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1. INTR~DUC~~N 

A Room r-cube of side n is a z-dimensional cube satisfying the property 
that each of its 2-dimensional projections is a Room square. More 
precisely, a Room t-cube of side n is a t-dimensional array of side n on a set 
S of n + 1 objects called symbols (usually { 0, 1, 2,..., n - 1, co > ) which 
satisfy the following conditions: 

(i) Each cell is either empty or contains an unordered pair of 
distinct symbols from S. 

(ii) Each symb 1 o occurs in every (t - 1 )-dimensional flat in the array 
exactly once. 

(iii) Every unordered pair of symbols occurs precisely once in the 
array. 

A Room t-cube is standardized if it also satisfies (iv) the ith diagonal cell 
contains the pair of symbols {co, i}. There are several other equivalent 
forms that are taken by Room t-cubes, one in terms of graphs and one in 
terms of Latin squares. The first of these forms is as a set of orthogonal 
one-factorizations of K,,. Let G be a graph with an even number of vertices. 
A one-factor in G is a set of (pairwise disjoint) edges which between them 
contain each vertex exactly once. A one-factorization is a partition of all the 
edges of G into pairwise disjoint one-factors. Two one-factorizations F, and 
F2 are orthogonal if any one-factor in F, and any one-factor in F2 have at 
most one edge in common. The following theorem from [12] shows the 
connection between orthogonal one-factorizations of K, and Room t-cubes. 

THEOREM 1.1 (Horton). The existence of t puirwise orthogonal one-fuc- 
torizutions of K,,+ , is equivalent to the existence of a Room t-cube of side n. 

Another formulation of Room t-cubes is in terms of orthogonal sym- 
metric Latin squares. Two Latin squares R and C are said to be orthogonal 
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symmetric Latin squares if they satisfy the following three properties: (i) R 
and C are both symmetric; (ii) R and C both have ith diagonal entry i; and 
(iii) if R and C have (i, j) entries u and B, respectively, where i < j, then 
there are not numbers k and I for which k < 1 and R and C have (k, I) 
entries c1 and /I respectively, unless k = i and I = j. We see that two sym- 
metric Latin squares with property (iii) are as close to orthogonal as is 
possible without sacrificing symmetry, thus the term orthogonal symmetric 
Latin squares. The following theorem relating Room t-cubes and pairwise 
orthogonal symmetric Latin squares can be found in [lo]. 

THEOREM 1.2. The existence of t pairwise orthogonal symmetric Latin 
squares of side n is equivalent to the existence of a Room t-cube of side n. 

In each of the above definitions it is easily seen that n is necessarily odd. 
Let v(n) denote the size of the largest possible set of pairwise orthogonal 
symmetric Latin squares of side n or equivalently the largest t such that 
there exists a Room t-cube of side n. Much work has been done on finding 
values for v(n). Some results on v(n) are given in the next theorem. Other 
results can be found in [2, 5, lo]. 

THEOREM 1.3. (a) v( 1) = co, v(3) = 1, v(5) = 1, v(7) = 3 [ 141. 

(b) v(9)=4 [9]. 

(c) v(n) + 00 as n + co [lo]. 

(d) Zfn = 2kt + 1 is a prime power with t odd, then v(n) 2 t [3]. 

(e) For all oddn>7, v(n)>3 [S]. 

In this paper we improve upon Theorem 1.3(e) above. We will prove 

THEOREM 1.4. Zf n is odd and n 2 11 (except possibly n = 15), then there 
is a Room 5-cube of side n (i.e., v(n) > 5). 

In Section 2 we give the main constructions needed for the proof. In 
Section 3 we establish the theorem for “small” values of n, those ~4575, 
then in Section 4 we complete the proof. 

2. MAIN CONTRUCTIONS 

The main recursive construction for Room 5-cubes uses 5-dimensional 
frames. These were first defined by Dinitz and Stinson [7]. The definition 
isasfollows:LetTandUbesetswithITJ=tandIUI=u.Atxubytxu 
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array S will be called a t-frame of order u if it satisfies the following proper- 
ties: 

(1) Each cell is either empty or contains an unordered pair of 
elements of Ux T. 

(2) There exist u empty t by t subsquares of S, no two of them con- 
taining any cell in the same row or column. These subsquares will be 
denoted Su, and are called holes (it will usually be convenient to place 
these empty arrays on the diagonal of S). 

(3) A row or column of S which meets Su, contains each element of 
(U\{ ui} ) x T exactly once, and contains no element of { ui} x T. 

(4) Each unordered pair of elements {(u,, tl), (uz, t,)} with u1 # u2, 
occurs in a unique cell of S. 

An n-dimensional t-frame of order u is an n-dimensional cube of side t x u, 
which satisfies property(l) and such that each two-dimensional projection 
is a t-frame of order u. Informally an n-dimensional t-frame of order u is a 
Room n-cube of side t x u “missing” a spanning set of u disjoint Room 
n-cubes of side r. It is convenient to index the cells of S by the elements of 
(Ux T)“, so that the cells of the rows meeting any Su, are ({ ui} x T) x 
(UxT)x(UxT)x ... x (U x T). For brevity we may rever to an n-dimen- 
sional t-frame of order u as an (n, t, u)-frame. Obviously, we are interested 
in (5, t, u)-frames. 

Let a Room n-cube be described with symbols U u {co } where 1 UI = u 
and co 4 U. If the contents of all cells containing co are removed, one 
obtains a l-frame, specifically an (n, 1, u)-frame. Given a l-frame, the holes 
can be filled in to obtain a Room n-cube. Thus we have that a 
(n, 1, u)-frame is equivalent to a Room n-cube of side u. We will make use 
of this fact in many of the constructions which follow. 

We require several definitions concerning designs. A group-divisible 
design (GDD) is a triple (X, 6, d), where X is a finite set (of points), (5 is 
a partition of X into subsets called groups, and d is a set of subsets of X 
into subsets called (blocks), such that (1) every unordered pair of points 
{x1, x2} not contained in a group is contained in a unique block and (2) a 
group and a block contain at most one point in common. 

A Latin square (of order s) based on a symbol set S, where ISI = s, is an 
s by s array L of the symbols of S, such that each symbol occurs precisely 
once in each row and each column. Two Latin squares, L and M of order s 
based on symbol sets S and T, respectively, are said to bc orthogonal 
provided their superimposition yields every ordered pair in S x T exactly 
once. Several Latin square are mutually orthogonal if each pair is 
orthogonal. We refer to a set of mutually orthogonal Latin squares as a set 
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of MOLS. Let N(n) denote the maximum number of MOLS of size n. The 
following is a well-known result concerning MOLS (see [l 1 I). 

LEMMA 2.1. Suppose n > 2 has prime power factorization n = n pi. Then 
N(n)>min{p’- l}. 

A special type of group divisible design associated with sets of MOLS is 
called a transversal design. A transversal design TD(m, n) is a 
GDD(X, 8, d) in which 1X1= mn, 8 consists of m groups, each of 
cardinality n, and d consists of n* blocks each size m. The following is also 
well known (see [ 111). 

LEMMA 2.2. The existence of a TD(m, n) is equivalent to the existence of 
m - 2 MOLS of under n. 

For notation we will say that n E R, if there is a Room t-cube of side n. 
We can now present the main recursive construction for Room ~-CL&S. 

THEOREM 2.3. Zf N(s) >, n - 1 and there exist a (d, t, n)-frame and a 
(d, t, n + 1 )-frame, and if ts + 1 E R, and ta + 1 E R, with a < s, then 
tns + ta + 1 E Rd. 

ProoJ: We will present the proof in the two-dimensional (d= 2) case for 
ease of readability. The higher dimensional cases (in particular d = 5) are 
proven similarly. 

Since N(s) 2 n - 1, there exists a TD(s, n + 1) which we will denote by 
(X, 6, ~4). For each XE X and y E X, let S, be a set of size t with 
SxnSy=@ ifx#y. For GE@, let SG=UxccSx. Now from some group 
delete s-a elements and call this “short” group G,, so lGol = a. Let 
SC?, = UxsGo sr 

For every A E -(;9, there is a frame FA on the symbols S, = lJ,, A S, since 
either lAI=n+l, or lAl=nifAnG,=a. 

We first construct a t-frame whose rows and columns are indexed by 
s= uxex S,. We let A(x, y) denote the block in the TD containing {x, y}. 
Let F be defined by 

F(s, t) = 
i 

0 if (s,t}ES forsomeGE6 or G=G,,, 
F 

,4(X,& t) otherwise, where s E S, and t E S,. 

Note that F is tns + ta by tns + ta in size. 
We now construct a Room square from this frame F. We will basically 

just add a border and till in the “holes” with Room squares. 
Let Sz, cc be such that (Q, co } n S = 0. Add a new row and column to 

F indexed by co. If GE 0, then let RG be a Room square of order ts + 1 
indexed by Sb = S, u (cc } on the symbols S, u {co, a} with 
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RG( co, cc ) = { co, Sz >. We define the Room square R of side tns + ta + 1 
indexed by S u {cc } as 

R(s, t) = &As, t) if {s, t> cSb for some G E 6, 

F(s, t) otherwise. 

We first show that each pair of symbols occur in precisely one cell. Pick 
two symbols s E S, and t E S,,, if {x, v} c G for some group G, then {x, y } 
occurs in a unique cell of R,. If x and y are in different groups, then (x, y } 
occurs in a unique cell of FAcX,yj. Now if sES,, then (00,s) and {Q,s} 
occur in R, where x E G. Finally (co, 52) occur in cell R( cc, co). Thus each 
pair of elements occurs together exactly once. 

Now pick a row r E S, and a symbol s E S,, if (x, y } z G for some group 
G, then s occurs in a unique cell of row r in R,, and in no other cell in row 
r. If x and y are in different groups, then s occurs in a unique cell in row r 
in FAcx. y) and in no other cell in row r. If r E S, then cc and Q occur in uni- 
que cells in row r in R, where x E G. Finally if r = co, and if s E S,, then s 
occurs in row cc in RG where y E G. Also {Q, co } is in cell (co, co), com- 
pleting the proof. 

Again we note that the proof of Theorem 2.3 is easily extended from the 
2-dimensional to the d-dimensional case. We of course are interested in the 
case where d= 5. We will state this case as 

COROLLARY 2.4. Zf N(s) 3 n - 1 and there exists a (5, t, n)-frame, a 
(5, t, n + 1 )-frame, and if ts + 1 E R, and ta + 1 E R, with a < s, then 
tns+ta+lER,. 

In order to use Corollary 2.4 we need to be able to construct 5-frames 
and Room 5-cubes for small order s. To do so we will use what are termed 
frame starters. Frame starters were first defined in [7] and are just a 
generalization of the starters used to construct Room squares. 

Let G be an additive abelian group, and H a subgroup. Denote 1 G( = g, 
JHJ = h, and suppose g - h is even. An (h, g/h)-frame starter in G\ H is a set 
of unordered pairs S= { {si, ti}, 1 < i < (g - h)/2} satisfying 

(1) {si}u {ti}=G\H, and 

(2) {-+(.Q--~~))=G\H. 

If H = (O}, then we get a (1, g)-frame starter. A (1, g)-frame starter is 
called a starter of order g (note g must be odd) and is equivalent to the 
well-known starters used to construct Room squares. 

Let A = { (si, ti} } and B = ( {ui, ui}} be two frame starters. We may 
assume that ti - si = ui - ui, for 1 < i < (g - h)/2. A and B are orthogonal 
frame starters provided uj - sj = ui - si implies i = j and ui - si $ H for all i. 
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Several starters are pairwise orthogonal if each pair of starters is 
orthogonal. A frame starter A = { { si, ti} } is strong if si + tj = sj + tj implies 
i =j and if si + ti $ H for all i. The special frame starter P = { (si, ti} > where 
si = - ti for all i is called the patterned frame starter. It is obvious that this 
is only a starter in G\ H if IGI is odd. The following two theorems are 
proven in [7]. 

LEMMA 2.5. If A = { {si, ti} > 1s a strong frame starter, then A and 
-A= { { -si, -ti}} are orthogonal frame starters. 

LEMMA 2.6. Zf there is a strong frame starter in G \ H with 1 G( odd, then 
there are 3 pairwise orthogonal frame starters in G\ H. (These are A, -A 
and P). 

If A and B are strong frame starters, then we say that A and B are 
orthogonal strong frame starters provided A is orthogonal to B and -B. 
We have 

LEMMA 2.7. Zf there exist two orthogonal strong frame starters in G\H, 
then 

(a) if IGI is even, there are 4 orthogonal frame starters in G\ H, 

(b) ifIG is odd, there are 5 orthogonal frame starters in G\ H. 

Proof: Let A and B be orthogonal strong frame starters in G\H, then 
A, -A, B, -B are 4 pairwise orthogonal frame starters in G\ H. If IGI is 
odd, then A, -A, B, -B, and P are all pairwise orthogonal starters where 
P is the patterned frame starter. 

The connection between orthogonal frame starters and frames is given 
by the following theorem (also proven in [7]). 

THEOREM 2.8. Zf there exist n pairwise orthogonal frame starters in G\ H 
with (GI =g and I HI = h, then there exists an (n, h, u)-frame where u =g/h. 

We will wish to construct Room Scubes directly from strong starters. 
Remembering that a Room 5-cube of side u is equivalent (5, 1, U) frame 
with IGI = u being odd and using Lemma 2.7(b) and Theorem 2.8 we have 

THEOREM 2.9. Zf there exist two orthogonal strong starters of order u, 
then UE R,. 

Proof. IGl = u and IHI = 1, so by Lemma 2.7(b), there are 5 pairwise 
orthogonal frame starters in G\H = G\(O). Thus by Theorem 2.8 there is a 
(5, 1, u)-frame and thus a Room 5-c&e of side U. 
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We will also need to construct 2-frames (h = 2) directly from strong 
frame starters. Since this implies G is even, then by Theorem 2.7(a) we only 
get 4 orthogonal starters. Thus, in order to get 5 orthogonal starters we 
must add another starter orthogonal to the original 4. Analogous to the 
previous theorem, we have 

LEMMA 2.10. If there exist two orthogonal strong frame starters A and B 
in G\ H (with IGl =g even and (H( = h) and if there exists a frame starter C 
in G\H with C orthogonal to A, -A, B, -B, then there exists a (5, h, u)- 
frame, with u = g/h. 

ProoJ A, -A, B, -B, and C form a set of 5 pairwise orthogonal frame 
starters in G\ H so by Theorem 2.8 there exists a (5, h, u)-frame with 
u = g/h. 

THEOREM 2.11. There exist (5, 2, a)-frames for u= 12, 13, 16, 17, 20, 
and 21. 

ProoJ: In the Appendix frame starters A, B, and C are given for u = 16, 
17, 20, and 21 which satisfy the conditions of Lemma 2.10. For u = 12 and 
u = 13 we give 5 orthogonal 2-frame starters. For each value of u we have 
G=Zz,, H= (0, u}. 

Some comments are in order concerning the sets of orthogonal frame 
starters given in the Appendix. The starters for ZJ = 12 were found by a 
purely backtracking program. For u = 13, the starters given in the Appen- 
dix are derived from the ones found by Dinitz and Stinson in [7]. In that 
paper, three orthogonal 2-frame starters of order 13 are found without the 
aid of computer by use of cyclotomic methods in Galois fields. It turns out 
that these three starters and their negative starters are all orthogonal and 
so in fact there are 6 pairwise orthogonal 2-frame starters of order 13. In 
the Appendix these are called A, -A, B, -B, C, and -C. The starters 
were originally found in Z,, x Z,, we have written them in Z,, in the 
Appendix. 

The other starters given in the Appendix were all found by using a ver- 
sion of the hill climbing algorithm for strong starters originally described 
by Dinitz and Stinson in [6]. The original program only found one strong 
starter. Here we first found a strong frame starter A, then by hill climbing 
attempted to find a strong starter B such that A and B were orthogonal 
strong frame starters. On the average, using this method an orthogonal 
mate was found for about 6 out of every 100 frame starters. When an A 
and B were found we again used hill climbing, or in the case u = 16 used an 
exhaustive search, to find a frame starter C where C is orthogonal to A, 
-A, B, and -B. (Note that since in all these cases since lG1 is even we 
cannot use P, the patterned strter.) For u = 16, we found 15 sets of 
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orthogonal strong frame starters which did not have a mate before finding 
the set given in the Appendix which did work. For u = 17, 20, and 21 we 
could not perform an exhaustive search so we found the orthogonal starter 
C by hill climbing. It took many attempts but eventually all were found. 
We are now ready to apply Corollary 2.4. 

THEOREM 2.12. (a) ZfN(s)>ll, 2s+l~R~ and2t+lER, with f<s, 
then 24s + 2t + 1 E R,. 

(b) ZfN(s) 2 15, 2s + 1 E R, and 2t + 1 E R, with t G s, then 32s + 2t + 
FERN. 

(c) IfN(s) >, 19, 2s + 1 E R5 and 2t + 1 E R5 with t < s, then 40s + 2t + 
lcRg. 

ProoJ: Use Corollary 2.4 with t = 2 and use the frames found in 
Theorem 2.11. 

In order to effectively use Theorem 2.12 we need to find a large set of 
consecutive “small” numbers all of which are in RS. In the next section we 
show that if 17 < n < 4575 and n is odd, then n E R,. 

3. SMALL V~mzs 

We begin this section with a useful and well-known construction. The 
proof can be found in [7]. 

THEOREM 3.1. Suppose the following exist: 

(i) a (5, t, u)-frame, 

(ii) a (5, 1, o)-frame with a sub(5, 1, u)-frame, 

(iii) 5 MOLS of order (v - w)/t, 

then u(u - w) + E R,. 

The reader should be reminded that a (5, 1, u)-frame is equivalent to a 
Room 5-cube of side u. Also, note that every (5, 1, u)-frame has sub-frames 
of sides 0 and 1. 

THEOREM 3.2. Zfn= 11, 13, 17, 19 ,..., 355, then nE RS. 

Proof. If n = 13, 17, 21, 25, 33, 35, 39, then n E R, was shown in [S]. 
All n E { 11, 19, 23, 27, 29, 31, 37, 41, 43, 45, 47, 55, 59, 61, 67, 71, 73, 79, 

83, 89, 101, 103, 107, 109, 113, 121, 125, 127, 131, 139, 149, 151, 157, 163, 
167, 169, 173, 179, 181, 191, 197, 199, 211, 223, 227, 229, 233, 239, 241, 
243, 251, 263, 269, 271, 277, 281, 283, 289, 293, 307, 311, 313, 317, 331, 
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337, 343, 347, 349, 353) are prime powers of the form n = 2kt + 1 with t 
odd and t 25. Thus by Theorem 1.3(d) no R,. 

The following table lists values of n which are in R, by use of 
Theorem 3.1. For all n we use t = 1 except for n = 235 and 289, where t = 2. 
The existence of the required sets of Latin squares can be checked in [ 11. 

133=11(13-l)+l 253=11x23 

143= 11 x 13 273=17(17-l)+l 
177=11(17-l)+l 275=11x25 

187=11x17 289=17(19-l)+l 
205=17(13-l)+l 297=11x27 
209=11x19 299=13x23 

221=13x17 301=25(13-l)+l 
231=21x11 305=19(17-l)+l 

235=13(19-1)+1 319=11x29 
247=19x13 323=17x19 

By Theorem 2.12(a), with s = 13, we have that 24 x 13 + 2t + 1 E R, for 
t = 5, 6, 8, 9, 10, 11, 12, and 13. Thus (323, 325, 329, 331, 333, 335, 337, 
339) E R,. 

The remaining cases are all solved by use of Theorem 2.9. Pairs of 
orthogonal strong starters of order n are given in [4] for n = 45, 49, 51, 55, 
57, 63, 65, 69, 75, 77, 85, 87, 91, 93, 95, 97, 99, 103, 105, 111, 115, 117, 119, 
123, 129, 135, 141, 145, 147, 153, 155, 159, 161, 165, 171, 175, 183, 185, 
189, 193, 195, 201, 203, 207, 213, 215, 217, 219, 225, 237, 245, 249, 255, 
257, 259, 261, 265, 267, 279, 285, 287, 291, 293, 295, 303, 309, 315, 321, 
327, 345, and 355. These sets of orthogonal strong starters were construc- 
ted by use of the hill-climbing algorithm for strong starters in the manner 
described in the comments following Theorem 2.11. The listing of these 
strong starters is also available from the author on an IBM compatable 
floppy disk. 

Now that we have a large set of consecutive small orders for which 
Room 5-cubes exist we can use Theorem 2.12 and Theorem 3.2 to get the 
following theorem. 

THEOREM 3.3. Let m = min(2s + 1,353) and assume 2s + 1 E R,. 

(a) UN(s)> 11, then {24s+ 11, 24s+ 13, 24s+ 17,..., 24s+m} GR,, 

(b) IfN(s)>15, then {32s+ll, 32s+13, 32~+17,...,32s+m}~R,, 

(c) ZfN(s)2 19, then {4Os+ 11, 4Os+ 13, 4Os+ 17,..., 40s+m} CR,. 

We can now construct Room 5-cubes for many more small values. 

THEOREM 3.4. Zf 357 < n < 4575 and n is odd, then n E R,. 
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Proof If n E (359, 361, 367, 313, 379, 383, 389, 449, 451, 461, 463, 499, 
503, 509, 521, 547,601, 607,653, 853, 857, 859, 863,991}, then n is a prime 
power and Theorem 1.3(d) applies to prove ne R,. 

IfnE (365, 371, 381, 387, 393,423,445,447,453,471, 501, 505, 511,515, 
519, 549, 553, 603, 615, 655, 711, 873, 879, 1143}, then we have again used 
the computer to construct 2 orthogonal strong starters of order n. By use of 
Theorem 2.9 we have that n E R,. In order to save space, these starters are 
given in [4]. They are also available from the author on an IBM com- 
patible floppy disk. 

All of the remaining values of n are constructed in the following table, 
where we give the values for n and the authority used to imply the 
existence of a Room 5-cube side n. Again all necessary results concerning 
MOLS can be found in [ 11. 

n Construction Authority 

357 
363 
369 

375 
311 

385 
387 

391 
395-397 

399 
401417 

419421 
425443 

451 
455 
459 

465 
467-469 
473495 

497 
507 
513 
517 
523-525 

527 
529-545 
551 
555-557 
559 
561-567 
569-599 

21x17 
33x11 
23(17- l)+l 
17(23-l) + 1 
13x29 
35x11 

17x23 

21x19 

35x13 
27x17 
29(17-l)+l 

31(17-l)+ 1 
39x13 
27x19 
11 x47 

17x31 

19x29 

43x13 

Theorem 3.1 
Theorem 3.1 
Theorem 3.1 
Theorem 3.1, t = 2 
Theorem 3.1 
Theorem 3.1 
Theorem 2.9 
Theorem 3.1 
Theorem 3.3(a), s = 16 
Theorem 3.1 
Theorem 3.3(a), s = 16 
Theorem 3.3(a), s = 17 
Theorem 3.3(a), s = 17 
Theorem 3.1 
Theorem 3.1 
Theorem 3.1 
Theorem 3.1 
Theorem 3.3(a), s = 19 
Theorem 3.3(a), s = 19 
Theorem 3.1 
Theorem 3.1 
Theorem 3.1 
Theorem 3.1 
Theorem 3.3(b), s= 16 
Theorem 3.1 
Theorem 3.3(b), s = 16 
Theorem 3.1 
Theorem 3.3(b), s = 17 
Theorem 3.1 
Theorem 3.3(b), s = 17 
Theorem 3.3(a), s = 23 
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n Construction Authority 

605 
609 
611-613 
617-651 
657 
659-661 
663 
665-703 
705 
707-709 
713-755 
757 
759 
761-807 
809-833 
835-851 
855 
861 
865 
867 
869 
871 
875-877 
88 l-903 
905-963 
965-987 
989 
993 
995-997 
999 
100-1067 
1069-1119 
1121-1135 
1137 
1139-1141 
1145-1223 
1225-1259 
1261-1287 
1289-1379 
1381-1395 
1397-1431 
1433-1535 
1537-1587 
1589-1605 
1607-1623 
1625-1743 
1745-1847 
1849-1899 

55x11 
21x29 

41(17-l)+l 

39x 17 

55x11 

45 x 19 
21 x41 
27(33-l)+l 
51 x 17 
11 x79 
13x67 

23x43 
31(33-1)+1 

27 x 37 

71(17-1)+1 

Theorem 3.1 
Theorem 3.1 
Theorem 3.3(a), s = 25 
Theorem 3.3(a), s = 25 
Theorem 3.1 
Theorem 3.3(a), s = 27 
Theorem 3.1 
Theorem 3.3(a), s = 27 
Theorem 3.1 
Theorem 3.3(a), s = 29 
Theorem 3.3(a), s = 29 
Theorem 3.3(a), s = 31 
Theorem 3.3(b), s = 23 
Theorem 3.3(a), s = 31 
Theorem 3.3(a), s = 32 
Theorem 3.3(b), s = 25 
Theorem 3.1 
Theorem 3.1 
Theorem 3.1 
Theorem 3.1 
Theorem 3.1 
Theorem 3.1 
Theorem 3.3(b), s = 27 
Theorem 3.3(b), s = 27 
Theorem 3.3(a), s = 37 
Theorem 3.3(b), s = 29 
Theorem 3.1 
Theorem 3.1 
Theorem 3.3(a), s = 41 
Theorem 3.1 
Theorem 3.3(a), s = 41 
Theorem 3.3(a), s = 43 
Theorem 3.3(a), s = 27 
Theorem 3.1 
Theorem 3.3(a), s = 47 
Theorem 3.3(a), s = 43 
Theorem 3.3(b), s = 37 
Theorem 3.3(c), s = 31 
Theorem 3.3(a), s = 53 
Theorem 3.3(b), s = 41 
Theorem 3.3(b), s = 43 
Theorem 3.3(a), s = 59 
Theorem 3.3(a), s = 61 
Theorem 3.3(a), s = 64 
Theorem 3.3(b), s = 49 
Theorem 3.3(a), s = 67 
Theorem 3.3(a), s = 71 
Theorem 3.3(a), s = 73 

582a/45./1-10 
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n Construction Authority 

1901-1911 Theorem 3.3(c), s = 47 

1913-2055 Theorem 3.3(a), s = 79 

2057-2159 Theorem 3.3(a), s = 83 

2161-231s Theorem 3.3(a), s = 89 

2317-2343 Theorem 3.3(b), s = 71 

2345-2523 Theorem 3.3(a), s = 97 

2525-2679 Theorem 3.3(a), s = 103 

2681-2835 Theorem 3.3(a), s = 109 

2837-2939 Theorem 3.3(a), s = 113 

2941-3147 Theorem 3.3(a), s= 121 

3149-3303 Theorem 3.3(a), s = 127 

3305-3563 Theorem 3.3(a), s = 137 

3565-3615 Theorem 3.3(a), s = 139 

3617-3875 Theorem 3.3(a), s = 149 

38774083 Theorem 3.3(a), s= 157 

40854343 Theorem 3.3(a), s = 167 

43454575 Theorem 3.3(a), s = 179 

4. THE SPECTRUM 

In order to complete the spectrum we need only show that if n > 4577, 
then n E R,. We need a preliminary lemma and then we can proceed with 
the theorem. 

LEMMA 4.1. Let a and b be positive numbers. If b - a > 14, then there 
exists some integer c E [a, b] with N(c) > 11. 

Proof Using MacNeish’s Theorem (Lemma 2.1), N(c) 2 11 if 2, 3, 5, 7, 
11 all do not divide into c. It is easy to check that in Z,,,, 
(2310=2x 3 x5x 7 x 11) the largest gap between numbers that are 
relatively prime to 2, 3, 5, 7, and 11 is 14. Thus the largest possible gap 
between numbers n where N(n) 2 11 is 14. 

THEOREM 4.2. If s > 4577, s odd, then s E R,. 

Proof: Let s 2 4577 and by way of induction assume that t E R, for all 
odd t, 17<t<s-2. Now let s=2m+l and pick r such that 
(m-176)/12<r<(m-8)/12 and N(r)>ll. This can be done by 
Lemma 4.1 since (m - 8)/12 - (m - 1776)/12 2 14. Thus 



137 

and 

therefore 

24r+ 17<sd24r+353. 

Now by Theorem 3.3(a), we will have SE R, if 2r + 1 E RS, N(r) 2 11 
and if min(2r+ 1,353) = 353. We already have N(r) 2 11. Since 
24r + 353 > s 2 4577, then r 2 176 and so min(2r + 1,353) = 353. Also 
2r + 1~ 2m + 1 = s so by induction 2r + 1 E R,. Thus by Theorem 3.3(a), 
SE R5 completing the proof. 

Now by use of Theorems 3.2, 3.4, and 4.2 we have our result. 

THEOREM 4.3. Zf n 2 11 is odd (except possibly n = 15), then n E R5. 

A comment is in order concerning the case n = 15. We have performed 
an exhaustive search and have found that there is no set of 5 pairwise- 
orthogonal starters of order 15. In [S] a set of 4 pairwise-orthogonal star- 
ters is given. We, however, do not hesitate to conjecture that 15 E R,. 

Since there are Room 4-cubes of orders 9 [9] and 15, then the following 
theorem holds. 

THEOREM 4.4. There exists a Room 4-cube of side n if and only ly n is 
odd and n 2 9. 

APPENDIX 

u=12 

A = 1,2 3,5 4,7 9,13 14,19 15,21 16,23 1418 8,17 20,6 11,22 
B=2,3 5.7 17,20 15,19 11,16 8,14 23,6 1,9 13,22 18,4 1421 
C=3,4 7,9 1413 18,22 15,20 5,ll 14,21 17,l 23,8 16,2 19,6 

D=7,8 2,4 18,21 11,15 1,6 16,22 lo,17 19,3 5,14 13,23 9,20 
E= 17,18 9,ll 23,2 1414 22,3 1.7 13,20 8,16 21,6 19,5 4,15 

u=13 

A = 11,12 15,17 7,lO l&22 3,8 19,25 20,l 23,5 21,4 6,16 24,9 2,14 
-A = 14,15 9,ll 16,19 4,8 18,23 1,7 25,6 21,3 22,5 lo,20 17,2 12,24 

B= 17,18 3,5 25,2 16,20 7,12 9,15 4,ll 19,l 23,6 14,24 lo,21 22,8 
-B=8,9 21,23 24,l 6,lO 14,19 11,17 15,22 25,7 20,3 2,12 5,16 18,4 

C= 15,16 7,9 19,22 8,12 23,2 21,l 18,25 3,ll 5,14 20,4 6,17 24,lO 
-C= 10,ll 17,19 4,7 14,18 24,3 25,5 1,8 15,23 12,21 22,6 9,20 16,2 

u=16 
A=17,18 22,24 26,29 lo,14 2,7 3,9 31,6 25,l 12,21 5,15 19,30 8,20 23,4 13,27 28,ll 
B=8,9 25,27 31,2 7,ll 17,22 4,lO 12,19 29,5 21.30 23,l 13,24 14.26 15,28 6,20 3,18 
C=21,22 12,14 17,20 1,5 13,18 2,8 19,26 28,4 29,6 25,3 31,lO 15,27 30,ll 9.23 24,7 
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u=17 
A=23,24 3,5 6,9 7,ll 25,30 16,22 12,19 lo,18 26,l 28,4 31,8 21,33 14,27 1529 32,13 20,2 

B=3,4 8,lO 12,lS 31,l 22,27 7.13 25,32 20,28 14,23 26,2 18,29 33,ll 6,19 16,30 9,24 5,21 
C= 19,20 26,28 5,8 12,16 33,4 31,3 23,30 7,15 27,2 1,ll lo,21 13,25 9,22 18,32 14,29 24,6 

u=20 
A=31,32 7,9 22,25 37,l 11,16 29,35 27,34 lo,18 36,5 13,23 4,15 21,33 6,19 28,2 39,14 8,24 

26,3 12,30 38.17 

B=5,6 1,3 32,35 21,25 33,38 36,2 24,31 11,19 8,17 16,26 23,34 lo,22 14.27 4,18 37,12 

39,15 13,30 29,7 9,28 
C=36,37 30,32 24,27 6,lO 29,34 8,14 21,28 17,25 9.18 355 1,12 31,3 2.15 39,13 11,26 7,23 

16.33 4,22 19,38 

u=21 

A=27,28 24,26 29,32 8,12 2,7 9,15 16,23 37,3 34,l lo,20 36,5 18,30 33,4 41,13 25,40 6,22 
14.31 35.11 19,38 39,17 

B=25,2638,40 17,2024,28 10,155,11 23,3041,79,184,1433,227,3922,3534,6 1,1629,3 

19,36 37.13 31,s 12,32 
C= 18,19 lo,12 2,5 25,29 1,6 14,20 38,3 27,35 3140 23,33 39,8 34,4 11,24 22,36 13,28 

16,32 9,26 41,17 30,7 37,15 
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