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The Spectrum of Room Cubes 

J. H. DINITZ AND D. R. STINSON 

A Room cube of side n is an n by n by n cube such that each 2-dimensional projection is a Room 
square. We show that there exists a Room cube of side n if and only if n is an odd positive integer 
other than 3 or 5. 

1. INTRODUcriON 

A Room square of side n is an n by n array of cells, whose entries are chosen from a setS 
of n + 1 objects called symbols, which satisfies the following conditions: 

(i) every cell of the array is either empty or contains an unordered pair of distinct 
symbols from S; 

(ii) each symbol occurs in every row and in every column of the array; 
(iii) every unordered pair of symbols occurs precisely once in the array. 
If t;;;.: 2 is an integer, a Room t-cube of side n is at-dimensional array, each cell of which 

is either empty or contains an unordered pair of two distinct elements chosen from a set of 
size n +1, such that each 2-dimensional projection is a Room square of side n. In this paper 
we consider Room 3-cubes which we refer to as Room cubes. Let R3 ={n: there exists a 
Room cube of side n}. Room t-cubes can be equivalently described as certain types of 
Latin squares. Such a formulation has the advantage of being easier to visualize if t;;;.: 3. 

A Latin square L of side n is an n by n array of cells, each of which contains exactly one 
symbol chosen from a set S of size n, such that each element of S occurs once in each row 
and once in each column of L. Suppose the rows and columns of L are indexed by the 
members of S. L is said to be idempotent if L(s, s) = s for each s E S. L is said to be 
symmetric if L(s, s') =L(s', s) for every {s, s'}£ S. Now impose any linear ordering on S. 
Two Latin squares L and M, on the symbol set S, are said to be orthogonal symmetric Latin 
squares provided Land M are both symmetric and idempotent, and for every (s, s') E S X S 
there exists at most one cell (sh s2) with s1 < s2 such that (s, s') = (L(sh s2), M(sh s2)). We 
refer to a set of t orthogonal symmetric Latin squares as t pairwise orthogonal symmetric 
Latin squares (POSLS) if each pair of squares is orthogonal symmetric. 

Horton [9] establishes the following. 

THEOREM 1.1. If t ;;;.: 2 is an integer then the following are equivalent: 
(i) there exists a Room t-cube of side n, 

(ii) there exist t POSLS of side n. 

LEMMA 1.2. There exists a Room cube of side 9. 

PROOF. We exhibit three POSLS of order 9 in Figure 1 below. 

REMARK. In [1], of the purported four POSLS of order 9, no three are orthogonal. 
Thus the three POSLS of Figure 1 yield the first known Room cube of side 9. 

We will also make extensive use of pairwise orthogonal Latin squares (POLS) and 
orthogonal arrays (OAs). For definitions, see [6]. The following well known theorem 
indicates the connection between these structures. 
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FIGURE 1. Three POSLS of order 9. 

THEOREM 1.3. The following are equivalent: 
(i) there exists an OA(n, t) 

(ii) there exist t- 2 POLS of side n. 

Define oa (t) ={n: there exists an OA(n, t)} The following is a well known theorem of 
MacNeish [10]. 

THEOREM 1.4. Let n have prime power factorization n = llpf'. Then n E oa(t) if 
t:% min{pf• + 1}. 

The work of severval mathematicians resulted in the following theorem concerning 
Room squares. A condensed proof is given in [17]. 

THEOREM 1.5. There exists a Room square of side n if and only if n is an odd positive 
integer other than 3 or 5. 

The following is immediate. 

THEOREM 1.6. If n is an even integer, or if n =3 or 5, then there is no Room cube of 
side n. 

In order to determine the spectrum for Room cubes, we use a variety of techniques, most 
importantly, PBD closure. 

For the definitions of pairwise balanced design (PBD), and PBD-closed set, see [11]. 
The following is shown in [5]. 

THEOREM 1.7. Lett ;;i!: 2 be a positive integer, and let Rr ={n: there exists a Room t-cube 
of side n }. Then Rr is PBD closed. 

We will determine the spectrum of Room cubes by constructing suitable PBD's. Our 
methods are very similar to those used in examining the spectrum of skew Room squares. 
Thus, we will often refer to the following four papers: [11, 13, 15, 16]. 

Briefly, we proceed as follows. In Section 2 constructions for Room t-cubes are 
described, and it is shown that if n ;;i!: 7 is odd and if ne R3, then n =3m where (m, 15) = 1. 
In Section 3 we construct Room cubes of all sides Bt + 1, a necessary ingredient in our main 
PBD construction. In Section 4 we use PBD-closure to establish that n E R 3 if n ;;i!: 10 355. 
Finally, in Section 5, Room cubes of sides <10 355 are investigated. 

2. SoME CoNSTRucrioNs FOR RooM CuBES 

An important tool for constructing Room cubes is the strong starter, which is now 
defined. Let G be an abelian group of odd order 2k + 1, written additively. A start~r (of 
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order 2k + 1) in G is a collection A = {{xt. Y1}, {x2, y2}, ... , {xk, yd} such that: 
k 

(i) U {x;, y;} = G\{0}, 
i~l 

(ii) {±(y;-x;): 1:s;;i:s;;k}=G\{O}. 

If, further, the sums X;+ y; are all distinct and non-zero, then A is said to be a strong starter. 
The following is shown in [9]. 

LEMMA 2.1. If a strong starter exists in an abelian group of order 2k +1, then 
2k+1 ER3. 

Two infinite families of strong starters exist by the following theorems. For proofs, see 
Mullin and Nemeth [14] and Chong and Chan [2], respectively. 

LEMMA 2.2. If q = 2 kt + 1 is an odd prime power with t > 1 an odd integer, then there is a 
strong starter of order q. 

22LEMMA 2.3. If q = " = 1 is a Fermat prime greater than 5, then there exists a strong 
starter of order q. 

REMARK. It is not necessary that q be prime in the Chong and Chan construction. 
However, the theorem as stated is sufficient for our purposes. 

The following is a simple exercise in elementary number theory. 

LEMMA 2.4. If q = 2n + 1 is a prime power, then either q is a Fermat prime or q = 9. 

Now, using the above Lemmata 2.2, 2.3 and 2.4 we have that if q is a prime power not 
equal to 3, 5 or 9, then there exists a strong starter of order q, and hence q E R 3• By Lemma 
1.2, 9 E R 3• Therefore we summarize the above as the following theorem. 

THEOREM 2.5. If q is a prime power greater than 5, then q E R 3• 

The following is our main recursive construction for Room cubes. It is a straightforward 
modification of Mullin's indirect product construction for skew Room squares [11]. We 
state it in terms of POSLS. 

THEOREM 2.6. Suppose there exist t POSLS ofside u, and t POSLS ofside v containing t 
sub-POSLS of side w. Further, suppose 0,;;;; a ,;;;; w, and there exist t POLS of side v -a 
containing t sub-POLS ofside w -a. Finally, suppose there exist t POSLS ofside u (w -a)+ 
a. Then there exist t POSLS of side u(v -a)+a, containing t sub-POSLS of sides u and 
u(w-a)+a. 

We may now obtain Horton's construction [9] as a corollary. 

THEOREM 2. 7. Suppose there exist t POSLS ofside u, and t POSLS ofside v containing t 
sub-POLS of side w. Further, suppose there exist t POLS of side v- w. Then there exist t 
POSLS of side u (v- w) + w containing t sub-POSLS of sides u, v and w. 

PROOF. Let a = w in Theorem 2.6. Then it suffices to check that the resulting squares 
contain sub-POSLS of order v. This is an easy verification. 
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In order to apply Theorems 2.6 and 2.9 with t = 3 it is important to have three POLS of 
various sides. 

LEMMA 2.8. If n ¥- 2, 3, 6, 10 or 14, then there exist three POLS of side n. 

PROOF. See [7, 19]. 

We can now derive a simple multiplication theorem. 

THEOREM 2.9. If u, v E R 3 , then uv E RJ. 

PROOF. Apply Theorem 2.7 (w = 0) and Lemma 2.8. Note that 3, 5 e R3 • 

The following quintuplication theorem is due to Horton [8]. 

LEMMA 2.10. Suppose there exists a strong starter oforder n, where (n, 3) = 1. Then there 
exists a strong starter of order 5n. Hence, 5n E R 3 • 

Before proving the main theorem of this section, we record the existence of several of 
the strong starters which we will need in this paper. 

LEMMA 2.11. There exist strong starters oforders 15, 21, 33, 35, 39, 45, 51, 57, 69, 87, 
93, 111, 123, 129 and 321. 

PROOF. See [3, 4 and 18]. 

THEOREM 2.12. IfneR3 , n odd, and n ~7, then n =3m where (m, 15) = 1. 

PROOF. Write n = 3" 513m, with (m, 15) = 1. If a = {3 = 0 the result follows by 
Theorems 2.5 and 2.9. 

If a= 0, {3 = 1, then n = 5m with (m, 15) = 1 and m > 1 since n ~ 7. Let p be any prime 
divisor of m. Then there exists a strong starter of order p by Theorem 2.5, and so 5p E R 3 

by Lemma 2.10. Now m/p eR3 by the above, so 5m eR3 by Theorem 2.9. 
Next, we have 15, 45 and 75 E R3 by Lemma 2.11, and 9, 25, 27, 125 E R 3 by Theorem 

2.5. Thus, if a+ {3 = 2 or 3, then n = m. n/m with m, n/mE R 3, so n E R 3 • 

If a + {3 ~ 4, then n = st with s = 9 or 25, and t E R 3 by induction on a + {3. Hence n E R 3• 

This completes the proof, since the only possible exceptions have a = 1 and {3 = 0. 

3. CUBES OF SIDE 8t+ 1 

In this section we establish the existence of Room cubes of side 8 t + 1. We use Theorem 
2.7 in conjunction with some pairwise balanced designs. 

LEMMA 3.1. Suppose 2" + 1 E R 3• If n is odd and n ¥-5, then n. 2" + 1 E R 3 • 

PROOF. If n E R 3, then set u = n, v = 2" + 1 and w = 1 in Theorem 2.7. Note that there 
exist three POLS of side 2" if a> 1, and that 3 e R3. 

If n =3 then 3. 2" + 1 E R 3 by Theorem 2.12. 
If neR3, n ~7, then n =3m with m eR3 by Theorem 2.12. 
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Set u = m, v =3 . 2"' + 1, w = 1 in Theorem 2. 7 to obtain n E R 3. Note that there exist 
three POLS of side 3 . 2"' unless a = 1. However 3 e R3, so the hypothesis is not satisfied in 
this case. 

We now define a 9-head (see [13]) to be a PBD whose block sizes are 7, 9 or 17 (all 
members of R3), which further contains a distinguished variety occurring only in blocks of 
size 9. A 9-head evidently contains 8r + 1 varieties where r is the number of blocks 
containing the distinguished variety. We refer to this r as the generalized replication 
number of the 9-head. Let GR denote the set of all generalized replication numbers of 
9-heads. Since R 3 is PBD-closed and {7, 9, 17} s;; R 3 , we have the following. 

LEMMA 3.2. If r E GR, then 8r + 1 E R 3• 

The following is established in [13]. 

LEMMA 3.3. If k > 5, k ¥-7, 8, 9, 10, 11, 13 or 15, then 2k E GR. 

LEMMA 3.4. If a ~ 3, then 2"' + 1 E R 3• 

PROOF. If a~ 19 or a= 9, 15 or 17, then Lemmata 3.2 and 3.3 imply r + 1 E R 3. If a 

is even then (2"' + 1, 3) = 1 so 2"' + 1 E R3 by Theorem 2.12. If a= 5 or 7 then Lemma 2.11 
applies. If a= 11, consider Theorem 2.7 and the fact that 2049 = 15(145 -9)+9 and 
145 =9(17 -1)+ 1. If a= 13 then 8193 =61(153 -19) + 19 and 153 = 19(9 -1)+ 1. 

Thus by application of Lemmata 3.1 and 3.4 we have the following theorem. 

THEOREM 3.5. If a~ 3, n is odd and n ¥- 5, then n. 2"' + 1 E R 3• 

It now remains to construct squares of orders 5. 2"' + 1. We need the following 
multiplication theorem for GR which was proven in [13]. 

LEMMA 3.6. If {r, s}s;; GRand there exists an OA(r, s), then rs E GR. 

LEMMA 3.7. If 2k E GRand k ~4, then 5. 2k+l E GR. 

PROOF. Since there exists an affine plane of order 9, we have 10 E GR. Thus take 
r = 10, s = 2k in Lemma 3.6. The required OA(10, 2k) exists by Theorem 1.3. 

LEMMA 3.8. If k ~ 1, k ¥- 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14 or 16, then 5 . 2k E GR. 

PROOF. As already noted, 10e GR. Apply Lemmata 3.3 and 3.7 to obtain the result. 

THEOREM 3.9. If a~ 3, a¥- 12, then 5. 2"' + 1 E R 3. 

PROOF. If a ~ 20, or a = 10, 16 or 18, then Lemmata 3.2 and 3.8 imply 5 . 2"' + 1 E R3. 
If a is odd then (5 . 2"' + 1, 3) = 1, so 5 . 2"' + 1 E R 3 by Theorem 2.12. To handle the cases 
a= 8 and a= 14 we note that 21 E R 3 (Lemma 2.11). If a= 8, consider 1281 = 21. 61, 
and if a= 14, consider 81921 = 21.3901. For a= 6, apply Lemma 2.11. 

The theorem stated below follows immediately from Theorems 3.5 and 3.9. 
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THEOREM 3.10. If n = 1 mod 8, n ;<!' 20 481, then n E R3. 

4. A PRELIMINARY BOUND 

By constructing PBDs with suitable block sizes, we show that Room cubes exist for all 
odd orders exceeding 10 355. The following PBD construction is found in [13]. 

LEMMA 4.1. Suppose Y is a PBD closed set, and m Eoa (1 0) with 0 ~ t ~ m. If {1, 9, 
6t+1, 6m + 1, Bm + 1}s;;; Ythen 56m +6t+ 1 E Y. 

THEOREM 4.2. If n = 1 mod 8, then n E R3. 

PROOF. In view of Theorem 3.10, only n = 20 481 need be considered. However 
20481ER3 since R 3 is PBD closed and 20481=56.361+6.44+1. 361Eoa(10) by 
Theorem 1.4 and the necessary Room cubes all exist. 

Lemn a 4.1 is adapted to Room cubes as follows. 

LEMMA 4.3. If 0 ~ t ~ m and mE oa (10), then 56m + 6t + 1 E R 3. 

PROOF. The result follows from Theorems 1.4 and 2.12 and Lemmata 4.1 and 4.2. 

We are now ready to obtain a preliminary bound. 

THEOREM 4.4. If n ~ 10 355 is odd, then n E R3. 

PROOF. We need only consider n = 3 mod 6. Mullin et a/. [14] establish that for 
n =3 mod 6, n ~ 10 355, one can write n = 56m +6t+ 1 with 0~ t~ m and mE oa(10). 
Thus Lemma 4.3 implies the result. 

5. RooM CuBES WITH SMALL SIDES 

We use a variety of techniques in order to construct Room cubes with small sides 
(<10 355). By Theorem 2.12, only orders n = 3 mod 6 need be considered. The following 
is obtained from Lemma 4.3. 

LEMMA 5.1. If mE oa(lO), m = 1 mod 3, n =3 mod 6, and 56m + 1 ~n ~62m + 1, 
then n ER3. 

The next four lemmata are analogous to Lemmata 4.1 and 5.1 and will be used to show 
certain Room cubes exist. See [16] for proofs. 

LEMMA 5.2. Suppose YisaPBDclosedset, and mE oa(18), 0~ t~ m. If {1, 17, 6t+ 1, 
6m+1, 16m+1}s;;; Ythen 112m+6t+1E Y. 

LEMMA 5.3. Ifm Eoa(18), n = 3 mod 6, m = 2 mod 3, and 112m+ 1 ~ n ~118m+ 1, 
then n ER3 • 

LEMMA 5.4. Suppose Y is a PBD closed set, mE oa(9) and 0 ~ t ~ m. If {1, 9, 1m, 
m +6t}s;;; Ythen 51m +6tE Y. 
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LEMMA 5.5. Ifmeoa(9), m=1 or 5mod6, n=3mod6 and 57m~n~63m, then 
nERJ. 

LEMMA 5.6. If n = 3 mod 6 and 6777 ~ n ~ 11161 then n E R 3. 

PROOF. Apply Lemma 5.1 with m = 121, 127, 139, 151, 157, 163, 169, 181. Each 
such value of m is in oa(10) by Theorem 1.4. Also, for any two consecutive values m1 < m2 
in the above list, 62m 1 + 1;;;;. 56m2 + 1. Finally, 56. 121 + 1 = 6777 and 62. 181 + 1 = 
11161. 

Thus we have improved the original bound. 

THEOREM 5.7. If n is odd and n ;;:.6777, then n E RJ. 

It is convenient now to establish that some small values are in R 3. 

LEMMA 5.8. If 7 ~ n ~ 145, n odd, then n E R 3. 

PROOF. By Theorem 2.12 and Lemma 2.11, only 141 need be considered. But, by 
Theorem2.7, 141eR3 since 141=7(21-1)+1. 

With the aid of Lemma 5.8 the following can be established. 

LEMMA 5.9. If n is odd but ne R 3 then n = 3p, where pis a prime and 53 ~p ~ 2251. 

PROOF. Suppose neRJ. By Theorems 2.12 and 5.7, n~6771 and n =3m where 
(m, 15) = 1. Suppose m is not a prime. Let p be the smallest prime divisor of m. Then 
p ~47, since n ~6771 and 3. 532 >6771. So 3p ~ 141, thus by Lemma 5.8, 3peR3 • By 
Theorem 2.12, m/p E R3, hence by the multiplication Theorem 2.9, n E R 3, a contradic
tion. Therefore, m is a prime and n = 3m. 

LEMMA 5.10. Ifn ;;;.513, n odd, then n eR3 unless n e{591, 597,699,717,831,843, 
879,1203,1227,1263,2019~ 

PROOF. In Table 1 below, we list intervals covered by applications of Lemmata 
5.1-5.5. The orthogonal arrays exist by Theorem 1.4 unless otherwise noted. 

The only intervals not covered are 6765-6771, 2009-2071, 1199-1309, 821-895, 
695-727 and 569-627. By Lemma 5.9, we need only consider orders 3p where pis a 
prime. These orders contained in the uncovered intervals are n = 2049,2031,2019, 1299, 
1293,1263,1257,1227,1203,879,849,843,831,723,717,699,597,591,579,573. 

Room cubes of side 8t + 1 exist by Theorem 4.2, and the remaining cubes are obtained 
by applying Theorem 2.7: 2031=29(71-1)+1, 1299=59(23-1)+1, 1293= 
17(77-1)+1, 723= 19(39-1)+1, 579= 17(35-1)+1 and 573= 13(45-1)+1. 

Several of the possible exceptions over 500 can be eliminated by using the indirect 
product construction, Theorem 2.6. In order to apply this theorem we need POLS 
containing sub-POLS. These are obtained by use of the following theorems. 

THEOREM 5 .11. Suppose there exist t POLS oforders u and v. Then there exist t POLS of 
order uv, containing t sub-POLS of orders u and v. 

PROOF. See [6]. 
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TABLE 1 

m Lemma Interval covered 

109 
103 
97 
89 
82 
79 
73 
67 
61 
29 
53 
49 
47 
43 
43 
41 
37 
37 
17 
31 
29 
27 
25 
23 
19 
19 
17 
16 
13 
13 
11 
9 

5.1 
5.1 
5.1 
5.5 
5.1 
5.1 
5.1 
5.1 
5.1 
5.3 
5.5 
5.1 
5.5 
5.5 
5.1 
5.5 
5.5 
5.1 
5.3 
5.1 
5.5 
5.4 
5.5 
5.5 
5.5 
5.1 
5.5 
5.1 
5.5 
5.1 
5.5 
5.4 

6105-6759 
5769-6387 
5433-6015 
5073-5607 
4593-5085 
4425-4899 
4089-4527 
3753-4155 
3417-3783 
3249-3423 
3021-3339 
2745-3039 
2679-2961 
2451-2709 
2409-2667 
2337-2583 
2109-2339 
2073-2295 
1905-2007 
1737-1923 
1653-1827 
1539-1659 
1425-1575 
1311-1449 
1083-1197 
1065-1179 
969-1071 
897-993 
741-819 
729-807 
627-693 
513-567 

(1) 

(2) 

(3) 

(1) 82e oa(10) [13]. 
(2) 189e R3 by Lemma 5.9. If (l.;;r.;;20 then 27 +6te R3 by Lemma 5.8. 
(3) IfO.;;r.;;9then9+6teR3byLemma5.8. 

THEOREM 5.12 
(1) Suppose that there exist t POLS of orders wu and u + 1. Also, suppose that there exist 

t + 1 POLS of order v with 0,;;;; w ,;;;; v. Then there exist t POLS of order uv + w, 
containing t sub-POLS of order w. 

(2) Suppose there exist t POLS oforders u, u + 1, and u +2. Also, suppose there exist t +2 
POLS oforder v, and tPOLS oforders w 1 and w 2 with 0,;;;; Wt. w2,;;;; v. Then there exist 
t POLS of order uv + w 1 + w 2 containing t sub-POLS of orders Wt and w2. 

PROOF. Those are corollaries of Wilson's construction [20]. The existence of the 
sub-POLS is not stated there, but is easily verified. 

LEMMA 5.13. If n;;;;;.: 513, n odd, then n E R 3 unless n E {591, 831}. 
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PROOF. In Table 2 below we apply Theorem 2.6 to all the exceptions listed in 
Theorem 5.10 except 591 and 831. 

TABLE 2 

u v w a v-a w-a u(w-a)+a u(v-a)+a Remarks 

11 189 7 6 183 1 17 2019 189 =7. 27 
183 = 7(27 -1)+ 17 183 7 3 180 4 31 1263 180=4. 45 
117=9 .1311 117 13 6 111 7 83 1227 111=8.13+7 
99=11.913 99 11 7 92 4 59 1203 92 =4. 23 

11 89 11 10 79 1 21 879 89 = 11(9-1)+ 1 
99=9.119 99 11 6 93 5 51 843 93 =8. 11+5 
57=7(9-1)+113 57 7 2 55 5 67 717 55= 5.11 

7 105 7 6 99 13 699 105 =7. 15 
57=7(9-1)+111 57 7 3 54 4 47 597 54=7. 7+4+1 

LEMMA 5.14. lfn is an odd positive integer, then n E R 3 unless n E {3, 5, 159,213,219, 
237,291,303,327,411,447,453,471,591,831}. 

PROOF. Except for n = 3 and 5, we need only consider n = 3p with p a prime and 
n ~ 15 3. Also, if n ~ 513 Lemma 5.13 applies. We give constructions for Room cubes of 
sides not listed as possible exceptions in the statement of the lemma: 183 = 7(27 -1) + 1, 
267=7(39-1)+1, 309=11(29-1)+1, 339=13(27-1)+1, 381=19(21-1)+1 and 
501 = 25(21-1) + 1. The remaining sides are all congruent to 1 mod 8. 

It appears that the remaining possible exceptions can not be eliminated by any of the 
previous methods. However, by use of the computer, we have constructed strong starters 
of all these orders except, of course, 3 and 5 (see [3]). 

LEMMA 5.15. There exist strong starters of orders 159, 213, 219, 237, 291, 303, 327, 
411, 447, 453, 471, 591 and 831. 

Thus we have our main result and an interesting corollary. 

THEOREM 5.16. There exists a Room cube of side n if and only if n is an odd positive 
integer other than 3 or 5. 

CoROLLARY 5.17. There exists a Room cube ofside n ifand only if there exists a Room 
square of side n. 
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