type (2m + 1)5 (which exists for all m ≥ 2 [2]), give
weight 3 to every point in the first four groups and weight 1 or 3 to the points
in the last group. Since both frames of type 35 and 3411 exist [3], by Theorem
2.3 there exists a frame of type (6m + 3)4(2k + 1) when m ≤ k ≤ 3m + 1.
Clearly, there exists a referee square of order 6m + 3 since it is composite.
When 2 ≤ m ≤ 8, a referee square of order 2k+1 exists when 3 ≤ k ≤ 3m+1.
Therefore, a referee square of order n can be constructed for all odd n such
that 13(2m + 1) ≤ n ≤ 15(2m + 1). Apply this to m = 2, 3, 4, 5 to obtain
[67, 75] ∪ [91, 105] ∪ [117, 135] ∪ [143, 165] ⊂ R.

In a similar manner from a 9-GDD of type (2m + 1)9 give weight 1 to
the first eight groups and 1 or 3 to the last group to obtain a frame of type
(2m + 1)8(2k + 1) for all m ≤ k ≤ 3m + 1. This is possible since there
exist frames of type 19 and 1831 (see [4]). When 3 ≤ m ≤ 10, there exists a
referee square for each of the possible hole sides in the frame. Hence, we can
construct a referee square of order n when 18m + 9 ≤ n ≤ 22m + 11. Take
m = 4, 5, 6, 8 to obtain [81, 99] ∪ [99, 121] ∪ [117, 143] ∪ [153, 187] ⊂ R. 2

Corollary 2.5 There exists a referee square for order n if and only if n odd
and n ≥ 7 or n = 3.

Proof: Begin with a 5-GDD of type (2m+1)5 (these exist for all m > 1 [2]).
Give weight 3 to every point in the first four groups and weight 1 or 3 to the
points in last group. Since both frame of type 35 and 3411 exist ([3]), there
exists a frame of type (6m+3)4(2m+1+2i)1 for 0 ≤ i ≤ 2m+1. Again, there
exists a referee square of order 6m + 3 since it is composite. Therefore, if
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there exists a referee square of order 2m+1+2i for 0 ≤ i ≤ 2m+1, then there
exists a referee square of order 26m+13+2i for 0 ≤ i ≤ 2m+1. Translating
the notation, if [2m + 1, 6m + 3] ⊂ R, then [26m + 13, 30m + 15] ⊂ R. Since
[7, 187] ⊂ R, by choosing m ≥ 6 the result follows by induction. 2
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