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We investigate Room squares with small holes: missing subsquares of sides 3, 5 or 7. We 
refer to a Room square of side s missing a subsquare of side t as an (s, t)-incomplete Room 
square. For any odd t, it has been shown that there is an integer S(t) such that an 
(s, t)-incomplete Room square exists for all odd s > S(t). In this paper we prove that S(3)< 39, 
S(5) G 67, and S(7) < 53. 

1. MTo&lction 

We investigate Room squares and subsquares. All terminology is as in [6] and 
[7], and we will assume the reader is familiar with the definitions contained 
therein. (These include group-divisible designs, transverial designs, and frames.) 

We will refer to an incomplete Room square of side s missing a subsquare of 
side t as an (s, t)-incompZefe Room square. 

It is known that for any odd t, there is a constant S(t) such that there exists an 
(s, t)-incomplete Room square for all odd s > S(t). 

The following was proved in [7]. 

TheoreIn 1.1. (1) S(1) = 5, S(3) G77, S(5)<79. 
(2) For al2 odd t 27, S(t) s6t + 39. 
(3) For all odd t a 129, S(t)~4t+27. 

In this paper we improve the bounds on S(3), S(5), and S(7). We prove that 
S(3) < 39, S(5) s 67, and S(7) G 53. 

At this point we record the existence of two small arrays that were constructed 
by computer. 

Lemma 1.2. There exist (11,3)- and (13,3)-incomplete Room squares. 
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Proof. The (11,3)-incomplete Room square is presented in [6]; we exhibit a 
(13,3)-incomplete Room square in Fig. 1. cl 
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Fig. 1. A (13,3)-incomplete Room square. 

2. c%HBtnlctions 

In this section we present several constructions for incomplete Room squares 
and Room squares with subsquares. 

The foll?wing two results are from [7]. 

Lemma 2.1. Suppose there is a TD( k, n), where k 2 6. For 6 s i < k, let 3 c 4 s n. 
Also, let Osd k G n. Then there is a 

( 

k 

1On -t 2 c 4 + 1, 2dk + 1 -incomplete Room square. 
i=6 ) 

If dk 2 3, then there exists a 

( 

k 

10n + 2 c 4 + 1,24 + 1 -incomplete Room square 
i=l 

for all i, 6cisk. 

Lemma 2.2. Suppose nf 2,3,6,10 or 14, and 0 G t ~3n. Then there is a 
(16n + 2t + 1,2t + 1)-incomplete Room square. If tf 1 or 2, then there is a 
(16n + 2t + 1,4n + 1)-incomplete Room square. 
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The following is a variation of Lemma 2.1, Useful in a few special situations. 

Lemma 2.3. Suppose there is a TD( k, n), where k 2 6. For 6 < i s k suppose 
3 ~4 6 n. Also, suppose CFzh 4 s n. Then there exists a (10n + 2 IF==, 4 - 1, 
24 + 1)-incomplete Room square, for 6 == i s k. 

Sketdr of Proof. Let (X, %, s4) be a TD( k, n), % = {G,, . . . , Gk}. Pick a point 
x E G5 and let B be a block containing X. For 6 s i s k, delete n - C& points from 
Gi, in such a way that no block containing x contains more than one of the cik,6 c-& 
points remaining in these groups. Finally delete x. Form a group-divisible design 
by taking as groups all blocks which contained X. This new GDD has the following 
properties: 

(1) Every group has size at least 4. 
(2) Except (possibly) for Gi, 6 d c k, every block has size at least 5. i 
(3) A group contains at most one pont of UrC6 Gi. 
(4) Each group which meets a Gi has size 4 or 5. 
Now, take two copies of each point and let 00 be a new point. Replace each 

block Gi (6 s i s k) by a Room square of side 2 IGi I+ 1. Replace every other 
block B by a frame of type 2 lB’ Replace every group H not meeting any Gi . 

(6 s i c k) by a Room square of side 2 IIfI + 1. Finally, replace a group meeting 
some Gi (6 d i < k) by an (11,3)- or (13,3)-Room square (which exist by Lemma 
1.2). 

The result is a Room square, which contains subsquares of sides 2 IGil + 1, 
6siik. El 

There are several constructions in the literature known as product construc- 
tions. We will use the following. 

Lemma 2.4 (Singular direct product [2]). Suppose there exists a Room square of 
side u, and a (u, w)-incomplete Room square, where v - w # 6. Then there exists an 
(s, w)-incomplete Room square and an (s, v)-incomplete Room square, where 
s = u(v - w) + w. If w # 3 or 5, then there exists an (s, u)-incomplete Room square. 

A variation on the preceding construction is to start with a frame of type tU 

rather than a Room square of side u (see [6]). The following can be proved. 

Lemma 2.5 (Frame singular direct product). Suppose there is a frame of type t”, 
and there exists a (v, w)-incomplete Room square, where t 1 (v-w) and 
(v - w)/t # 2 or 6. Then there exists an (s, w)-incomplete Room square and an 
(s, v)-incomplete Room square, where s = u(v - w) + w. 

Remark. A frame of type t” is known to exist in the following cases (see [In: 
(1) u=4 and 41 t, 

(2) u = 5 and gcd(t, 210) > 1, 
(3) u 3 6 and t(u - 1) is even. 
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Still another variation was described in [3]. 

Lemma 2.6 (Singular indirect product). Suppose there exists a Room square of side 
u, and a (v, w)-incomplete Room square. Let 0 < a < w and suppose there exist a 
pair of orthogonal Latin squares of order v-a containing (or missing) a pair of 
orthogonal Latin subsquares of order w - a. 7’hen there exists an (s, u(w - a) + a)- 
incomplete Room square and an (s, u)-incomplete Room square, where s = 
u(v-a)+a. 

The next three constructions are due to Wallis. 

Lemma 2.7 ([lOn. If u > 7 is odd, then there is a (4u + 1, u)-incomplete Room 
square. 

Lemma 2.8 ([9]). If u 2 7 is odd, then there is a (5 u, u)-incomplete Room square. 

Lemma 2.9 ([12j). For all odd u 2 3 there is a (324 + 2, u)-incomplete Room square. 

The construction of Lemma 2.9 is generalized in [8]. 

Lemnra 2.10. Suppose t > 3. Also,. let u 27 be odd, u # 11. Then there is a Room 
square of side tu -I- t - I which contains subsquares of sides u and 2t - I. 

One further construction is useful in certain circumstances. It is a slight 
extension of the tripling construction in [ll]. 

Lemma 2.11. Suppose there exists a (v, w)-incomplete Room square. Then there 
exists a (3v, w)-incomplete Room square. 

Our last lemma is a trivial, though useful, observation. 

Lemma 2.12. If there exists a (u, v)-incomplete Room square and (v, w)- 
incomplete Room square, then there exists a (u, w)-incomplete Room square. 

3. Room squares with smaU holes 

The following result is proved in [7, Theorem 3.61. 

Lemma 3.1. If t = 3, 5, or 7 and s 276 + t is odd, then there exists an (s, t)- 
incomplete Room square. 

In this section we construct numerous (s, t)-incomplete Room squares (t = 3,5, 
and 7) not covered by the above result. 



Room squares with holes of sides 3, 5, and 7 

Lemma 3.2. There exists a (57,3)-incomplete Room square. 
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Proof. This incomplete Room square is constructed by applying Lemma 2.1. 
Write 57 = 10 * 5 + 2 ?? 3 + 1. We construct a (57,11)-incomplete Room square; 

fill in an (11,3)-incomplete Room square (Lemmata 2.12 and 1.2). 0 

We present the remaining constructions for (s, 3)-incomplete Room squares in 
tabular form (Table 1). In many cases, the cited construction will guarantee only a 
subsquare of side 11 or 13; but Lemma 2.12 will then apply. 

Table 1. Construction of (s, 3)-incomplete Room squares 

S Equation Authority Subsquare 

77 
75 
73 
71 
69 
67 
65 
63 
61 
59 
57 
55 
53 
51 
49 
47 
45 
43 
41 
35 
33 
13 
11 

7(11-0)+0 
9(11-3)+3 
7(13-3)+3 
7(11-1)+1 
5 * 13+4 
16.4+2-l+l 
5 * 13 
6(13-3)+3 
5(13-1)+1 
5*11+4 

4*13+3 
5(13-3)+3 
5(11-1)+1 
4(13-l)+l 
4*11+3 
4*11+1 
5(11-3)+3 
3.13+2 
3.11+2 
3.11 

Lemma 2.4 
Lemma 2.4 
Lemma 2.4 
Lemma 2.4 
Lemma 2.10 
Lemma 2.2 
Lemma 2.8 
Lemma 2.5 (t = 2) 
Lemma 25 (t = 3) 
Lemma 2.10 
Lemma 3.2 
Lemma 2.10 
Lemma 2.5 (t = 2) 
Lemma 2.5 (t =2) 
Lemma 2.5 (t = 3) 
Lemma 2.10 
Lemma 2.7 
Lemma 2.5 (t = 2) 
Lemma 2.9 
Lemma 2.9 
Lemma 2.11 
Lemma 1.2 
Lemma 1.2 

11 

11 
13 

13 

13 
11 

13 

11 
13 
11 

13 
11 

Thus we have 

Theorem 3.3. There exist (s, 3)-incomplete Room squares for s = 11,13,33,35, 
and for all odd s 241. 

Next, we consider (s, 5)-incomplete Room squares. Note that a (17,5)- 
incomplete Room square exists, by Lemma 2.9. 

Lemma 3.4. For odd s, 69 s s s 89, there exists an (s, 5)-incomplete Room square. 
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Proof. Apply Lemma 2.2 with n = 4, 2~ t G 12. For 3 G ts 12, we construct a 
(16n + 2t + 1,17)-incomplete square, which gives rise to a (16n+2t + l,S)- 
incomplete Room square, by filling in a (17,5)-Room square. For t = 2, a 
(69,5)-incomplete Room square is produced directly. Cl 

Lemma 3.5. There exists a (65,5)-incomplete Room square. 

Proof. 65 =5(17-5)+5. Apply L.emma 2.5 with t=3. 0 

Lemma 3.6. There exists a (55,5)-incomplete Room square. 

Proof. Write 55=10 - 5+2 - 2+1, and apply Lemma 2.1. Cl 

Lemma 3.7. There exists a (53,5)-incomplete Room square. 

Proof. 53 = 3 - 17 + 2. Applying Lemma 2.9, we construct a (53,17)-incomplete 
Room square. Then fill in a (17,5)-incomplete Room square (Lemma 2.12). ??

Lemma 3.8. There exists a (5 1,5)-incompzete Room square. 

Proof. 51= 3 - 17. Apply Lemma 2.11. Cl 

Summarizing Lemmata 2.9, 3.1 and 3.4-3.8 we have 

Theorem 3.9. There exists an (s, 5)-incomplete Room square for s = 17, 51, 53,55, 
65 and all odd s a69. 

We now construct (s, I-l)-incomplete Room squares. 

Lemma 3.10. There exists a (75,7)-incomplete Room square. 

Proof. Apply Lemma 2.3 with k = 6, n = 7, de= 3. 0 

Lemma 3.11. There exists an (8 1,7)-incomplete Room square. 

Proof. Apply Lemma 2.3 with k = 7, n = 7 and ds = d7 = 3. 0 

Lemma 3.12. There exists an (83,7)-incomplete Room square. 

Proof. 83=10~7+2(3+3)+1.ApplyLemma2.1withn=k=7,d6=d7=3. Cl 

We present the remaining constructions in tabular form (Table 2). 
As a consequence, we have 
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Theorem 3.13. There exists an (s, 7)-incompkte Room square for s = 23, 29, 31, 
35, 39, 43, 47, 49, and all odd s 255. 

Proof. Lemmata 3.1, 3.10-3.12, and Table 2. El 

Table 2. Construction of (s, 7)-incomplete Room squares 

Order Equation Authority Remark 

23 
29 
31 
35 
39 
43 
47 
49 
55 
57 
59 
61 
63 
65 
67 
69 
71 
73 
75 
77 
79 
81 
83 
85 
87 
89 

3*7+2 
4.7+1 
4*7+3 
5.7 
5*7+4 
7(7-1)+1 
6*7+5 
7.7 
9(7-1)+1 
7(9-1)+1 
7(11-3)+3 
10(7- 1) + 1 
7.9 
7(11-2)+2 
11(7-1)+1 
3 - 23 
7(11-1)+1 
7(13-3)+3 

7.11 
13(7-1)+1 

7(13-1)+1 
3 -29 
3 - 29+2 

Lemma 2.9 
Lemma 2.7 
Lemma 2.10 
Lemma 2.8 
Lemma 2.10 
Lemma 2.5 
Lemma 2.10 
Lemma 2.4 
Lemma 2.5 
Lemma 2.4 
Lemma 2.4 
Lemma 2.5 
Lemma 2.4 
Lemma 2.6 
Lemma 2.5 
Lemma 2.4 
Lemma 2.4 
Lemma 2.4 
Lemma 3.10 
Lemma 2.4 
Lemma 2.5 
Lemma 3.11 
Lemma 3.12 
Lemma 2.4 
Lemma 2.11 
Lemma 2.9 

t=2 

t=2 

t=2 

w=3 
t=2 
(23,7)-incomplete Room square 

t=2 

(29,7)-incomplete Room square 
(29,7)-incomplete Room square 
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