The Spectrum of Room Cubes

J. H. Dinitz and D. R. Stinson

Abstract

A Room cube of side n is an n by n by n cube such that each 2 -dimensional projection is a Room square. We show that there exists a Room cube of side n if and only if n is an odd positive integer other than 3 or 5 .

1. Introduction

A Room square of side n is an n by n array of cells, whose entries are chosen from a set S of $n+1$ objects called symbols, which satisfies the following conditions:
(i) every cell of the array is either empty or contains an unordered pair of distinct symbols from S;
(ii) each symbol occurs in every row and in every column of the array;
(iii) every unordered pair of symbols occurs precisely once in the array.

If $t \geqslant 2$ is an integer, a Room t-cube of side n is a t-dimensional array, each cell of which is either empty or contains an unordered pair of two distinct elements chosen from a set of size $n+1$, such that each 2-dimensional projection is a Room square of side n. In this paper we consider Room 3-cubes which we refer to as Room cubes. Let $R_{3}=\{n$: there exists a Room cube of side $n\}$. Room t-cubes can be equivalently described as certain types of Latin squares. Such a formulation has the advantage of being easier to visualize if $t \geqslant 3$.

A Latin square L of side n is an n by n array of cells, each of which contains exactly one symbol chosen from a set S of size n, such that each element of S occurs once in each row and once in each column of L. Suppose the rows and columns of L are indexed by the members of $S . L$ is said to be idempotent if $L(s, s)=s$ for each $s \in S . L$ is said to be symmetric if $L\left(s, s^{\prime}\right)=L\left(s^{\prime}, s\right)$ for every $\left\{s, s^{\prime}\right\} \subseteq S$. Now impose any linear ordering on S. Two Latin squares L and M, on the symbol set S, are said to be orthogonal symmetric Latin squares provided L and M are both symmetric and idempotent, and for every $\left(s, s^{\prime}\right) \in S \times S$ there exists at most one cell $\left(s_{1}, s_{2}\right)$ with $s_{1}<s_{2}$ such that $\left(s, s^{\prime}\right)=\left(L\left(s_{1}, s_{2}\right), M\left(s_{1}, s_{2}\right)\right)$. We refer to a set of t orthogonal symmetric Latin squares as t pairwise orthogonal symmetric Latin squares (POSLS) if each pair of squares is orthogonal symmetric.

Horton [9] establishes the following.
Theorem 1.1. If $t \geqslant 2$ is an integer then following are equivalent:
(i) there exists a Room t-cube of side n,
(ii) there exist t POSLS of side n.

Lemma 1.2. There exists a Room cube of side 9.
Proof. We exhibit three POSLS of order 9 in Figure 1 below.
Remark. In [1], of the purported four POSLS of order 9, no three are orthogonal. Thus the three POSLS of Figure 1 yield the first known Room cube of side 9.

We will also make extensive use of pairwise orthogonal Latin squares (POLS) and orthogonal arrays (OAs). For definitions, see [6]. The following well known theorem indicates the connection between these structures.

32547698	148675932	15738946
21678945	427139568	52496387
213789564	873964125	743891652
567493812	619482357	39842716
478952136	736851294	869254317
789326451	594216873	931746528
695814723	951328746	28613579
946135287	362597481	475612983
854261379	285743619	612578439

Figure 1. Three POSLS of order 9.
Theorem 1.3. The following are equivalent:
(i) there exists an $O A(n, t)$
(ii) there exist $t-2$ POLS of side n.

Define $o a(t)=\{n$: there exists an $\mathrm{OA}(n, t)\}$ The following is a well known theorem of MacNeish [10].

Theorem 1.4. Let n have prime power factorization $n=\Pi p_{i}^{\alpha_{i}}$. Then $n \in o a(t)$ if $t \leqslant \min \left\{p_{i}^{\alpha_{i}}+1\right\}$.

The work of severval mathematicians resulted in the following theorem concerning Room squares. A condensed proof is given in [17].

Theorem 1.5. There exists a Room square of side n if and only if n is an odd positive integer other than 3 or 5 .

The following is immediate.
Theorem 1.6. If n is an even integer, or if $n=3$ or 5 , then there is no Room cube of side n.

In order to determine the spectrum for Room cubes, we use a variety of techniques, most importantly, PBD closure.

For the definitions of pairwise balanced design (PBD), and PBD-closed set, see [11]. The following is shown in [5].

Theorem 1.7. Let $t \geqslant 2$ be a positive integer, and let $R_{t}=\{n$: there exists a Room t-cube of side $n\}$. Then R_{t} is $P B D$ closed.

We will determine the spectrum of Room cubes by constructing suitable PBD's. Our methods are very similar to those used in examining the spectrum of skew Room squares. Thus, we will often refer to the following four papers: [11, 13, 15, 16].

Briefly, we proceed as follows. In Section 2 constructions for Room t-cubes are described, and it is shown that if $n \geqslant 7$ is odd and if $n \notin R_{3}$, then $n=3 m$ where $(m, 15)=1$. In Section 3 we construct Room cubes of all sides $8 t+1$, a necessary ingredient in our main PBD construction. In Section 4 we use PBD-closure to establish that $n \in R_{3}$ if $n \geqslant 10355$. Finally, in Section 5, Room cubes of sides <10355 are investigated.

2. Some Constructions for Room Cubes

An important tool for constructing Room cubes is the strong starter, which is now defined. Let G be an abelian group of odd order $2 k+1$, written additively. A starter (of
order $2 k+1$) in G is a collection $A=\left\{\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}, \ldots,\left\{x_{k}, y_{k}\right\}\right\}$ such that:
(i) $\bigcup_{i=1}^{k}\left\{x_{i}, y_{i}\right\}=G \backslash\{0\}$,
(ii) $\left\{ \pm\left(y_{i}-x_{i}\right): 1 \leqslant i \leqslant k\right\}=G \backslash\{0\}$.

If, further, the sums $x_{i}+y_{i}$ are all distinct and non-zero, then A is said to be a strong starter. The following is shown in [9].

Lemma 2.1. If a strong starter exists in an abelian group of order $2 k+1$, then $2 k+1 \in R_{3}$.

Two infinite families of strong starters exist by the following theorems. For proofs, see Mullin and Nemeth [14] and Chong and Chan [2], respectively.

LEMMA 2.2. If $q=2^{k} t+1$ is an odd prime power with $t>1$ an odd integer, then there is a strong starter of order q.

Lemma 2.3. If $q=2^{2 n}=1$ is a Fermat prime greater than 5 , then there exists a strong starter of order q.

Remark. It is not necessary that q be prime in the Chong and Chan construction. However, the theorem as stated is sufficient for our purposes.

The following is a simple exercise in elementary number theory.
Lemma 2.4. If $q=2^{n}+1$ is a prime power, then either q is a Fermat prime or $q=9$.
Now, using the above Lemmata 2.2, 2.3 and 2.4 we have that if q is a prime power not equal to 3,5 or 9 , then there exists a strong starter of order q, and hence $q \in R_{3}$. By Lemma $1.2,9 \in R_{3}$. Therefore we summarize the above as the following theorem.

Theorem 2.5. If q is a prime power greater than 5 , then $q \in \boldsymbol{R}_{3}$.
The following is our main recursive construction for Room cubes. It is a straightforward modification of Mullin's indirect product construction for skew Room squares [11]. We state it in terms of POSLS.

Theorem 2.6. Suppose there exist t POSLS of side u, and t POSLS of side v containing t sub-POSLS of side w. Further, suppose $0 \leqslant a \leqslant w$, and there exist t POLS of side $v-a$ containing t sub-POLS of side $w-a$. Finally, suppose there exist t POSLS of side $u(w-a)+$ a. Then there exist t POSLS of side $u(v-a)+a$, containing t sub-POSLS of sides u and $u(w-a)+a$.

We may now obtain Horton's construction [9] as a corollary.
THEOREM 2.7. Suppose there exist t POSLS of side u, and t POSLS of side v containing t sub-POLS of side w. Further, suppose there exist t POLS of side $v-w$. Then there exist t POSLS of side $u(v-w)+w$ containing t sub-POSLS of sides u, v and w.

Proof. Let $a=w$ in Theorem 2.6. Then it suffices to check that the resulting squares contain sub-POSLS of order v. This is an easy verification.

In order to apply Theorems 2.6 and 2.9 with $t=3$ it is important to have three POLS of various sides.

Lemma 2.8. If $n \neq 2,3,6,10$ or 14 , then there exist three POLS of side n.
Proof. See [7, 19].
We can now derive a simple multiplication theorem.
Theorem 2.9. If $u, v \in R_{3}$, then $u v \in R_{3}$.
Proof. Apply Theorem $2.7(w=0)$ and Lemma 2.8. Note that $3,5 \notin \mathrm{R}_{3}$.
The following quintuplication theorem is due to Horton [8].
Lemma 2.10. Suppose there exists a strong starter of order n, where $(n, 3)=1$. Then there exists a strong starter of order $5 n$. Hence, $5 n \in R_{3}$.

Before proving the main theorem of this section, we record the existence of several of the strong starters which we will need in this paper.

Lemma 2.11. There exist strong starters of orders $15,21,33,35,39,45,51,57,69,87$, 93, 111, 123, 129 and 321.

Proof. See [3, 4 and 18].
Theorem 2.12. If $n \notin R_{3}, n$ odd, and $n \geqslant 7$, then $n=3 m$ where $(m, 15)=1$.

Proof. Write $n=3^{\alpha} 5^{\beta} m$, with $(m, 15)=1$. If $\alpha=\beta=0$ the result follows by Theorems 2.5 and 2.9.

If $\alpha=0, \beta=1$, then $n=5 m$ with $(m, 15)=1$ and $m>1$ since $n \geqslant 7$. Let p be any prime divisor of m. Then there exists a strong starter of order p by Theorem 2.5, and so $5 p \in R_{3}$ by Lemma 2.10. Now $m / p \in R_{3}$ by the above, so $5 m \in R_{3}$ by Theorem 2.9.

Next, we have 15,45 and $75 \in R_{3}$ by Lemma 2.11 , and $9,25,27,125 \in R_{3}$ by Theorem 2.5. Thus, if $\alpha+\beta=2$ or 3 , then $n=m . n / m$ with $m, n / m \in R_{3}$, so $n \in R_{3}$.

If $\alpha+\beta \geqslant 4$, then $n=$ st with $s=9$ or 25, and $t \in R_{3}$ by induction on $\alpha+\beta$. Hence $n \in R_{3}$.
This completes the proof, since the only possible exceptions have $\alpha=1$ and $\beta=0$.

3. Cubes of Side $8 t+1$

In this section we establish the existence of Room cubes of side $8 t+1$. We use Theorem 2.7 in conjunction with some pairwise balanced designs.

Lemma 3.1. Suppose $2^{\alpha}+1 \in R_{3}$. If n is odd and $n \neq 5$, then $n .2^{\alpha}+1 \in R_{3}$.

Proof. If $n \in R_{3}$, then set $u=n, v=2^{\alpha}+1$ and $w=1$ in Theorem 2.7. Note that there exist three POLS of side 2^{α} if $\alpha>1$, and that $3 \notin R_{3}$.

If $n=3$ then $3.2^{\alpha}+1 \in R_{3}$ by Theorem 2.12.
If $n \notin R_{3}, n \geqslant 7$, then $n=3 m$ with $m \in R_{3}$ by Theorem 2.12.

Set $u=m, v=3.2^{\alpha}+1, w=1$ in Theorem 2.7 to obtain $n \in R_{3}$. Note that there exist three POLS of side 3.2^{α} unless $\alpha=1$. However $3 \notin R_{3}$, so the hypothesis is not satisfied in this case.

We now define a 9-head (see [13]) to be a PBD whose block sizes are 7, 9 or 17 (all members of \boldsymbol{R}_{3}), which further contains a distinguished variety occurring only in blocks of size 9. A 9 -head evidently contains $8 r+1$ varieties where r is the number of blocks containing the distinguished variety. We refer to this r as the generalized replication number of the 9 -head. Let $G R$ denote the set of all generalized replication numbers of 9 -heads. Since R_{3} is PBD-closed and $\{7,9,17\} \subseteq R_{3}$, we have the following.

Lemma 3.2. If $r \in G R$, then $8 r+1 \in R_{3}$.
The following is established in [13].
Lemma 3.3. If $k>5, k \neq 7,8,9,10,11,13$ or 15 , then $2^{k} \in G R$.
Lemma 3.4. If $\alpha \geqslant 3$, then $2^{\alpha}+1 \in R_{3}$.
Proof. If $\alpha \geqslant 19$ or $\alpha=9,15$ or 17 , then Lemmata 3.2 and 3.3 imply $2^{\alpha}+1 \in R_{3}$. If α is even then $\left(2^{\alpha}+1,3\right)=1$ so $2^{\alpha}+1 \in R_{3}$ by Theorem 2.12. If $\alpha=5$ or 7 then Lemma 2.11 applies. If $\alpha=11$, consider Theorem 2.7 and the fact that $2049=15(145-9)+9$ and $145=9(17-1)+1$. If $\alpha=13$ then $8193=61(153-19)+19$ and $153=19(9-1)+1$.

Thus by application of Lemmata 3.1 and 3.4 we have the following theorem.
Theorem 3.5. If $\alpha \geqslant 3, n$ is odd and $n \neq 5$, then $n .2^{\alpha}+1 \in R_{3}$.
It now remains to construct squares of orders $5.2^{\alpha}+1$. We need the following multiplication theorem for $G R$ which was proven in [13].

Lemma 3.6. If $\{r, s\} \subseteq G R$ and there exists an $O A(r, s)$, then $r s \in G R$.
Lemma 3.7. If $2^{k} \in G R$ and $k \geqslant 4$, then $5.2^{k+1} \in G R$.
Proof. Since there exists an affine plane of order 9 , we have $10 \in G R$. Thus take $r=10, s=2^{k}$ in Lemma 3.6. The required $O A\left(10,2^{k}\right)$ exists by Theorem 1.3.

Lemma 3.8. If $k \geqslant 1, k \neq 2,3,4,5,6,8,9,10,11,12,14$ or 16 , then $5.2^{k} \in G R$.
Proof. As already noted, $10 \in G R$. Apply Lemmata 3.3 and 3.7 to obtain the result.
Theorem 3.9. If $\alpha \geqslant 3, \alpha \neq 12$, then 5. $2^{\alpha}+1 \in R_{3}$.
Proof. If $\alpha \geqslant 20$, or $\alpha=10,16$ or 18 , then Lemmata 3.2 and 3.8 imply $5.2^{\alpha}+1 \in R_{3}$. If α is odd then $\left(5.2^{\alpha}+1,3\right)=1$, so $5.2^{\alpha}+1 \in R_{3}$ by Theorem 2.12 . To handle the cases $\alpha=8$ and $\alpha=14$ we note that $21 \in R_{3}$ (Lemma 2.11). If $\alpha=8$, consider $1281=21.61$, and if $\alpha=14$, consider $81921=21.3901$. For $\alpha=6$, apply Lemma 2.11.

The theorem stated below follows immediately from Theorems 3.5 and 3.9.

Theorem 3.10. If $n \equiv 1 \bmod 8, n \neq 20481$, then $n \in R_{3}$.

4. A Preliminary Bound

By constructing PBDs with suitable block sizes, we show that Room cubes exist for all odd orders exceeding 10 355. The following PBD construction is found in [13].

Lemma 4.1. Suppose Y is a PBD closed set, and $m \in o a(10)$ with $0 \leqslant t \leqslant m$. If $\{7,9$, $6 t+1,6 m+1,8 m+1\} \subseteq Y$ then $56 m+6 t+1 \in Y$.

Theorem 4.2. If $n \equiv 1 \bmod 8$, then $n \in R_{3}$.
Proof. In view of Theorem 3.10, only $n=20481$ need be considered. However $20481 \in R_{3}$ since R_{3} is PBD closed and $20481=56.361+6.44+1.361 \in o a(10)$ by Theorem 1.4 and the necessary Room cubes all exist.

Lemn a 4.1 is adapted to Room cubes as follows.
Lemma 4.3. If $0 \leqslant t \leqslant m$ and $m \in o a(10)$, then $56 m+6 t+1 \in R_{3}$.
Proof. The result follows from Theorems 1.4 and 2.12 and Lemmata 4.1 and 4.2.
We are now ready to obtain a preliminary bound.
Theorem 4.4. If $n \geqslant 10355$ is odd, then $n \in R_{3}$.
Proof. We need only consider $n \equiv 3 \bmod 6$. Mullin et al. [14] establish that for $n \equiv 3 \bmod 6, n \geqslant 10355$, one can write $n=56 m+6 t+1$ with $0 \leqslant t \leqslant m$ and $m \in o a(10)$. Thus Lemma 4.3 implies the result.

5. Room Cubes with Small Sides

We use a variety of techniques in order to construct Room cubes with small sides (<10355). By Theorem 2.12, only orders $n \equiv 3 \bmod 6$ need be considered. The following is obtained from Lemma 4.3.

Lemma 5.1. If $m \in o a(10), m \equiv 1 \bmod 3, n \equiv 3 \bmod 6$, and $56 m+1 \leqslant n \leqslant 62 m+1$, then $n \in R_{3}$.

The next four lemmata are analogous to Lemmata 4.1 and 5.1 and will be used to show certain Room cubes exist. See [16] for proofs.

Lemma 5.2. Suppose Yis a PBD closed set, and $m \in o a(18), 0 \leqslant t \leqslant m$. If $\{7,17,6 t+1$, $6 m+1,16 m+1\} \subseteq Y$ then $112 m+6 t+1 \in Y$.

Lemma 5.3. If $m \in o a(18), n \equiv 3 \bmod 6, m \equiv 2 \bmod 3$, and $112 m+1 \leqslant n \leqslant 118 m+1$, then $n \in R_{3}$.

Lemma 5.4. Suppose Y is a PBD closed set, $m \in o a(9)$ and $0 \leqslant t \leqslant m$. If $\{7,9,7 m$, $m+6 t\} \subseteq Y$ then $57 m+6 t \in Y$.

LEMMA 5.5. If $m \in o a(9), m \equiv 1$ or $5 \bmod 6, n \equiv 3 \bmod 6$ and $57 m \leqslant n \leqslant 63 m$, then $n \in R_{3}$.

Lemma 5.6. If $n \equiv 3 \bmod 6$ and $6777 \leqslant n \leqslant 11161$ then $n \in R_{3}$.
Proof. Apply Lemma 5.1 with $m=121,127,139,151,157,163,169,181$. Each such value of m is in $o a(10)$ by Theorem 1.4. Also, for any two consecutive values $m_{1}<m_{2}$ in the above list, $62 m_{1}+1 \geqslant 56 m_{2}+1$. Finally, $56.121+1=6777$ and $62.181+1=$ 11161.

Thus we have improved the original bound.
Theorem 5.7. If n is odd and $n \geqslant 6777$, then $n \in R_{3}$.
It is convenient now to establish that some small values are in $\boldsymbol{R}_{\mathbf{3}}$.
Lemma 5.8. If $7 \leqslant n \leqslant 145$, n odd, then $n \in \boldsymbol{R}_{3}$.
Proof. By Theorem 2.12 and Lemma 2.11, only 141 need be considered. But, by Theorem 2.7, $141 \in R_{3}$ since $141=7(21-1)+1$.

With the aid of Lemma 5.8 the following can be established.
Lemma 5.9. If n is odd but $n \notin R_{3}$ then $n=3 p$, where p is a prime and $53 \leqslant p \leqslant 2251$.
Proof. Suppose $n \notin R_{3}$. By Theorems 2.12 and $5.7, n \leqslant 6771$ and $n=3 m$ where $(m, 15)=1$. Suppose m is not a prime. Let p be the smallest prime divisor of m. Then $p \leqslant 47$, since $n \leqslant 6771$ and $3.53^{2}>6771$. So $3 p \leqslant 141$, thus by Lemma $5.8,3 p \in R_{3}$. By Theorem 2.12, $m / p \in R_{3}$, hence by the multiplication Theorem 2.9, $n \in R_{3}$, a contradiction. Therefore, m is a prime and $n=3 m$.

Lemma 5.10. If $n \geqslant 513$, n odd, then $n \in R_{3}$ unless $n \in\{591,597,699,717,831,843$, 879, 1203, 1227, 1263, 2019\}.

Proof. In Table 1 below, we list intervals covered by applications of Lemmata 5.1-5.5. The orthogonal arrays exist by Theorem 1.4 unless otherwise noted.

The only intervals not covered are 6765-6771, 2009-2071, 1199-1309, 821-895, 695-727 and 569-627. By Lemma 5.9, we need only consider orders $3 p$ where p is a prime. These orders contained in the uncovered intervals are $n=2049,2031,2019,1299$, $1293,1263,1257,1227,1203,879,849,843,831,723,717,699,597,591,579,573$.

Room cubes of side $8 t+1$ exist by Theorem 4.2, and the remaining cubes are obtained by applying Theorem 2.7: $2031=29(71-1)+1, \quad 1299=59(23-1)+1, \quad 1293=$ $17(77-1)+1,723=19(39-1)+1,579=17(35-1)+1$ and $573=13(45-1)+1$.

Several of the possible exceptions over 500 can be eliminated by using the indirect product construction, Theorem 2.6. In order to apply this theorem we need POLS containing sub-POLS. These are obtained by use of the following theorems.

Theorem 5.11. Suppose there exist t POLS of orders u and v. Then there exist t POLS of order $u v$, containing t sub-POLS of orders u and v.

Proof. See [6].

Table 1

m	Lemma	Interval covered	
109	5.1	6105-6759	
103	5.1	5769-6387	
97	5.1	5433-6015	
89	5.5	5073-5607	
82	5.1	4593-5085	(1)
79	5.1	4425-4899	
73	5.1	4089-4527	
67	5.1	3753-4155	
61	5.1	3417-3783	
29	5.3	3249-3423	
53	5.5	3021-3339	
49	5.1	2745-3039	
47	5.5	2679-2961	
43	5.5	2451-2709	
43	5.1	2409-2667	
41	5.5	2337-2583	
37	5.5	2109-2339	
37	5.1	2073-2295	
17	5.3	1905-2007	
31	5.1	1737-1923	
29	5.5	1653-1827	
27	5.4	1539-1659	(2)
25	5.5	1425-1575	
23	5.5	1311-1449	
19	5.5	1083-1197	
19	5.1	1065-1179	
17	5.5	969-1071	
16	5.1	897-993	
13	5.5	741-819	
13	5.1	729-807	
11	5.5	627-693	
9	5.4	513-567	(3)

(1) $82 \in o a(10)[13]$.
(2) $189 \in R_{3}$ by Lemma 5.9. If $0 \leqslant t \leqslant 20$ then $27+6 t \in R_{3}$ by Lemma 5.8.
(3) If $0 \leqslant t \leqslant 9$ then $9+6 t \in R_{3}$ by Lemma 5.8.

Theorem 5.12
(1) Suppose that there exist t POLS of orders wu and $u+1$. Also, suppose that there exist $t+1$ POLS of order v with $0 \leqslant w \leqslant v$. Then there exist t POLS of order $u v+w$, containing t sub-POLS of order w.
(2) Suppose there exist t POLS of orders $u, u+1$, and $u+2$. Also, suppose there exist $t+2$ POLS of order v, and t POLS of orders w_{1} and w_{2} with $0 \leqslant w_{1}, w_{2} \leqslant v$. Then there exist t POLS of order $u v+w_{1}+w_{2}$ containing t sub-POLS of orders w_{1} and w_{2}.

Proof. Those are corollaries of Wilson's construction [20]. The existence of the sub-POLS is not stated there, but is easily verified.

Lemma 5.13. If $n \geqslant 513$, n odd, then $n \in R_{3}$ unless $n \in\{591,831\}$.

Proof. In Table 2 below we apply Theorem 2.6 to all the exceptions listed in Theorem 5.10 except 591 and 831.

Table 2

u	v	w	a	$v-a$	$w-a$	$u(w-a)+a$	$u(v-a)+a$	Remarks
11	189	7	6	183	1	17	2019	$189=7.27$
7	183	7	3	180	4	31	1263	$183=7(27-1)+1$
11	117	13	6	111	7	83	1227	$117=9.13$
13	99	11	7	92	4	59	1203	$99=11=8.13+7$
11	89	11	10	79	1	21	879	$89=4.23$
9	99	11	6	93	5	51	843	$99=9.11$
13	57	7	2	55	5	67	$93=8.11+5$	
7	105	7	6	99	1	13	697	$57=7(9-1)+1$
11	57	7	3	54	4	47	$55=5.11$	

Lemma 5.14. If n is an odd positive integer, then $n \in R_{3}$ unless $n \in\{3,5,159,213,219$, 237, 291, 303, 327, 411, 447, 453, 471, 591, 831\}.

Proof. Except for $n=3$ and 5, we need only consider $n=3 p$ with p a prime and $n \geqslant 153$. Also, if $n \geqslant 513$ Lemma 5.13 applies. We give constructions for Room cubes of sides not listed as possible exceptions in the statement of the lemma: $183=7(27-1)+1$, $267=7(39-1)+1,309=11(29-1)+1,339=13(27-1)+1,381=19(21-1)+1$ and $501=25(21-1)+1$. The remaining sides are all congruent to $1 \bmod 8$.

It appears that the remaining possible exceptions can not be eliminated by any of the previous methods. However, by use of the computer, we have constructed strong starters of all these orders except, of course, 3 and 5 (see [3]).

Lemma 5.15. There exist strong starters of orders 159, 213, 219, 237, 291, 303, 327, 411, 447, 453, 471, 591 and 831.

Thus we have our main result and an interesting corollary.
Theorem 5.16. There exists a Room cube of side n if and only if n is an odd positive integer other than 3 or 5 .

Corollary 5.17. There exists a Room cube of side n if and only if there exists a Room square of side n.

References

[^0]4. J. H. Dinitz and D. R. Stinson, A fast algorithm for finding strong starters, SIAM J. Algebraic and Discrete Methods 2 (1981), 50-56.
5. K. B. Gross, R. C. Mullin and W. D. Wallis, The number of pairwise orthogonal symmetric Latin squares, Utilitas Math. 4 (1973), 239-251.
6. M. Hall, Jr., Combinatorial Theory, Blaisdell, Waltham, Mass., 1967.
7. H. Hanani, On the number of orthogonal Latin squares, J. Combin. Theory 8 (1970), 247-271.
8. J. D. Horton, Quintuplication of Room squares, Aequationes Math. 7 (1971), 243-245.
9. J. D. Horton, Room designs and one-factorizations, Aequationes Math. (to appear).
10. A. F. MacNeish, Euler squares, Ann. of Math. 23 (1922), 221-227.
11. R. C. Mullin, A generalization of the singular direct product with applications to skew Room squares, J. Combin. Theory Ser. A 29 (1980), 306-318.
12. R. C. Mullin and E. Nemeth, An existence theorem for Room squares, Canad. Math. Bull. 12 (1969), 493-497.
13. R. C. Mullin, P. J. Schellenberg, D. R. Stinson and S. A. Vanstone, Some results on the existence of squares, Ann. Discrete Math. 6 (1980), 257-274.
14. R. C. Mullin, P. J. Schellenberg, G. H. J. van Rees and S. A. Vanstone, On the construction of perpendicular arrays, Utilitas Math. 18 (1980), 141-160.
15. R. C. Mullin, D. R. Stinson and W. P. Wallis, Concerning the spectrum of skew Room squares, Ars Combin. 6 (1978), 277-291.
16. R. C. Mullin, D. R. Stinson and W. D. Wallis, Skew squares of low order, Proc. 9 th Manitoba Conf. on Combinatorial Mathematics, 1978, pp. 413-434.
17. R. C. Mullin and W. D. Wallis, The existence of Room squares, Aequationes Math. 13 (1975), 1-7.
18. R. G. Stanton and R. C. Mullin, Construction of Room squares, Ann. Math. Statist. 39 (1968), 1540-1548.
19. S. M. P. Wang and R. M. Wilson, A few more squares II, Proc. 9 th Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Bocu Raton, Fla., 1978, p. 688 (abstract).
20. R. M. Wilson, Concerning the number of mutually orthogonal Latin squares, Discrete Math. 9 (1974), 181-198.

Received 6 November 1979 and in revised form 6 April 1981
J. H. Dinitz

Department of Mathematics, University of Vermont,
Burlington, Vermont 05401, U.S.A.
D. R. Stinson

Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Ontario, N2L 3G1, Canada

[^0]: 1. I. R. Beaman and W. D. Wallis, Pairwise orthogonal symmetric Latin squares, Proc. 9 th Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Bocu Raton, Fla., 1978, pp. 113-118.
 2. B. C. Chong and K. M. Chan, On the existence of normalized Room squares, Nanta Math. 7 (1974), 8-17.
 3. J. H. Dinitz and D. R. Stinson, A note on Howell designs of odd side, Utilitas Math. 18 (1980), 207-216.
