ROOM SQUARES WITH HOLES OF SIDES 3, 5, AND 7

J.H. DINITZ
University of Vermont, Burlington, VT 05401, USA
D.R. STINSON
University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
W.D. WALLIS
University of Newcastle, Newcastle, N.S.W. 2308, Australia

Received 25 November 1982
Revised 24 January 1983

Abstract

We investigate Room squares with small holes: missing subsquares of sides 3 , 5 or 7 . We refer to a Room square of side s missing a subsquare of side t as an (s, t-incomplete Room square. For any odd t, it has been shown that there is an integer $S(t)$ such that an (s, t)-incomplete Room square exists for all odd $s>S(t)$. In this paper we prove that $S(3) \leqslant 39$, $S(5) \leqslant 67$, and $S(7) \leqslant 53$.

1. Introduction

We investigate Room squares and subsquares. All terminology is as in [6] and [7], and we will assume the reader is familiar with the definitions contained therein. (These include group-divisible designs, transverial designs, and frames.)

We will refer to an incomplete Room square of side s missing a subsquare of side t as an (s, t-incomplete Room square.

It is known that for any odd t, there is a constant $S(t)$ such that there exists an (s, t)-incomplete Room square for all odd $s>S(t)$.
The following was proved in [7].
Theorem 1.1. (1) $S(1)=5, S(3) \leqslant 77, S(5) \leqslant 79$.
(2) For all odd $t \geqslant 7, S(t) \leqslant 6 t+39$.
(3) For all odd $t \geqslant 129, S(t) \leqslant 4 t+27$.

In this paper we improve the bounds on $S(3), S(5)$, and $S(7)$. We prove that $S(3) \leqslant 39, S(5) \leqslant 67$, and $S(7) \leqslant 53$.

At this point we record the existence of two small arrays that were constructed by computer.

Lemma 1.2. There exist (11, 3)- and (13, 3)-incomplete Room squares.

Proof. The (11, 3)-incomplete Room square is presented in [6]; we exhibit a (13, 3)-incomplete Room square in Fig. 1. \square

Fig. 1. A (13, 3)-incomplete Room square.

2. Constructions

In this section we present several constructions for incomplete Room squares and Room squares with subsquares.

The following two results are from [7].
Lemma 2.1. Suppose there is a $\operatorname{TD}(k, n)$, where $k \geqslant 6$. For $6 \leqslant i<k$, let $3 \leqslant d_{i} \leqslant n$. Also, let $0 \leqslant d_{k} \leqslant n$. Then there is a

$$
\left(10 n+2 \sum_{i=6}^{k} d_{i}+1,2 d_{k}+1\right) \text {-incomplete Room square. }
$$

If $d_{k} \geqslant 3$, then there exists a

$$
\left(10 n+2 \sum_{i=1}^{k} d_{i}+1,2 d_{i}+1\right) \text {-incomplete Room square }
$$

for all $i, 6 \leqslant i \leqslant k$.
Lemma 2.2. Suppose $n \neq 2,3,6,10$ or 14 , and $0 \leqslant t \leqslant 3 n$. Then there is a $(16 n+2 t+1,2 t+1)$-incomplete Room square. If $t \neq 1$ or 2 , then there is a $(16 n+2 t+1,4 n+1)$-incomplete Room square.

The following is a variation of Lemma 2.1, useful in a few special situations.
Lemma 2.3. Suppose there is a $\operatorname{TD}(k, n)$, where $k \geqslant 6$. For $6 \leqslant i \leqslant k$ suppose $3 \leqslant d_{i} \leqslant n$. Also, suppose $\sum_{i=6}^{k} d_{i} \leqslant n$. Then there exists a $\left(10 n+2 \sum_{i=6}^{n} d_{i}-1\right.$, $2 d_{i}+1$)-incomplete Room square, for $6 \leqslant i \leqslant k$.

Sketch of Proof. Let $(X, \mathscr{G}, \mathscr{A})$ be a $\operatorname{TD}(k, n), \mathscr{G}=\left\{G_{1}, \ldots, G_{k}\right\}$. Pick a point $x \in G_{5}$ and let B be a block containing x. For $6 \leqslant i \leqslant k$, delete $n-d_{i}$ points from G_{i}, in such a way that no block containing x contains more than one of the $\sum_{i=6}^{k} d_{i}$ points remaining in these groups. Finally delete x. Form a group-divisible design by taking as groups all blocks which contained x. This new GDD has the following properties:
(1) Every group has size at least 4.
(2) Except (possibly) for $G_{i}, 6 \leqslant i \leqslant k$, every block has size at least 5 .
(3) A group contains at most one pont of $\bigcup_{i=6}^{k} G_{i}$.
(4) Each group which meets a G_{i} has size 4 or 5 .

Now, take two copies of each point and let ∞ be a new point. Replace each block $G_{i}(6 \leqslant i \leqslant k)$ by a Room square of side $2\left|G_{i}\right|+1$. Replace every other block B by a frame of type $2^{|B|}$. Replace every group H not meeting any G_{i} $(6 \leqslant i \leqslant k)$ by a Room square of side $2|H|+1$. Finally, replace a group meeting some $G_{i}(6 \leqslant i \leqslant k)$ by an (11, 3)- or (13, 3)-Room square (which exist by Lemma 1.2).

The result is a Room square, which contains subsquares of sides $2\left|G_{i}\right|+1$, $6 \leqslant i \leqslant k$.

There are several constructions in the literature known as product constructions. We will use the following.

Lemma 2.4 (Singular direct product [2]). Suppose there exists a Room square of side u, and $a(v, w)$-incomplete Room square, where $v-w \neq 6$. Then there exists an (s, w)-incomplete Room square and an (s, v)-incomplete Room square, where $s=u(v-w)+w$. If $w \neq 3$ or 5 , then there exists an (s, u)-incomplete Room square.

A variation on the preceding construction is to start with a frame of type t^{u} rather than a Room square of side u (see [6]). The following can be proved.

Lemma 2.5 (Frame singular direct product). Suppose there is a frame of type t^{u}, and there exists $a(v, w)$-incomplete Room square, where $t \mid(v-w)$ and $(v-w) / t \neq 2$ or 6 . Then there exists an (s, w)-incomplete Room square and an (s, v)-incomplete Room square, where $s=u(v-w)+w$.

Remark. A frame of type t^{u} is known to exist in the following cases (see [1]):
(1) $u=4$ and $4 \mid t$,
(2) $u=5$ and $\operatorname{gcd}(t, 210)>1$,
(3) $u \geqslant 6$ and $t(u-1)$ is even.

Still another variation was described in [3].
Lemma 2.6 (Singular indirect product). Suppose there exists a Room square of side u, and $a(v, w)$-incomplete Room square. Let $0<a<w$ and suppose there exist a pair of orthogonal Latin squares of order v-a containing (or missing) a pair of orthogonal Latin subsquares of order $w-a$. Then there exists an $(s, u(w-a)+a)$ incomplete Room square and an (s, u)-incomplete Room square, where $s=$ $u(v-a)+a$.

The next three constructions are due to Wallis.

Lemma 2.7 ([10]). If $u \geqslant 7$ is odd, then there is a ($4 u+1, u)$-incomplete Room square.

Lemma 2.8 ([9]). If $u \geqslant 7$ is odd, then there is $a(5 u, u)$-incomplete Room square.

Lemma 2.9 ([12]). For all odd $u \geqslant 3$ there is a $(3 u+2, u)$-incomplete Room square.

The construction of Lemma 2.9 is generalized in [8].

Lemma 2.10. Suppose $t>3$. Also, let $u \geqslant 7$ be odd, $u \neq 11$. Then there is a Room square of side $t u+t-1$ which contains subsquares of sides u and $2 t-1$.

One further construction is useful in certain circumstances. It is a slight extension of the tripling construction in [11].

Lemma 2.11. Suppose there exists $a(v, w)$-incomplete Room square. Then there exists a ($3 v, w$)-incomplete Room square.

Our last lemma is a trivial, though useful, observation.
Lemma 2.12. If there exists $a(u, v)$-incomplete Room square and ($v, w)$ incomplete Room square, then there exists a (u, w)-incomplete Room square.

3. Room squares with small holes

The following result is proved in [7, Theorem 3.6].

Lemma 3.1. If $t=3,5$, or 7 and $s \geqslant 76+t$ is odd, then there exists an (s, t)incomplete Room square.

In this section we construct numerous (s, t)-incomplete Room squares $(t=3,5$, and 7) not covered by the above result.

Lemma 3.2. There exists a (57, 3)-incomplete Room square.

Proof. This incomplete Room square is constructed by applying Lemma 2.1.
Write $57=10 \cdot 5+2 \cdot 3+1$. We construct a (57,11)-incomplete Room square; fill in an (11,3)-incomplete Room square (Lemmata 2.12 and 1.2).

We present the remaining constructions for ($s, 3$)-incomplete Room squares in tabular form (Table 1). In many cases, the cited construction will guarantee only a subsquare of side 11 or 13 ; but Lemma 2.12 will then apply.

Table 1. Construction of ($s, 3$)-incomplete Room squares

s	Equation	Authority	Subsquare
77	$7(11-0)+0$	Lemma 2.4	11
75	$9(11-3)+3$	Lemma 2.4	
73	$7(13-3)+3$	Lemma 2.4	
71	$7(11-1)+1$	Lemma 2.4	11
69	$5 \cdot 13+4$	Lemma 2.10	13
67	$16 \cdot 4+2 \cdot 1+1$	Lemma 2.2	
65	$5 \cdot 13$	Lemma 2.8	13
63	$6(13-3)+3$	Lemma 2.5 $t=2)$	
61	$5(13-1)+1$	Lemma 25 $(t=3)$	13
59	$5 \cdot 11+4$	Lemma 2.10	11
57		Lemma 3.2	
55	$4 \cdot 13+3$	Lemma 2.10	13
53	$5(13-3)+3$	Lemma 2.5 $(t=2)$	
51	$5(11-1)+1$	Lemma 2.5 $(t=2)$	11
49	$4(13-1)+1$	Lemma 2.5 $(t=3)$	13
47	$4 \cdot 11+3$	Lemma 2.10	11
45	$4 \cdot 11+1$	Lemma 2.7	
43	$5(11-3)+3$	Lemma 2.5 $(t=2)$	
41	$3 \cdot 13+2$	Lemma 2.9	13
35	$3 \cdot 11+2$	Lemma 2.9	11
33	$3 \cdot 11$	Lemma 2.11	
13		Lemma 1.2	
11		Lemma 1.2	

Thus we have

Theorem 3.3. There exist (s, 3)-incomplete Room squares for $s=11,13,33,35$, and for all odd $s \geqslant 41$.

Next, we consider ($s, 5$)-incomplete Room squares. Note that a $(17,5)$ incomplete Room square exists, by Lemma 2.9.

Lemma 3.4. For odd $s, 69 \leqslant s \leqslant 89$, there exists an ($s, 5$)-incomplete Room square.

Proof. Apply Lemma 2.2 with $n=4,2 \leqslant t \leqslant 12$. For $3 \leqslant t \leqslant 12$, we construct a $(16 n+2 t+1,17)$-incomplete square, which gives rise to a $(16 n+2 t+1,5)$ incomplete Room square, by filling in a (17,5)-Room square. For $t=2$, a (69,5)-incomplete Room square is produced directly.

Lemma 3.5. There exists $a(65,5)$-incomplete Room square.
Proof. $65=5(17-5)+5$. Apply Lemma 2.5 with $t=3$.
Lemma 3.6. There exists $a(55,5)$-incomplete Room square.

Proof. Write $55=10 \cdot 5+2 \cdot 2+1$, and apply Lemma 2.1.

Lemma 3.7. There exists $a(53,5)$-incomplete Room square.
Proof. $53=3 \cdot 17+2$. Applying Lemma 2.9, we construct a (53,17)-incomplete Room square. Then fill in a (17, 5)-incomplete Room square (Lemma 2.12).

Lemma 3.8. There exists $a(51,5)$-incomplete Room square.
Proof. $51=3 \cdot 17$. Apply Lemma 2.11 .

Summarizing Lemmata 2.9, 3.1 and $3.4-3.8$ we have

Theorem 3.9. There exists an (s, 5)-incomplete Room square for $s=17,51,53,55$, 65 and all odd $s \geqslant 69$.

We now construct ($s, 7$)-incomplete Room squares.

Lemma 3.10. There exists a (75,7)-incomplete Room square.
Proof. Apply Lemma 2.3 with $k=6, n=7, d_{6}=3$.
Lemma 3.11. There exists an (81, 7)-incomplete Room square.
Proof. Apply Lemma 2.3 with $k=7, n=7$ and $d_{6}=d_{7}=3$.
Lemma 3.12. There exists an (83, 7)-incomplete Room square.
Proof. $83=10 \cdot 7+2(3+3)+1$. Apply Lemma 2.1 with $n=k=7, d_{6}=d_{7}=3$.
We present the remaining constructions in tabular form (Table 2).
As a consequence, we have

Theorem 3.13. There exists an (s,7)-incomplete Room square for $s=23,29,31$, $35,39,43,47,49$, and all odd $s \geqslant 55$.

Proof. Lemmata 3.1, 3.10-3.12, and Table 2.
Table 2. Construction of (s, 7)-incomplete Room squares

Order	Equation	Authority	Remark
23	$3 \cdot 7+2$	Lemma 2.9	
29	$4 \cdot 7+1$	Lemma 2.7	
31	$4 \cdot 7+3$	Lemma 2.10	
35	$5 \cdot 7$	Lemma 2.8	
39	$5 \cdot 7+4$	Lemma 2.10	
43	$7(7-1)+1$	Lemma 2.5	$t=2$
47	$6 \cdot 7+5$	Lemma 2.10	
49	$7 \cdot 7$	Lemma 2.4	
55	$9(7-1)+1$	Lemma 2.5	$t=2$
57	$7(9-1)+1$	Lemma 2.4	
59	$7(11-3)+3$	Lemma 2.4	
61	$10(7-1)+1$	Lemma 2.5	$t=2$
63	$7 \cdot 9$	Lemma 2.4	
65	$7(11-2)+2$	Lemma 2.6	$w=3$
67	$11(7-1)+1$	Lemma 2.5	$t=2$
69	$3 \cdot 23$	Lemma 2.4	$(23,7)$-incomplete Room square
71	$7(11-1)+1$	Lemma 2.4	
73	$7(13-3)+3$	Lemma 2.4	
75		Lemma 3.10	
77	$7 \cdot 11$	Lemma 2.4	
79	$13(7-1)+1$	Lemma 2.5	$t=2$
81		Lemma 3.11	
83		Lemma 3.12	
85	$7(13-1)+1$	Lemma 2.4	
87	$3 \cdot 29$	Lemma 2.11	(29, 7)-incomplete Room square
89	$3 \cdot 29+2$	Lemma 2.9	(29,7)-incomplete Room square

References

[1] J.H. Dinitz and D.R. Stinson, Further results on frames, Ars Combinatoria 11 (1981) 275-288.
[2] J.D. Horton, R.C. Mullin and R.G. Stanton, A recursive construction for Room designs, Aequationes Math. 6 (1971) 39-45.
[3] R.C. Mullin, A generalization of the singular direct product with applications to skew Room squares, J. Combin. Theory (A) 29 (1980) 306-318.
[4] R.C. Mullin and W.D. Wallis, The existence of Room squares, Aequationes Math. 13 (1975) 1-7.
[5] D.R. Stinson, Some results concerning frames, Room squares and subsquares, J. Austral. Math. Soc. (A) 31 (1981) 376-384.
[6] D.R. Stinson, Some construction for frames, Room squares and subsquares, Ars Combinatoria 12 (1981) 229-267.
[7] D.R. Stinson, Room squares and subsquares, Proc. Tenth Austral Conf. on Combinatorial Mathematics, to appear.
[8] D.R. Stinson and W.D. Wallis. An even side analogue of Room squares, submitted.
[9] W.D. Wallis, A family of Room subsquares, Utilitas Math. 4 (1973) 9-14.
[10] W.D. Wallis, Room squares with subsquares, J. Combin. Theory (A) 15 (1973) 329-332.
[11] W.D. Wallis, A construction for Room squares, in: A survey of Combinatorial Theory (NorthHolland, Amsterdam, 1973) 449-451.
[12] W.D. Wallis, All Room squares have minimal supersquares, Congressus Numerantium, to appear.

