
Constructions for Retransmission Permutation Arrays

Jeffrey H. Dinitz
Mathematics and Statistics

University of Vermont
Burlington VT, 05405, USA

Jeff.Dinitz@uvm.edu

Maura B. Paterson
Economics, Mathematics and Statistics

Birkbeck, University of London
Malet Street, London WC1E 7HX, UK

m.paterson@bbk.ac.uk

Douglas R. Stinson∗

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo ON, N2L 3G1, Canada
dstinson@uwaterloo.ca

Ruizhong Wei†

Department of Computer Science
Lakehead University

Thunder Bay ON, P7B 5E1, Canada
rwei@lakeheadu.ca

October 25, 2010

Abstract

Li, Liu, Tan, Viswanathan, and Yang [3] introduced a technique for resolving overlapping
channel transmissions that used an interesting new type of combinatorial structure. In con-
nection with this problem, they provided an example of a 4 × 4 array having certain desirable
properties. We define a class of combinatorial structures, which we term retransmission permu-
tation arrays, that generalise the example that Li et al. provided. We show that these arrays
exist for all possible orders. We also define some extensions having additional properties, for
which we provide some partial results.

1 Introduction

Li, Liu, Tan, Viswanathan, and Yang [3] introduced a technique for resolving overlapping channel
transmissions that used an interesting new type of combinatorial structure. In connection with this
problem, they provided an example of a 4× 4 array having certain desirable properties. We briefly
describe the method used in [3] in order to motivate the combinatorial problem we study in this
paper.1

Suppose there is a sequence of groups, denoted G1, G2, . . . , each of which is just a set of carrier
frequencies. Let n be a positive integer ([3] uses n = 4). A channel Ci is able to access n consecutive
groups, i.e., Ci can access Gi, Gi+1, . . . , Gi+n−1, i = 1, 2, Two channels are overlapping if they
contain one or more common groups.

∗Research supported by NSERC discovery grant 203114-06
†Research supported by NSERC discovery grant 239135-06
1This section can be skipped by readers who are not interested in the practical motivation for studying this

problem.

1

Each channel can transmit an n-bit message by assigning one bit to each of the n groups it
can access. However, if overlapping channels are simultaneously used to transmit two messages,
then one or more of the bits in the messages will collide and therefore they will not be transmitted
successfully. More precisely, if two channels overlap in j groups, then j bits of their respective
messages will collide. The consequence is that messages will need to be retransmitted in order that
all the bits are received successfully.

The main idea in [3] is that each retransmission should use a different assignment of bits to
groups. Since each assignment can be viewed as a permutation of the n bits, the schedule of assign-
ments can be termed a retransmission permutation array (or RPA). We will give a mathematical
definition of this term in the next subsection, once we have clarified certain additional properties
required by these arrays.

Example 1.1. A retransmission permutation array for n = 4 (from [3]):

1 2 3 4

4 3 2 1

2 1 4 3

3 4 1 2

The RPA presented in Example 1.1 consists of four permutations: 1234, 4321, 2143 and 3412.
Each permutation corresponds to a transmission of four bits b1b2b3b4 over a channel Ci, as follows:

• In the first transmission, b1 is assigned to Gi, b2 is assigned to Gi+1, b3 is assigned to Gi+2,
and b4 is assigned to Gi+3.

• In the second transmission, b4 is assigned to Gi, b3 is assigned to Gi+1, b2 is assigned to Gi+2,
and b1 is assigned to Gi+3.

• In the third transmission, b2 is assigned to Gi, b1 is assigned to Gi+1, b4 is assigned to Gi+2,
and b3 is assigned to Gi+3.

• In the fourth transmission, b3 is assigned to Gi, b4 is assigned to Gi+1, b1 is assigned to Gi+2,
and b2 is assigned to Gi+3.

Suppose a simultaneous transmission takes place by a channel which overlaps the given channel
in j groups. The j groups could be the first j groups or the last j groups among the n = 4 groups.
The bits that are successfully received are the bits in the last n − j columns (or the first n − j
columns, respectively) of the array. In Example 1.1, the following properties can be verified easily:

• If there is no overlap, then all four bits are received after one transmission.

• If there is an overlap in one or two groups, then all four bits are received after two transmis-
sions.

• If there is an overlap in three groups, then all four bits are received after four transmissions.

In general, if a channel consists of n groups and two channels overlap in j groups, then we will
need at least τ = ⌈ n

n−j
⌉ transmissions in order to receive all n bits. This number of transmissions

will be sufficient if and only if every symbol occurs at least once in the upper left τ × (n − j)
rectangle of the RPA (when the overlap is in the last j groups), or every symbol occurs at least
once in the upper right τ × (n− j) rectangle of the RPA (when the overlap is in the first j groups).

2

1.1 Combinatorial Definitions

A type 1 retransmission permutation array of order n (denoted type-1 RPA(n)) is an n×n array, say
A, in which each cell contains a symbol from the set {1, . . . , n}, such that the following properties
are satisfied:

(i) every row of A contains all n symbols (i.e., every row of A is a permutation of the n symbols),
and

(ii) for 1 ≤ i ≤ n, the i× ⌈n
i
⌉ rectangle in the upper left hand corner of A contains all n symbols.

Here are some variations of the above definition.

• If property (ii) is modified so it instead holds for rectangles in the upper right corner of A,
then we say that the array is a type 2 retransmission permutation array of order n (denoted
type-2 RPA(n)).

• A type 3 retransmission permutation array of order n (denoted type-3 RPA(n)) is one in
which (a modified) property (ii) holds for rectangles in the lower left corner of A.

• Finally, a type 4 retransmission permutation array of order n (denoted type-4 RPA(n)) is one
in which (a modified) property (ii) holds for rectangles in the lower right corner of A.

The problem introduced in [3] asks for arrays that are simultaneously type-1 RPA(n) and type-2
RPA(n); we will term these type-1, 2 RPA(n). This notation will be generalised in the obvious way
to arrays that satisfy different combinations of variations of property (ii). The array presented in
Example 1.1 is a type-1, 2 RPA(4); in fact, it is a type-1, 2, 3, 4 RPA(4).

An r × ⌈n
r
⌉ rectangle is called basic if it does not contain an r′ × ⌈ n

r′
⌉ rectangle where r′ < r

and ⌈n
r
⌉ = ⌈ n

r′
⌉. For example, when n = 12, a 5 × 3 rectangle is not basic because it contains a

4 × 3 rectangle and ⌈12

5
⌉ = ⌈12

4
⌉ = 3.

In verifying property (ii), it suffices to consider only basic rectangles. The basic rectangles that
must be verified in Example 1.1 have dimensions 1 × 4, 2 × 2 and 4 × 1.

An RPA, A, of any type is called latin if every column of A contains all n symbols (i.e., every
column of A is a permutation of the n symbols). A latin RPA is in fact a latin square of order
n. Observe that the type-1, 2, 3, 4 RPA(4) constructed in Example 1.1 is latin. The application in
[3] does not require latin RPAs; however, it seems to be a natural and interesting combinatorial
problem to investigate the existence of latin RPAs.

1.2 Outline of the Paper

Here we summarise the results in the remaining sections of the paper. In Section 2, we discuss
relationships between different types of RPAs. In Section 3, we present an algorithm which proves
that type-1 RPA(n) exist for all n ≥ 1. In Section 4, we extend our algorithm so it will construct
type-1, 2 RPA(n) for all n. We present a few results on latin RPAs in Section 5. Finally, Section 6
mentions some open problems.

The main existence results proven in the paper are summarised in Table 1.

3

Table 1: Existence results for retransmission permutation arrays

type of RPA existence result authority

type-1 RPA(n) all integers n ≥ 1 Theorem 3.1

type-1, 2 RPA(n) all integers n ≥ 1 Corollary 4.10

type-1, 3 RPA(n) all integers n ≥ 1 Theorem 3.2

type-1, 4 RPA(n) all integers n ≥ 1 Theorem 3.3

type-1, 2, 3, 4 RPA(n) all even integers n ≥ 2 Corollary 4.8

type-1, 2, 3, 4 LRPA(n) even integers n ≤ 16, n = 36 Section 5

type-1, 2, 3, 4 LRPA(n) odd integers n ≤ 9 Section 5

1.3 Related Work

There is some previous work concerning latin squares in which certain rectangular regions contain
every symbol at most (or exactly) once. We mention two examples that have been studied in the
mathematical literature.

1. Some algorithms for providing conflict-free access to parallel memories (see, for example,
Colbourn and Heinrich [1, 2]) seek latin squares of order n where, for a certain fixed value of
s, every s × ⌊n

s
⌋ rectangle in the latin square contains every symbol at most once.

2. A Sudoku square is a latin square of order n, where n = m2, such that it can be partitioned
into n square subarrays of side m such that every one of these subarrays contains all n
symbols. The case n = 9 corresponds to the popular Sudoku puzzles commonly found in
newspapers. It has also been observed (see [4]) that Sudoku squares are examples of gerechte
designs which are used in agricultural experiments.

2 Relationship Between Different Types of RPAs

The next five theorems are obvious, following by reflections through a vertical or horizontal axis.

Theorem 2.1. The existence of the following are equivalent: a type-1 RPA(n), a type-2 RPA(n),
a type-3 RPA(n) and a type-4 RPA(n).

Theorem 2.2. The existence of the following are equivalent: a type-1, 2 RPA(n) and a type-3, 4
RPA(n).

Theorem 2.3. The existence of the following are equivalent: a type-1, 3 RPA(n) and a type-2, 4
RPA(n).

Theorem 2.4. The existence of the following are equivalent: a type-1, 4 RPA(n) and a type-2, 3
RPA(n).

Theorem 2.5. The existence of the following are equivalent: a type-1, 2, 3 RPA(n), a type-1, 2, 4
RPA(n), a type-1, 3, 4 RPA(n) and a type-2, 3, 4 RPA(n).

4

Now we prove some results establishing that, when n is even, RPAs of certain types can be
“extended” to yield RPAs of stronger types.

Theorem 2.6. If n is even and there exists a type-1 RPA(n), then there exists a type-1, 3 RPA(n).

Proof. Let A = (ai,j) be a type-1 RPA(n) on symbol set {1, . . . , n}, where n is even, and let X
denote the set of symbols in the first n/2 cells in the first column of A (note that these n/2 symbols
are distinct). Denote Y = {1, . . . , n}\X. Let π : {1, . . . , n} → {1, . . . , n} be any bijection in which
π(X) = Y (hence it follows that π(Y) = X). Now define an n × n array B = (bi,j) as follows:

bi,j =

{

ai,j if i ≤ n
2

π(an+1−i,j) if i > n
2
.

It is easy to verify that B is a type-1, 3 RPA(n).

Theorem 2.7. If n is even and there exists a type-1, 2 RPA(n), then there exists a type-1, 2, 3, 4
RPA(n).

Proof. This is an extension of the proof of Theorem 2.6. Let A = (ai,j) be a type-1, 2 RPA(n) on
symbol set {1, . . . , n}, where n is even. Define X and Y as in the proof of Theorem 2.6. Let Z
denote the set of symbols in the first n/2 cells in the last column of A (note that these n/2 symbols
are distinct) and denote W = {1, . . . , n}\Z. We want to find a bijection π : {1, . . . , n} → {1, . . . , n}
such that π(X) = Y and π(Z) = W . This is easily done as follows: Define Z ′ = Z∩X, Z ′′ = Z∩Y ,
W ′ = W ∩ X and W ′′ = W ∩ Y . Then it is easy to verify that |W ′| = |Z ′′| = n/2 − |Z ′| and
|W ′′| = |Z ′|. Therefore π can be defined from any bijection from Z ′ to W ′′ together with any
bijection from Z ′′ to W ′. Now define an n × n array B = (bi,j) as follows:

bi,j =

{

ai,j if i ≤ n
2

π(an+1−i,j) if i > n
2
.

It is easy to verify that B is a type-1, 2, 3, 4 RPA(n).

Theorem 2.8. If n is even and there exists a type-1 RPA(n), then there exists a type-1, 4 RPA(n).

Proof. This is a slight modification of the proof of Theorem 2.7. Let A = (ai,j) be a type-1 RPA(n)
on symbol set {1, . . . , n}, where n is even. We require that the first n/2 cells in the last column
of A contain distinct symbols. For an arbitrary type-1 RPA(n), this might not occur; however, we
can easily transform any type-1 RPA(n) into a type-1 RPA(n) in which this property does hold.
This is done as follows. For each row i, 2 ≤ i ≤ n/2, if ai,n ∈ {a1,n, . . . , ai−1,n}, then we find a
symbol ai,j (for some j, n/2 ≤ j ≤ n − 1) such that ai,j 6∈ {a1,n, . . . , ai−i,n} (such an ai,j exists by
the pigeon-hole principle). Then swap ai,n and ai,j . Observe that the swapped symbols do not lie
in any basic rectangle, so the transformed square is still a type-1 RPA(n).

Now define X,Y,Z,W,Z ′, Z ′′,W ′ and W ′′ as in the proof of Theorem 2.7. Note that |Z| = n/2
due to the transformation carried out above.

We want to find a bijection π : {1, . . . , n} → {1, . . . , n} such that π(X) = W and π(Z) = Y .
This is easily done by defining any bijection from Z ′ to W ′′ and then fixing both Z ′′ and W ′ setwise.
Now define an n × n array B = (bi,j) as follows:

bi,j =

{

ai,j if i ≤ n
2

π(an+1−i,n+1−j) if i > n
2
.

5

It is easy to verify that B is a type-1, 4 RPA(n).

In the next two corollaries, which are immediate consequences of Theorems 2.1–2.7, we observe
that, when n is even, a type-1 RPA(n) yields RPAs of various types and a type-1, 2 RPA(n) yields
RPAs of all remaining types.

Corollary 2.9. If n is even and there exists a type-1 RPA(n), then the following arrays exist:
a type-1 RPA(n), a type-2 RPA(n), a type-3 RPA(n), a type-4 RPA(n), a type-1, 3 RPA(n), a
type-1, 4 RPA(n), a type-2, 3 RPA(n) and a type-2, 4 RPA(n).

Corollary 2.10. If n is even and there exists a type-1, 2 RPA(n), then the following arrays exist:
a type-1, 2 RPA(n), a type-3, 4 RPA(n), a type-1, 2, 3 RPA(n), a type-1, 2, 4 RPA(n), a type-1, 3, 4
RPA(n), a type-2, 3, 4 RPA(n) and a type-1, 2, 3, 4 RPA(n).

We do not have analogues of Theorems 2.6–2.8 for odd n. However, we are able to modify these
two theorems so they hold for odd n, provided that the “input” type-1 RPA(n) satisfies a certain
property. We will revisit this at the end of Section 3.

3 A Construction for type-1 RPA(n)

For any positive integer n, the algorithm presented in Figure 1 constructs a type-1 RPA(n) which
we denote by A. This algorithm considers the basic rectangles one at a time, in increasing order of
the number of rows they have.

We say that an r × ⌈n
r
⌉ basic rectangle R is canonical if the following property is satisfied:

(*) There is a partition n = a1 + · · · + ar where ⌈n
r
⌉ ≥ a1 ≥ · · · ≥ ar > 0, such that the union of

the first ai cells of row i (for 1 ≤ i ≤ r) contains every symbol in {1, . . . , n} exactly once2.

Suppose there are b basic rectangles. After step k of the algorithm (where 1 ≤ k ≤ b), the kth
basic rectangle will be canonical. After step b is completed, we fill in the remaining empty cells in
A.

Example 3.1 illustrates the algorithm presented in Figure 1.

Example 3.1. Suppose n = 7. The basic rectangles have dimensions 1× 7, 2× 4, 3× 3, 4× 2, and
7 × 1.

step 1

We begin by filling in the 1 × 7 basic rectangle (i.e., the first row of A):

1 2 3 4 5 6 7

step 2

Next, we consider the 2× 4 basic rectangle. We place the symbols 5, 6, 7 in the first three cells
of the second row of this rectangle:

1 2 3 4 5 6 7

5 6 7

2This decomposition of n is analogous to a Ferrers diagram.

6

step 1

Fill in the first basic rectangle, having dimensions 1 × n, with any
permutation of the n symbols.

step 2 through step b

For each k, 2 ≤ k ≤ b, do the following:

1. Let the kth basic rectangle be denoted by R.

2. Let the previous basic rectangle be denoted by R′.

3. Let S denote the set of symbols in R′\R.

4. Copy the symbols in S into R in such a way that property (*) is
satisfied.

final step

Fill in the empty cells in every row of A to a form a permutation of
the n symbols.

Figure 1: Algorithm to construct a type-1 RPA(n).

step 3

Now we turn to the 3×3 basic rectangle, filling in the first cell of the third row with the symbol
4:

1 2 3 4 5 6 7

5 6 7

4

step 4

Next, we look at the 4 × 2 basic rectangle. We have to fill in the symbols 3 and 7:

1 2 3 4 5 6 7

5 6 7

4 3

7

step 5

The last basic rectangle has dimensions 7 × 1. It is completed by filling in the symbols 2, 6

7

and 3 into the first cells in the last three rows:

1 2 3 4 5 6 7

5 6 7

4 3

7

2

6

3

step 6

Finally, we fill in all remaining cells in such a way that each row is a permutation, for
example,

1 2 3 4 5 6 7

5 6 7 1 2 3 4

4 3 1 2 5 6 7

7 1 2 3 4 5 6

2 1 3 4 5 6 7

6 1 2 3 4 5 7

3 1 2 4 5 6 7

Theorem 3.1. For all integers n ≥ 1, there exists a type-1 RPA(n).

Proof. We prove that the Algorithm 1 is correct, i.e., that it always produces a type-1 RPA(n). To
do this, we first observe that each basic rectangle R is canonical immediately after it is considered
in the relevant step of the algorithm. Because each symbol occurs only once in a basic rectangle
R′, it follows that when the symbols in S are copied from R′ to the next basic rectangle R, there
are a sufficient number of empty cells in R to hold the symbols in S.

Also due to the canonicity property, it follows that, whenever a symbol is copied from a basic
rectangle R′ to the next basic rectangle R, it is placed in a lower row. This ensures that no row of
A contains more than one occurrence of a symbol after step b is executed. Hence the final step of
completing every row to a permutation can be carried out successfully.

Theorem 3.2. For all positive integers n, there exists a type-1, 3 RPA(n).

Proof. For even n, the desired result is an immediate corollary of Theorems 2.6 and 3.1. For odd
n, we make use a certain modification of Theorem 2.6.

Let A = (ai,j) be a type-1 RPA(n) on symbol set {1, . . . , n}, where n is odd, such that A
contains a canonical (n + 1)/2× 2 basic rectangle, say U , in its upper left corner (a type-1 RPA(n)
constructed from the algorithm in Figure 1 will have this property). Denote n2 = (n+1)/2 and let
X denote the set of symbols in the first n2 − 1 cells in the first column of A. Denote a = an2,1 and
let Y = {1, . . . , n}\(X ∪{a}). Let π : {1, . . . , n} → {1, . . . , n} be any bijection in which π(X) = Y ,
π(Y) = X and π(a) = a. Now define an n × n array B = (bi,j) as follows:

bi,j =

{

ai,j if i ≤ n2

π(an+1−i,j) if i > n2.

8

We claim that B is a type-1, 3 RPA(n). Most of the verifications are straightforward. The only
tricky point is to ensure that the n2×2 basic rectangle in the lower left corner of B, say L, contains
all n symbols. L consists of the last row of U , together with the image of the first n2 − 1 rows of
U under the bijection π. Because U is canonical, it follows that the first n2 − 1 rows of U contain
all the symbols in {1, . . . , n} \ {a}, and hence the last n2 − 1 rows of L contain all the symbols in
{1, . . . , n} \ {a}. The desired result follows.

Theorem 3.3. For all positive integers n, there exists a type-1, 4 RPA(n).

Proof. For even n, the desired result is an immediate corollary of Theorems 2.8 and 3.1. For odd
n, we make use a certain modification of Theorem 2.8. Actually, we will assume that n ≥ 9, noting
that type-1, 4 RPA(3), type-1, 4 RPA(5) and type-1, 4 RPA(7) are constructed in Figures 9, 10 and
11, respectively.

Let A = (ai,j) be a type-1 RPA(n) on symbol set {1, . . . , n}, where n is odd, such that A contains
a canonical (n + 1)/2 × 2 basic rectangle, say U , in its upper left corner. Denote n2 = (n + 1)/2,
X = {a2,1, . . . , an2−1,1}, b = a1,1, a = an2,1 and Y = {1, . . . , n} \ (X ∪ {a, b}).

We require some additional properties to hold in A:

1. The first n2 − 1 cells in the last column of A must contain n2 distinct symbols in the set
{1, . . . , n} \ {a, b}.

2. an2,n = b.

An arbitrary type-1 RPA(n) might not satisfy these properties; however, we can easily transform
any type-1 RPA(n) into a type-1 RPA(n) in which these properties hold. This is done as follows:

1. If an2,n 6= b, then swap an2,n with the cell in row n2 that contains b (note that an2,1 = a 6= b).

2. If a1,n = a, then swap a1,n with some a1,j 6= a, b, where j > n2 (in order to be sure that this
is possible, we require (n − 1)/2 ≥ 2, noting that a1,1 = b).

3. If a2,n ∈ {a1,n, a, b}, then swap a2,n with some a2,j 6= a, b, a1,n, where j > n2 (in order to be
sure that this is possible, we require (n − 1)/2 ≥ 4).

4. For each row i, 3 ≤ i ≤ n2 − 1, if ai,n ∈ {a, b, a1,n, . . . , ai−1,n}, then we find a symbol ai,j (for
some j, ⌈n

3
⌉ < j ≤ n − 1) such that ai,j 6∈ {a, b, a1,n, . . . , ai−1,n} (such an ai,j exists by the

pigeon-hole principle). Then swap ai,n and ai,j.

Observe that the transformed square is still a type-1 RPA(n). Define Z = {a1,n, . . . , an2−1,n} and
define W = {1, . . . , n} \ (Z ∪ {a, b}). Then |Y | = |Z| = n2 − 1 and |X| = |W | = n2 − 2.

Now, let π : {1, . . . , n} → {1, . . . , n} be any bijection in which π(X) = W , π(Z) = Y , π(a) = b
and π(b) = a. Then define an n × n array B = (bi,j) as follows:

bi,j =

{

ai,j if i ≤ n2

π(an+1−i,n+1−j) if i > n2.

We claim that B is a type-1, 4 RPA(n). Most of the verifications are straightforward. The only
tricky points are to ensure that the n × 1 and n2 × 2 basic rectangles in the lower right corner of
B contains all n symbols. The n × 1 basic rectangle in the lower right corner of B is just the last

9

column of B, which contains the symbols in Z ∪ {b} ∪ π(X) ∪ {π(b)} = {1, . . . , n}. Let U be the
n2 × 2 basic rectangle in the upper left corner of A. The n2 × 2 basic rectangle in the lower right
corner of B, say L, contains the symbol b together with the image of the first n2 − 1 rows of U
under the bijection π. Because U is canonical, it follows that the first n2 − 1 rows of U contain
all the symbols in {1, . . . , n} \ {a}, and hence the last n2 − 1 rows of L contain all the symbols in
{1, . . . , n} \ {b}. The desired result follows.

4 A Construction for type-1, 2 RPA(n)

4.1 Some Properties of Basic Rectangles

As before, we denote the number of basic rectangles by b. For 1 ≤ k ≤ b, the kth basic rectangle

has dimensions rk × ck, where ck =
⌈

n
rk

⌉

and we assume that r1 < r2 < · · · < rb. The proof of the

following lemma is straightforward.

Lemma 4.1. Let σ = ⌈√n⌉.

1. Suppose n ≤ σ(σ − 1). Then b = 2σ − 2. For 1 ≤ k ≤ σ − 1, we have rk = k and ck =
⌈

n
k

⌉

.
For σ ≤ k ≤ 2σ − 2, we have ck = r2σ−1−k and rk = c2σ−1−k.

2. Suppose n > σ(σ − 1). Then b = 2σ − 1. For 1 ≤ k ≤ σ, we have rk = k and ck =
⌈

n
k

⌉

. For
σ + 1 ≤ k ≤ 2σ − 1, we have ck = r2σ−k and rk = c2σ−k.

Remark: The two cases are distinguished by the fact that in case 2, one of the basic rectangles is
a ⌈√n⌉ × ⌈√n⌉ square.

Lemma 4.2. For 2 ≤ k ≤ b − 2, we have that ck < 2ck+1.

Proof. We will prove that ck+1 > ck/2 except when k ∈ {1, b−1} and n is even, or when k = b−1 and
n is odd (in these cases, ck+1 = ck/2). The only cases that are not obvious are when 2 ≤ k ≤ σ−1.
In these cases, what we want to prove is that

⌈

n

k + 1

⌉

>
1

2

⌈n

k

⌉

.

We will prove the stronger result that

n

k + 1
>

1

2

⌈n

k

⌉

.

Let n = qk − s, where 0 ≤ s ≤ k − 1. Then

⌈n

k

⌉

= q.

So the inequality to be proven is
2n > q(k + 1).

We will prove this by contradiction. Suppose that 2n ≤ q(k + 1). Since n = qk − s, we have that

2(qk − s) ≤ q(k + 1),

10

or
q(k − 1) ≤ 2s.

Since s ≤ k − 1, we get
q(k − 1) ≤ 2(k − 1),

and hence
(q − 2)(k − 1) ≤ 0.

This can occur only if k ∈ {0, 1} or q ∈ {1, 2}. The first case does not occur because k ≥ 2. In the
second case, we have

n ≤ 2k − s ≤ 2k ≤ 2(σ − 1),

which is a contradiction for n ≥ 2. So the second case does not occur, either.

4.2 The Basic Idea

For the time being, we assume that n is even. A promising way to attempt to construct a type-1, 2
RPA(n) is to impose some additional structure on a type-1 RPA(n) so that it is in fact a type-1, 2
RPA(n). We consider arrays A = (ai,j) where, for all 1 ≤ i, j ≤ n, it holds that

ai,j + ai,n+1−j = n + 1. (1)

Suppose we run the algorithm described in Figure 1, ensuring that, at the end of step b, no row
contains two symbols that sum to n+1 (except for the first row, which is already a permutation of
the n symbols). If this can be done, then we can easily fill in the rest of A to construct a type-1, 2
RPA(n). This is done in two stages. First, for every filled cell (i, j), we define ai,n+1−j = n+1−ai,j .
At this point, no row contains any symbol more than once, so it is then a simple matter to complete
each row to a permutation of the n symbols.

We illustrate by constructing a type-1, 2 RPA(8).

Example 4.1. Suppose n = 8. The basic rectangles have dimensions 1× 8, 2× 4, 3× 3, 4× 2, and
8 × 1.

step 1

We begin by filling in the 1 × 8 basic rectangle (i.e., the first row of A):

1 2 3 4 5 6 7 8

step 2

Next, we consider the 2 × 4 basic rectangle. We place the symbols 5, 6, 7, 8 in the first four
cells of the second row of this rectangle, noting that no two of these symbols sum to 9:

1 2 3 4 5 6 7 8

5 6 7 8

11

step 3

Now we turn to the 3 × 3 basic rectangle, filling in the first two cell of the third row with the
symbols 4 and 8 (note that 4 + 8 6= 9):

1 2 3 4 5 6 7 8

5 6 7 8

4 8

step 4

Next, we look at the 4 × 2 basic rectangle. We have to fill in the symbols 3 and 7 (note that
3 + 7 6= 9):

1 2 3 4 5 6 7 8

5 6 7 8

4 8

3 7

step 5

The last basic rectangle has dimensions 8 × 1. It is completed by filling in the symbols 2, 6, 8
and 7 into the first cells in the last four rows:

1 2 3 4 5 6 7 8

5 6 7 8

4 8

3 7

2

6

8

7

step 6

Now, we “reflect” each row to ensure that (1) holds:

1 2 3 4 5 6 7 8

5 6 7 8 1 2 3 4

4 8 1 5

3 7 2 6

2 7

6 3

8 1

7 2

step 7

Finally, we fill in all remaining cells in such a way that each row is a permutation. (We can

12

continue to require that (1) holds, if desired, but it is not necessary in this final step.)

1 2 3 4 5 6 7 8

5 6 7 8 1 2 3 4

4 8 2 3 6 7 1 5

3 7 1 4 5 8 2 6

2 1 3 4 5 6 8 7

6 1 2 4 5 7 8 3

8 2 3 4 5 6 7 1

7 1 3 4 5 6 8 2

In general, the above strategy will not always work, since we may be forced to fill in two elements
in a row of a basic rectangle that sum to n + 1. So we need to do something a bit more clever.

4.3 The Construction Strategy

We are going to construct a sequence of canonical basic rectangles Rk, 2 ≤ k ≤ b− 2, which satisfy
the following additional properties:

For any two symbols a, b in the same row of Rk, it holds that a + b 6= n + 1. (2)

For any two symbols a, b in the last ck − ck+1 columns of Rk, it holds that a + b 6= n + 1. (3)

A canonical rectangle that satisfies (2) and (3) will be termed a sum-free canonical basic rectangle.
The property (3) will help to ensure that, when we copy symbols from the basic rectangle Rk

(k 6∈ {1, k − 1}) to the next basic rectangle, Rk+1, we will not have a pair of symbols in a row that
sum to n + 1 (so Rk+1 will therefore satisfy property (2)).

In order to achieve property (3), we will carry out a sequence of operations of the following type:
we define a simple exchange operation (SE) on a canonical basic rectangle to consist of a swap of
two non-empty cells in the same row of the rectangle. It is obvious that the following lemma holds.

Lemma 4.3. A canonical basic rectangle is still a canonical basic rectangle after an SE operation.

Assume 2 ≤ k ≤ b−2. Suppose a canonical basic rectangle Rk is divided into two parts leftk and
rightk, where leftk consists of the first ck+1 columns of Rk and rightk consists of the last ck − ck+1

columns of Rk. Note that leftk has more columns than rightk, by Lemma 4.2.
We form a graph Gk whose vertices are the n non-empty cells in Rk, where two cells are joined

by an edge if the symbols in the two cells sum to n + 1. Observe that Gk consists of n/2 disjoint
edges, and no two cells in a row of Rk form an edge in Gk.

Partition all the edges of Gk into three classes:

type A edges Both endpoints are in rightk.

type B edges One endpoint is in leftk and the other endpoint is in rightk.

type C edges Both endpoints are in leftk.

Lemma 4.4. Suppose k 6∈ {1, b − 1}, Rk is a canonical basic rectangle, and leftk, rightk and Gk

are as defined above. Let I denote any i rows of Rk, where 1 ≤ i ≤ rk. Then at least one of the
following conditions holds:

13

1. There is at least one edge of type C in Gk, where one or both endpoints of the edge are in
rows in I.

2. There is an edge of type B in Gk where one endpoint is in I ∩ leftk and the other endpoint is
in Ic ∩ rightk (where Ic denotes the set of rows of Rk disjoint from I).

Remark: We observe that case 2 cannot occur if i = rk, because Ic = ∅.

Proof. Suppose case 1 does not occur. Then all the edges with an endpoint in I∩ leftk are of type B.
However, the number of cells in I ∩ leftk is greater than the number of cells in I ∩ rightk. Therefore
one of these edges has an endpoint in a row of rightk that is not in I.

The main step in our construction is given in the following lemma.

Lemma 4.5. Suppose k 6∈ {1, b− 1} and suppose we have a canonical basic rectangle Rk, such that
any elements a, b within a row satisfy a + b 6= n + 1. Then there exists a sum-free canonical basic
rectangle R′

k obtained from Rk by a sequence of SE operations.

Proof. Define leftk, rightk and Gk as above. Let ak denote the number of edges of type A in Gk.
We are going to prove that if ak > 0, then we can use SE operations to reduce ak by at least one.
Therefore a sequence of SE operations will reduce ak to 0.

Suppose ak > 0 and let x1y1 be an edge of type A. Suppose x1 is in row i1 and y1 is in row i2.
Define I = I1 = {i1, i2} and apply Lemma 4.4. There are two possible cases, at least one of which
must arise.

case 1 There is an edge x2y2 of type C where x2 is in row i1 or i2.

case 2 There is an edge x2y2 of type B with x2 ∈ I1 ∩ leftk and y2 ∈ Ic
1 ∩ rightk.

If case 1 occurs, then we stop. Otherwise, in case 2, we let i3 be the row containing y2, set
I = I2 = {i1, i2, i3} and apply Lemma 4.4 again. Again there are two cases: either we get an edge
of type C with at least one endpoint in I2, or we get an edge x3y3 of type B with x3 ∈ I2∩ leftk and
y3 ∈ Ic

2 ∩ rightk. In the first case, we stop, while in the second case, we let i4 be the row containing
y3, set I = I3 = {i1, i2, i3, i4} and apply Lemma 4.4 again. We continue this process until we first
reach a situation where we find a type C edge xjyj, which must happen eventually (see the Remark
following Lemma 4.4).

Thus we get a sequence of edges x1y1, x2y2, . . . , xjyj which satisfy the following properties:

• x1 is in row i1 of rightk and y1 is in row i2 of rightk.

• x2 is in row i1 or i2 of leftk and y2 is in row i3 of rightk, where i3 6∈ {i1, i2}.

• . . .

• xj−1 is in one of rows i1, i2, . . . , ij−1 of leftk and yj−1 is in row ij of rightk, where ij 6∈
{i1, i2, . . . , ij−1}.

• xj is in one of rows i1, i2, . . . , ij of leftk and yj is in leftk.

Now we proceed “backwards”, identifying a certain subset of the edges E = {x1y1, x2y2, . . . , xjyj}.
Denote X = {x1, . . . , xj} and Y = {y1, . . . , yj}.

14

• Start by selecting the edge xjyj . Then define e1 = xj and f1 = yj.

• Select the edge xy ∈ E where x ∈ X , y ∈ Y and y is in the same row as e1. Then define
e2 = x and f2 = y.

• Select the edge xy ∈ E where x ∈ X , y ∈ Y and y is in the same row as e2. Then define
e3 = x and f3 = y.

• . . .

• Eventually, we will reach a situation where eℓ−1 ∈ X , and either x1 or y1 is in the same row
as eℓ−1. If y1 is in the same row as eℓ−1, then define eℓ = x1 and fℓ = y1; otherwise (if x1 is
in the same row as eℓ−1), define eℓ = y1 and fℓ = x1.

Observe that e1f1 is of type C, eℓfℓ is of type A, and the remaining ℓ − 2 selected edges are of
type B.

Now we swap e1 and f2; we swap e2 and f3; and we continue swapping pairs of vertices, ending
by swapping eℓ−1 and fℓ. (The only two vertices in the selected edges that are not swapped with
some other vertex are f1 and eℓ.) The result is that the selected edges of types A and C become
edges of type B, and the other edges remain as type B edges.

We need another preliminary lemma before we present the algorithm to construct a type-1, 2
RPA(n).

Lemma 4.6. Suppose w > bL ≥ · · · ≥ b1 are positive integers and suppose d is a positive integer.
Denote b =

∑L
i=1

bi and suppose that

0 ≤ t ≤ (L + d)w − b. (4)

Suppose B1, . . . , BL are pairwise disjoint sets such that |Bi| = bi for 1 ≤ i ≤ L. Finally, suppose
that |B| = t. Then there exists a partition

B =

(

L
⋃

i=1

Ci

)

⋃

(

d
⋃

i=1

Di

)

,

where the following properties are satisfied:

1. w ≥ bL + |CL| ≥ bL−1 + |CL−1| ≥ · · · ≥ b1 + |C1| ≥ |D1| ≥ · · · ≥ |Dd|.

2. Ci ∩ Bi = ∅ for 1 ≤ i ≤ L.

Remark: The inequality (4) is an obvious necessary condition for the desired partition to exist,
so this lemma in fact gives necessary and sufficient conditions for the stated conclusion to be true.

Proof. We will denote an instance of this problem by a tuple of the form (L,w, d, b;B1, . . . , BL; t).
We prove the desired result by induction on L.

If L = 0, then (4) guarantees that 0 ≤ t ≤ dw, and the result is obvious. Suppose L > 0. The
strategy will be to choose CL so |CL| is as large as possible, and then apply induction.

We distinguish three cases:

15

case 1 t ≥ w.

Here we have |B \BL| ≥ t− bL ≥ w− bL. Choose CL ⊆ B \BL with |CL| = w− bL, and note
that bL + |CL| = w. We now define a smaller instance I ′ = (L′, w′, d′, b′;B′

1, . . . , B
′
L′ ; t′) of

the same problem where L′ = L − 1, w′ = w, d′ = d, B′
1 = B1, . . . , B

′
L′ = BL−1, b′ = b − bL,

B′ = B \ CL and t′ = |B′| = t − w + bL.

We need to verify that 0 ≤ t′ ≤ (L′ + d′)w′ − b′, which is equivalent to 0 ≤ t − w + bL ≤
(L − 1 + d)w − (b − bL), or w − bL ≤ t ≤ (L + d)w − b, which follows immediately from (4),
since t ≥ w. Therefore, by induction, we can solve the instance I ′. The solution to I ′, along
with CL, is a solution to I.

case 2 t ≤ bL.

Here we define CL = ∅. We now define the instance I ′ = (L′, w′, d′, b′;B′
1, . . . , B

′
L′ ; t′) where

L′ = L − 1, w′ = bL, d′ = d, B′
1 = B1, . . . , B

′
L′ = BL−1, b′ = b − bL, B′ = B and t′ = t.

We need to verify that 0 ≤ t′ ≤ (L′ +d′)w′− b′, which is equivalent to 0 ≤ t ≤ (L−1+d)bL −
(b − bL), or 0 ≤ t ≤ (L + d)bL − b. We have that

(L + d)bL − b = dbL +

L
∑

i=1

(bL − bi)

≥ bL + 0

≥ t,

as desired. Therefore, by induction, we can solve the instance I ′. The solution to I ′, along
with CL, is a solution to I.

case 3 bL < t < w.

Here we have |B \ BL| ≥ t − bL. Choose CL ⊆ B \ BL with |CL| = t − bL, and note that
bL + |CL| = t. We now define the instance I ′ = (L′, w′, d′, b′;B′

1, . . . , B
′
L′ ; t′) where L′ = L−1,

w′ = t, d′ = d, B′
1 = B1, . . . , B

′
L′ = BL−1, b′ = b − bL, B′ = B \ CL and t′ = bL.

We need to verify that 0 ≤ t′ ≤ (L′ + d′)w′ − b′, which is equivalent to 0 ≤ bL ≤ (L − 1 +
d)t − (b − bL), or 0 ≤ (L − 1 + d)t − b. We have that

(L − 1 + d)t − b = (d − 1)t +

L
∑

i=1

(t − bi)

≥ (d − 1)t + 0

≥ 0,

as desired. Therefore, by induction, we can solve the instance I ′. The solution to I ′, along
with CL, is a solution to I.

We now describe how to make use of Lemma 4.6 when we are copying symbols from one basic
rectangle to the next one. Let the kth basic rectangle be denoted by R, where k ≥ 2, and let the
previous basic rectangle be denoted by R′. Let S denote the set of symbols in R′\R. We want to
copy the symbols in S into the empty cells R so that R is canonical and no pair of symbols in a

16

row of R sum to n + 1. If two symbols x and y in a row of R sum to n + 1, then exactly one of x, y
is in S. So we just need to ensure that we never place a symbol y ∈ S in a row of R that already
contains the symbol x = n + 1 − y.

Consider the state of R just before the symbols in S are copied into R. Suppose there are L
non-empty non-filled rows of R, which contain bL, . . . , b1 elements, where bL ≥ · · · ≥ b1. Name
these rows rL, . . . , r1, respectively, and note that rL is the “first” of these L rows. Further, suppose
there are d empty rows in R, which will immediately follow row r1; note that d ≥ 1. For 1 ≤ i ≤ L,
define

Bi = {n + 1 − y : y is in a cell in row ri of R}.
It is clear that the Bi’s are pairwise disjoint. Let w denote the number of columns in R, let B = S,
and apply Lemma 4.6. The resulting partition of B determines how the elements in S can be copied
into R so that the desired properties are satisfied.

The algorithm presented in Figure 2 constructs a type-1, 2 RPA(n) for even n by suitably
modifying the algorithm presented in Figure 1. Here is a small example to illustrate Algorithm 2.

Example 4.2. Suppose n = 10. The basic rectangles have dimensions 1 × 10, 2 × 5, 3 × 4, 4 × 3,
5 × 2 and 10 × 1.

step 1

We begin by filling in the 1 × 10 basic rectangle:

1 2 3 4 5 6 7 8 9 10

step 2

Next, we complete the 2 × 5 basic rectangle:

1 2 3 4 5 6 7 8 9 10

6 7 8 9 10

step 3

Now we complete the 3 × 4 basic rectangle:

1 2 3 4 5 6 7 8 9 10

6 7 8 9 10

5 10

step 4

The 4 × 3 basic rectangle is now filled in:

1 2 3 4 5 6 7 8 9 10

6 7 8 9 10

5 10 4

9

The next basic rectangle has dimensions 5×2. At this point, right4 consists of a single column
containing the three symbols 3, 8, and 4. Since 3 + 8 = 11, we need to perform one or more

17

step 1

Fill in the first basic rectangle, having dimensions 1 × n, from left to
right with symbols 1, 2, . . . , n.

step 2 through step b

For each k, 2 ≤ k ≤ b, do the following:

1. Let the kth basic rectangle be denoted by R.

2. Let the previous basic rectangle be denoted by R′.

3. Let S denote the set of symbols in R′\R.

4. Copy the symbols in S into the empty cells R in such a way that
properties (*) and (2) are satisfied.

5. If k 6= b, then (if necessary) perform a sequence of SE operations
so that property (3) is satisfied; then R is a sum-free canonical
basic rectangle. Whenever an SE operation is performed on two
cells in the first row, say cells (1, i) and (1, j), we also perform an
SE operation on cells (1, n + 1 − i) and (1, n + 1 − j).

reflection step

For each non-empty cell (i, j) in rows 2, . . . , n of A, define

ai,n+1−j = n + 1 − ai,j.

final step

Fill in the empty cells in every row of A to form a permutation of the
n symbols.

Figure 2: Algorithm to construct a type-1, 2 RPA(n) for even n.

SE operations. The edge {3, 8} is of type A and we see that {1, 10} is an edge of type C. Here
we just swap 1 and 3. Since these cells are in the first row, we also swap 8 and 10, obtaining
the following:

3 2 1 4 5 6 7 10 9 8

6 7 8 9 10

5 10 4

9

18

step 5

Now we can fill in the 5 × 2 basic rectangle:

3 2 1 4 5 6 7 10 9 8

6 7 8 9 10

5 10 4

9 1

8 4

The remaining steps are straightforward.

We summarise the results of this section in the following theorem.

Theorem 4.7. The algorithm presented in Figure 2 produces a type-1, 2 RPA(n) for any even
positive integer n.

Proof. The first basic rectangle, R1, is initially filled in with the integers 1, . . . , n from left to right.
The second basic rectangle initially contains 1, . . . , n/2 in its first row and n/2 + 1, . . . , n in its
second row.

For k = 2, 3, . . . , b− 3, when proceeding from Rk to Rk+1, Lemma 4.6 guarantees that property
(2) can be satisfied in Rk+1. Then Lemma 4.5 shows, from a succession of SE operations, that
Rk+1 can be made to also satisfy property (3). Hence R1, R2, . . . , Rb−2 are sum-free canonical basic
rectangles.

Now Rb−1 satisfies (2) but it might not satisfy property (3). However, this does not matter
because Rb has only one column and hence (2) will automatically be satisfied in Rb. When we
carry out the “reflection” step, every basic rectangle in the upper right corner is the image of a
basic rectangle in the upper left corner under the mapping i 7→ n + 1− i, and therefore it contains
all n symbols. Also, after the reflection step, no symbol occurs twice in a row, so the final step is
straightforward.

The following result is an immediate corollary of Theorems 2.7 and 4.7.

Corollary 4.8. For all even integers n ≥ 2, there exists a type-1, 2, 3, 4 RPA(n).

4.4 A Modified Construction for Odd n

When n is odd, we need to alter the algorithm presented in Figure 2 slightly. The modified algorithm
is presented in Figure 3. The modified algorithm is very similar to the previous algorithm. The
only changes are the swap of two symbols in step 1, and the reflection step.

Example 4.3. Suppose n = 9. The basic rectangles have dimensions 1× 9, 2× 5, 3× 3, 5× 2 and
9 × 1.

step 1

We begin by filling in the 1 × 9 basic rectangle and swapping symbols 1 and 5:

5 2 3 4 1 6 7 8 9

19

step 1

Denote n2 = (n + 1)/2. Fill in the first basic rectangle, having dimen-
sions 1×n, from left to right with symbols 1, 2, . . . , n. Then interchange
the symbols 1 and n2.

step 2 through step b

For each k, 2 ≤ k ≤ b, do the following:

1. Let the kth basic rectangle be denoted by R.

2. Let the previous basic rectangle be denoted by R′.

3. Let S denote the set of symbols in R′\R.

4. Copy the symbols in S into the empty cells R in such a way that
properties (*) and (2) are satisfied.

5. If k 6= b, then (if necessary) perform a sequence of SE operations
so that property (3) is satisfied; then R is a sum-free canonical
basic rectangle. Whenever an SE operation is performed on two
cells in the first row, say cells (1, i) and (1, j), we also perform an
SE operation on cells (1, n + 1 − i) and (1, n + 1 − j).

reflection step

Define π : {1, . . . , n} → {1, . . . , n} as follows:

π(i) =

n + 1 − i if i 6∈ {1, n2}
n2 if i = 1

n if i = n2.

For each non-empty cell (i, j) in rows 2, . . . , n of A, define

ai,n+1−j = π(ai,j).

final step

Fill in the empty cells in every row of A to form a permutation of the
n symbols.

Figure 3: Algorithm to construct a type-1, 2 RPA(n) for odd n.

20

step 2

Next, we complete the 2 × 5 basic rectangle:

5 2 3 4 1 6 7 8 9

6 7 8 9

The next basic rectangle has dimensions 3 × 3. At this point, right2 consists two columns
containing the three symbols 1, 4, and 9. Since 1 + 9 = 10, we need to perform one or more
SE operations. The edge {1, 9} is of type A and {3, 7} is an edge of type C. Here we just
swap 7 and 9, obtaining the following:

5 2 3 4 1 6 7 8 9

6 9 8 7

step 3

Now we complete the 3 × 3 basic rectangle:

5 2 3 4 1 6 7 8 9

6 9 8 7

7 4 1

step 4

The 5 × 2 basic rectangle is now filled in:

5 2 3 4 1 6 7 8 9

6 9 8 7

7 4 1

3 8

1

step 5

Now we can fill in the 9 × 1 basic rectangle:

5 2 3 4 1 6 7 8 9

6 9 8 7

7 4 1

3 8

1

2

9

4

8

21

reflection step

5 2 3 4 1 6 7 8 9

6 9 8 7 3 2 1 4

7 4 1 5 6 3

3 8 2 7

1 5

2 8

9 1

4 6

8 2

Theorem 4.9. The algorithm presented in Figure 3 produces a type-1, 2 RPA(n) for any odd
positive integer n.

Proof. The first basic rectangle, R1, contains integers 1, . . . , n. The second basic rectangle contains
1, . . . , n2 in its first row and n2 +1, . . . , n in its second row. The 2×n2 rectangle in the upper right
corner contains 1 and n2 + 1, . . . , n in its first row and 1, . . . , n2 in its second row (note that the
middle cell in the second row contains n2 after the final step). Each basic rectangle R3, . . . contains
all n symbols, as in the proof of the previous algorithm. Each corresponding basic rectangle in the
upper right corner is the image of a basic rectangle under the bijection π, so it also contains all n
symbols. Finally, after the reflection step, no symbol occurs twice in a row (here we use the easily
verified fact that the symbol n2 only occurs in the first cell of the first row, and it is never moved
by any SE operation), so the final step is straightforward.

The next corollary is an immediate consequence of Theorems 4.7 and 4.9.

Corollary 4.10. For all positive integers n, there exists a type-1, 2 RPA(n).

5 Latin RPAs

In this section, we present some results on latin RPAs, which we denote as LRPAs. It is obvious
that Theorems 2.1, 2.2, 2.3, 2.4 and 2.5 hold for LRPAs . In contrast, the proofs of Theorems 2.6,
2.7 and 2.8 do not seem to be easily generalisable to LRPAs. However, we have a result that applies
to certain latin RPAs that does not necessarily hold for non-latin RPAs.

Theorem 5.1. Suppose that A is a type-1, 2 LRPA(n) and B is obtained from A by reflecting A
in its main diagonal. Then B is a type-1, 3 LRPA(n). Conversely, if B is a type-1, 3 LRPA(n) and
A is obtained from B by reflecting B in its main diagonal, then A is a type-1, 2 LRPA(n).

The next four corollaries give the weakest types we know of that will produce an LRPA of each
specified type.

Corollary 5.2. If there exists a type-1 LRPA(n), then the following arrays exist: a type-2 LRPA(n),
a type-3 LRPA(n) and a type-4 LRPA(n).

Corollary 5.3. If there exists a type-1, 2 LRPA(n), then the following arrays exist: a type-3, 4
LRPA(n), a type-1, 3 LRPA(n) and a type-2, 4 LRPA(n).

22

Figure 4: A type-1, 2, 3, 4 LRPA(6)

1 2 3 4 5 6

4 5 6 1 2 3

3 6 5 2 1 4

2 1 4 3 6 5

5 4 1 6 3 2

6 3 2 5 4 1

Figure 5: A type-1, 2, 3, 4 LRPA(8)

1 2 3 4 5 6 7 8

5 6 7 8 1 2 3 4

8 4 6 2 7 3 5 1

7 3 5 1 8 4 6 2

2 1 4 3 6 5 8 7

6 5 8 7 2 1 4 3

4 8 2 6 3 7 1 5

3 7 1 5 4 8 2 6

Corollary 5.4. If there exists a type-1, 4 LRPA(n), then a type-2, 3 LRPA(n) exists.

Corollary 5.5. If there exists a type-1, 2, 3 LRPA(n), then the following arrays exist: a type-1, 2, 4
LRPA(n), a type-1, 3, 4 LRPA(n) and a type-2, 3, 4 LRPA(n).

5.1 Some small LRPAs

We begin by observing that any latin square of order 2 or 3 is automatically a type-1, 2, 3, 4
LRPA(2) or type-1, 2, 3, 4 LRPA(3), respectively. Furthermore, any type-1 LRPA(4) is a type-
1, 2, 3, 4 LRPA(4).

Finding general constructions for LRPAs seems to be quite difficult. However, several small
examples of LRPAs for even n are presented in Figures 4–8 (Figures 6–8 can be found in the
Appendix). The LRPAs in Figures 4–8 all satisfy the symmetry condition (1), i.e., that ai,j +
ai,n+1−j = n+1. In addition, the LRPAs in Figures 5–8 have a symmetry about the main diagonal,
which we describe now. For the type-1, 2, 3, 4 LRPA(8), define the permutation π as follows (π is
given in disjoint cycle representation):

π = (1)(2 5)(3 8)(4 7)(6).

Then it can be verified that the following condition holds for all i, j:

ai,j = π(aj,i). (5)

The LRPAs of orders 10, 12 and 14 satisfy similar symmetry properties.
We also have constructed type-1, 2, 3, 4 LRPA(n) for n ∈ {3, 5, 7, 9}; see Figures 9–12 in the

Appendix. It is interesting to note that any type-1, 2, 3, 4 LRPA(9) is in fact a Sudoku square.

23

5.2 A Construction for type-1, 2, 3, 4 LRPA(n) for n = 16 and 36

One possible approach to constructing LRPAs is to make use of the following lemma:

Lemma 5.6. Let n ≥ 2 be even, and suppose there exists an n
2
× n

2
latin square S with the property

that for all i with 2 ≤ i ≤ n
2
, the i× ⌈n

i
⌉ rectangle in the upper left hand corner of S contains each

of the symbols from 1 to n
2

at least twice. Then there exists a type-1, 2, 3, 4 LRPA(n).

Proof. We construct a type-1, 2, 3, 4 LRPA(n), A, from S as follows:

step 1

Each of the i×⌈n
i
⌉ rectangles in the upper left hand corner of S contains each symbol x with

1 ≤ x ≤ n
2

twice. By considering each such rectangle in turn and replacing appropriately
chosen copies of x by n + 1− x we show that we can construct a new array S′ for which each
of the i× ⌈n

i
⌉ rectangles in the upper left hand corner contain each of the symbols from 1 to

n. This is done as follows.

For each symbol x, we need to decide which occurrences of x to replace by n + 1− x. We do
this by constructing a certain bipartite graph whose vertices are the cells containing x, and
then 2-colouring the vertices of the graph.

Consider the cells containing x in the union of all the i × ⌈n
i
⌉ rectangles. Suppose they are

cells (ri, ci), 1 ≤ i ≤ L, where r1 < r2 < · · · < rL. We construct a directed graph D on
vertex set {1, . . . , L} as follows. For 2 ≤ i ≤ L, we have an arc from vertex i to j, where
cj = min{c1, . . . , ci−1} (i.e., rj is the row of the leftmost vertex “above” vertex i).

Every vertex 2, . . . , L in D has outdegree 1, and every arc is directed from a higher-numbered
vertex to a lower-numbered vertex. Therefore the underlying undirected graph G is a tree.
Hence G is bipartite and we can colour the vertices with two colours, say red and blue, such
that there are no monochromatic edges. For every red vertex, replace x by n + 1 − x in S,
and call the resulting array S′.

Now we prove that this works. Consider an i×⌈n
i
⌉ rectangle R. Let s be the highest-numbered

vertex of D in R. Suppose s is directed to vertex t. Since R contains at least two vertices of
D by assumption, it follows that t is also in R. the vertices s and t have different colours, so
one of the occurrences of x in R is relabelled to n + 1 − x.

Note that S′ still has the property that any symbol appears at most once in each row and
each column. Furthermore, the fact that S was a latin square of order n/2 implies that x and
n + 1 − x never appear in the same row or in the same column.

step 2

Now we let S′ form the top left corner of A, and “reflect” it by applying the symmetry
condition (1), to fill in the top right corner of A. Finally, we carry out a similar reflection
vertically to fill in the rest of A. The result is an LRPA that is symmetric under rotation
through 180 degrees.

Example 5.1. We given an example of an 8 × 8 latin square S with the required properties. Note
that the shaded cells are cells that are contained in basic rectangles in the resulting 16 × 16 latin

24

square.
1 2 3 4 7 8 6 5

2 5 6 7 4 1 3 8

3 6 5 8 1 2 4 7

4 7 8 1 2 3 5 6

7 4 1 2 5 6 8 3

8 1 2 3 6 5 7 4

6 3 4 5 8 7 1 2

5 8 7 6 3 4 2 1

We now adjust the entries in the top left rectangles so that each rectangle contains all the numbers
from 1 to 16:

1 2 3 4 10 9 11 12

15 5 6 7 13 16 14 8

14 11 12 8 16 2 4 7

13 10 9 16 2 3 5 6

7 4 16 2 5 6 8 3

8 16 2 3 6 5 7 4

6 3 4 5 8 7 1 2

12 9 7 6 3 4 2 1

Finally, we “reflect” the result to obtain a type-1, 2, 3, 4 LRPA(16):

1 2 3 4 10 9 11 12 5 6 8 7 13 14 15 16

15 5 6 7 13 16 14 8 9 3 1 4 10 11 12 2

14 11 12 8 16 2 4 7 10 13 15 1 9 5 6 3

13 10 9 16 2 3 5 6 11 12 14 15 1 8 7 4

7 4 16 2 5 6 8 3 14 9 11 12 15 1 13 10

8 16 2 3 6 5 7 4 13 10 12 11 14 15 1 9

6 3 4 5 8 7 1 2 15 16 10 9 12 13 14 11

12 9 7 6 3 4 2 1 16 15 13 14 11 10 8 5

5 8 10 11 14 15 15 16 1 2 4 3 5 7 9 12

11 14 13 12 9 10 16 15 2 1 7 8 5 4 3 6

9 1 15 14 11 12 10 13 4 7 5 6 3 2 16 8

10 13 1 15 12 11 9 14 3 8 6 5 2 16 4 7

4 7 8 1 15 14 12 11 6 5 3 2 16 9 10 13

3 6 5 9 1 15 13 10 7 4 2 16 8 12 11 14

2 12 11 10 4 1 3 9 8 14 16 13 7 6 5 15

16 15 14 13 7 8 6 5 12 11 9 10 4 3 2 1

This approach was used to generate the type-1, 2, 3, 4 LRPA(36) that is presented in Figure 13
in the Appendix.

6 Open Problems

We mention two open problems.

25

1. Does there exist a type-1, 2, 3, 4 RPA(n) for all odd positive integers n? One potential way
to prove this would be to generalise Theorem 2.7 to odd n.

2. At the present time, there is no known infinite class of type-1 LRPA(n). However, we do not
hesitate to conjecture that type-1, 2, 3, 4 LRPA(n) exist for all positive integers n.

Acknowledgements

Thanks to Michael Dinitz for bringing this problem to our attention.

References

[1] C.J. Colbourn and K.E. Heinrich. Conflict-free access to parallel memories, Journal of Parallel
and Distributed Computing 14 (1992), 193–200.

[2] D.L. Erickson and C.J. Colbourn. Conflict-free access to rectangular subarrays, Congressus
Numerantium 90 (1992), 239–253.

[3] Li Erran Li, Junliang Liu, Kun Tan, Harish Viswanathan, and Yang Richard Yang. Retransmis-
sion 6= repeat: simple retransmission permutation can resolve overlapping channel collisions,
Eighth ACM Workshop on Hot Topics in Networks (HotNets-VIII), 2009.

[4] R.A. Bailey, Peter Cameron and Robert Connelly. Sudoku, gerechte designs, resolutions, affine
space, spreads, reguli, and Hamming codes, American Mathematical Monthly, Volume 115,
Number 5, May 2008, pp 383–404.

A Some Examples of type-1, 2, 3, 4 LRPA(n)

Figure 6: A type-1, 2, 3, 4 LRPA(10)

1 2 3 4 5 6 7 8 9 10

6 7 8 9 10 1 2 3 4 5

3 4 10 5 9 2 6 1 7 8

8 9 5 1 4 7 10 6 2 3

5 10 9 8 7 4 3 2 1 6

2 1 6 7 8 3 4 5 10 9

7 6 2 10 3 8 1 9 5 4

4 3 1 2 6 5 9 10 8 7

9 8 7 6 1 10 5 4 3 2

10 5 4 3 2 9 8 7 6 1

26

Figure 7: A type-1, 2, 3, 4 LRPA(12)

1 2 3 4 5 6 7 8 9 10 11 12

7 8 9 10 11 12 1 2 3 4 5 6

6 11 5 12 3 9 4 10 1 8 2 7

10 4 12 8 7 2 11 6 5 1 9 3

5 9 6 2 12 10 3 1 11 7 4 8

3 12 11 7 4 5 8 9 6 2 1 10

2 1 10 9 6 8 5 7 4 3 12 11

8 7 4 3 1 11 2 12 10 9 6 5

11 6 1 5 9 3 10 4 8 12 7 2

4 10 8 1 2 7 6 11 12 5 3 9

9 5 7 11 10 1 12 3 2 6 8 4

12 3 2 6 8 4 9 5 7 11 10 1

Figure 8: A type-1, 2, 3, 4 LRPA(14)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

8 9 10 11 12 13 14 1 2 3 4 5 6 7

7 13 14 5 6 3 11 4 12 9 10 1 2 8

4 6 12 14 2 5 8 7 10 13 1 3 9 11

12 5 11 8 1 9 2 13 6 14 7 4 10 3

11 10 7 12 9 1 13 2 14 6 3 8 5 4

3 14 6 2 8 10 4 11 5 7 13 9 1 12

2 1 4 3 10 8 6 9 7 5 12 11 14 13

9 8 5 13 11 14 12 3 1 4 2 10 7 6

13 7 9 10 14 11 3 12 4 1 5 6 8 2

6 4 13 1 3 7 10 5 8 12 14 2 11 9

5 12 1 7 4 2 9 6 13 11 8 14 3 10

10 11 8 9 13 12 1 14 3 2 6 7 4 5

14 3 2 6 7 4 5 10 11 8 9 13 12 1

Figure 9: A type-1, 2, 3, 4 LRPA(3)

1 2 3

2 3 1

3 1 2

27

Figure 10: A type-1, 2, 3, 4 LRPA(5)

1 2 3 4 5

4 5 1 2 3

3 4 2 5 1

2 3 5 1 4

5 1 4 3 2

Figure 11: A type-1, 2, 3, 4 LRPA(7)

1 2 3 4 5 6 7

5 6 7 1 2 3 4

4 3 2 7 6 1 5

7 5 1 6 3 4 2

2 4 6 5 1 7 3

3 1 4 2 7 5 6

6 7 5 3 4 2 1

Figure 12: A type-1, 2, 3, 4 LRPA(9)

1 2 3 7 8 6 4 5 9

4 5 6 9 1 2 7 8 3

7 8 9 5 4 3 1 2 6

3 9 2 8 5 4 6 1 7

6 1 7 3 2 9 8 4 5

8 4 5 6 7 1 3 9 2

2 3 1 4 9 7 5 6 8

5 6 4 2 3 8 9 7 1

9 7 8 1 6 5 2 3 4

28

Figure 13: A type-1, 2, 3, 4 LRPA(36)

1 2 3 4 5 6 26 22 27 28 24 23 29 12 20 19 21 30 7 16 18 17 25 8 14 13 9 10 15 11 31 32 33 34 35 36
35 7 8 9 10 11 31 36 18 17 25 16 34 13 14 15 32 33 4 5 22 23 24 3 21 12 20 19 1 6 26 27 28 29 30 2
34 29 12 13 14 15 20 19 21 30 32 33 1 2 6 9 10 11 26 27 28 31 35 36 4 5 7 16 18 17 22 23 24 25 8 3
33 28 24 25 16 17 23 30 32 1 2 3 6 8 10 11 15 18 19 22 26 27 29 31 34 35 36 5 7 14 20 21 12 13 9 4
32 27 23 21 30 18 36 2 3 4 6 8 9 11 12 13 17 15 22 20 24 25 26 28 29 31 33 34 35 1 19 7 16 14 10 5
31 26 22 20 19 36 2 3 4 5 7 9 10 14 8 12 13 16 21 24 25 29 23 27 28 30 32 33 34 35 1 18 17 15 11 6
11 6 17 14 36 2 3 4 7 8 9 5 12 10 15 16 18 13 24 19 21 22 27 25 32 28 29 30 33 34 35 1 23 20 31 26
15 36 18 30 2 3 4 5 6 10 8 11 13 9 16 14 12 17 20 25 23 21 28 24 26 29 27 31 32 33 34 35 7 19 1 22
10 19 16 5 3 4 7 6 1 2 11 12 14 15 13 17 8 9 28 29 20 24 22 23 25 26 35 36 31 30 33 34 32 21 18 27
9 20 30 1 4 5 8 10 2 3 14 13 15 16 18 6 11 12 25 26 31 19 21 22 24 23 34 35 27 29 32 33 36 7 17 28
13 25 5 2 6 7 9 8 11 14 15 17 16 18 1 3 4 10 27 33 34 36 19 21 20 22 23 26 29 28 30 31 35 32 12 24
14 21 4 3 8 9 5 11 12 13 1 15 18 17 2 10 7 6 31 30 27 35 20 19 22 36 24 25 26 32 28 29 34 33 16 23
8 3 1 6 9 10 12 13 14 15 16 18 17 4 11 7 2 5 32 35 30 26 33 20 19 21 22 23 24 25 27 28 31 36 34 29
12 24 2 8 11 14 10 16 15 18 17 1 4 6 7 5 9 3 34 28 32 30 31 33 36 20 19 22 21 27 23 26 29 35 13 25
17 23 6 10 12 8 15 9 13 16 18 2 11 7 5 4 3 1 36 34 33 32 30 26 35 19 21 24 28 22 29 25 27 31 14 20
18 22 9 11 13 12 16 14 17 6 3 10 7 5 4 2 1 8 29 36 35 33 32 30 27 34 31 20 23 21 25 24 26 28 15 19
16 5 10 15 17 13 18 12 8 11 4 7 2 3 9 1 6 14 23 31 36 28 34 35 30 33 26 29 25 19 24 20 22 27 32 21
30 4 11 18 15 16 13 17 9 12 10 6 5 1 3 8 14 2 35 23 29 34 36 32 31 27 25 28 20 24 21 22 19 26 33 7
7 33 26 19 22 21 24 20 28 25 27 31 32 36 34 29 23 35 2 14 8 3 1 5 6 10 12 9 17 13 16 15 18 11 4 30
21 32 27 22 20 24 19 25 29 26 33 30 35 34 28 36 31 23 14 6 1 9 3 2 7 4 11 8 12 18 13 17 15 10 5 16
19 15 28 26 24 25 21 23 20 31 34 27 30 32 33 35 36 29 8 1 2 4 5 7 10 3 6 17 14 16 12 13 11 9 22 18
20 14 31 27 25 29 22 28 24 21 19 35 26 30 32 33 34 36 1 3 4 5 7 11 2 18 16 13 9 15 8 12 10 6 23 17
25 13 35 29 26 23 27 21 22 19 20 36 33 31 30 32 28 34 3 9 5 7 6 4 1 17 18 15 16 10 14 11 8 2 24 12
29 34 36 31 28 27 25 24 23 22 21 19 20 33 26 30 35 32 5 2 7 11 4 17 18 16 15 14 13 12 10 9 6 1 3 8
23 16 33 34 29 28 32 26 25 24 36 22 19 20 35 27 30 31 6 7 10 2 17 18 15 1 13 12 11 5 9 8 3 4 21 14
24 12 32 35 31 30 28 29 26 23 22 20 21 19 36 34 33 27 10 4 3 1 18 16 17 15 14 11 8 9 7 6 2 5 25 13
28 17 7 36 33 32 29 27 35 34 23 24 22 21 19 31 26 25 12 11 6 18 16 15 13 14 3 2 10 8 5 4 1 30 20 9
27 18 21 32 34 33 30 31 36 35 26 25 23 22 24 20 29 28 9 8 17 13 15 14 12 11 2 1 6 7 4 3 5 16 19 10
22 1 19 7 35 34 33 32 31 27 29 26 24 28 21 23 25 20 17 12 14 16 9 13 11 8 10 6 5 4 3 2 30 18 36 15
26 31 20 23 1 35 34 33 30 29 28 32 25 27 22 21 19 24 13 18 16 15 10 12 5 9 8 7 4 3 2 36 14 17 6 11
6 11 15 17 18 1 35 34 33 32 30 28 27 23 29 25 24 21 16 13 12 8 14 10 9 7 5 4 3 2 36 19 20 22 26 31
5 10 14 16 7 19 1 35 34 33 31 29 28 26 25 24 20 22 15 17 13 12 11 9 8 6 4 3 2 36 18 30 21 23 27 32
4 9 13 12 21 20 14 7 5 36 35 34 31 29 27 26 22 19 18 15 11 10 8 6 3 2 1 32 30 23 17 16 25 24 28 33
3 8 25 24 23 22 17 18 16 7 5 4 36 35 31 28 27 26 11 10 9 6 2 1 33 32 30 21 19 20 15 14 13 12 29 34
2 30 29 28 27 26 6 1 19 20 12 21 3 24 23 22 5 4 33 32 15 14 13 34 16 25 17 18 36 31 11 10 9 8 7 35
36 35 34 33 32 31 11 15 10 9 13 14 8 25 17 18 16 7 30 21 19 20 12 29 23 24 28 27 22 26 6 5 4 3 2 1

29

