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A FAST ALGORITHM FOR FINDING STRONG STARTERS*

J. H. DINITZt AND D. R. STINSON:

Abstract. A strong starter (of order n) in an additive Abelian group G of odd order n 2t + is a set
S {{xl, yl}, {x2, Y2}," , {xt, Yt}} which satisfies the following properties:

(i) {xl, x2,"’,x, yl, Y2,"’, Y,}= G\{0},
(ii) {+(yl xi)l{xi, yi} S} G\{0},

(iii) xi + yi # xj + yj if # ], and xi + y # 0, for any i.
We present a fast algorithm for finding strong starters in Abelian groups.

1. Introduction. Strong starters are used extensively in the construction of Room
squares and Howell designs. A Howell design H(n, 2t), with t-< n =< 2t- 1, is a square
array of side n, where cells are either empty or contain an unordered pair of elements
chosen from a set X of size 2t such that:

(1) each member of X occurs exactly once in each row and column of the array,
and

(2) each pair of elements of X occurs in at most one cell of the array.
A Room square of side n (n odd) is an H(n, n + 1). It follows that, in this case, each

pair of elements of X occurs in exactly one cell of the array. Much research has been
done concerning Room squares; see, for example [10] and [14]. Strong starters are
related to Room squares by the following theorem of Horton [7].

THEOREM 1.1. If there exists a strong starter of order n, then there exists a Room
square of side n.

Anderson [1], [2] has shown that for the case of Howell designs, the existence of a
strong starter of order n which satisfies certain other (technical) properties implies the
existence of many H(n, 2t), (n + 1)/2 =< -< n.

For the above reason, strong starters have been investigated by several people.
Some infinite classes of strong starters are known. See for example, Mullin and Nemeth
[9], Chong and Chan [3], and Gross and Leonard [6]. Indeed, strong starters are known
to exist for all orders relatively prime to 3, except for order 5. However, no general
method is known for producing strong starters of order 3p for p prime. All strong
starters of these orders have been found on computer by back-tracking methods (see [4]
and [13]). However, for orders exceeding 70, back-tracking becomes impractical due to
the excessive computing time required.

Using the algorithm presented in this paper, the authors have recently proven the
following theorem [5].

THEOREM 1.2. If n < 1000 is odd, n 1 and (n, 2t) # (5, 6), then there exists an
H(n, 2t).

The purpose of this paper is to describe and analyze the algorithm used to find these
strong starters.

We wish to point out that we cannot prove that the algorithm will produce a strong
starter of any particular order. However, in practice, the algorithm has always suc-
ceeded.

In 2, we describe the algorithm. In 3, we estimate the time required to be O(n 2)
where n is the order n of the strong starter. This estimate agrees with empirical timing
results. In 4, we give a brief geometrical description of strong starters.

* Received by the editors January 30, 1980, and in revised form August 6, 1980.
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A FAST ALGORITHM FOR FINDING STRONG STARTERS 51

2. The algorithm. We now present the algorithm used to find a strong starter of
order n 2t + 1 in the cyclic group 7n.

Define a partial strong starter to be a set $’= {{xx, yx}, {x2, y2}," ", {xr, yr}} satisfy-
ing the following conditions"

(i) the xi’s and y?s are distinct nonzero elements of Zn
(ii) yi xi # +(yj x.) if # ;
(iii) x + Yi X + yi if /’, and x + y 0 if 1 _-< -< r.

Define def (S’) t- r. We say that def (S’) is the deficiency of S’. The deficiency of $’ is
the number of "missing pairs". We say that a partial strong starter $’ is maximal if there
exists no {u, v} __. Z, such that S’ {{u, v}} is a partial strong starter.

In a back-tracking algorithm, when a maximal partial strong starter is reached, the
"last" pair {x, yr} is deleted from the strong starter. This increases the deficiency of
the partial strong starter. The basic feature of the algorithm we will present is that the
deficiency is never increased.

Let D {1, 2, , t}. We refer to members of D as differences. Then, without loss
of generality, we may assume that y x =di D, if 1 <- <- r. An element z ’ {0} is
said to be used if z {x, y} for some {x, y} S’, otherwise z is unused. Similarly, a
difference d D is said to be used or unused depending on whether or not d d for
some i, 1 -<_ =< r. Finally, e Z -{0} is said to be a used or unused sum depending on
whether or not e x + yi for some i, 1 -< _<- r.

We now define a state of the algorithm to be a partial strong starter $’, together
with two distinct unused .elements u and u2, and an unused difference d D. Given a
state of the algorithm, let T/= {u- d, u + d}, 1, 2, and let T T t.) T2. The follow-
ing operations can be performed on a state.

(a) Matching u with an unused element’
If there exists w T such that w is an unused element and ui + w is an unused sum

(for the appropriate 1 or 2), then let S" S’t_J {{ui, w}}. If def (S") 0, choose a new
Ul, U2, d.

(b) Switching a pair"
If weT is a used element, and u+w is an unused sum, then let S"=

S’\{{x, y}} U {{w, u}}, where w xi or y for some ], 1 <-] <-r. Set

and

d d, u U3-i

j yi if w=xi,
U2

xi if w yj.

(c) Back-tracking:
Revert to the previous state of the algorithm if (b) or (c) was the last operation

performed.
(d) Switching a difference:
Replace d by some other unused difference d’. Leave u x, u2 unchanged.
(e) Switching a pair:
Suppose ui- u3- dx D is a used difference, and suppose ul + u2 is an unused

sum. Then set S"=S’\{{x,,ya}}U{u,u2}; set U=Xd, u2=Yd, and leave d
unchanged.

We may now use operations (a)-(e) to describe our algorithm.
(1) Initialization: Set def t, S , choose any distinct ua, uz Z,,-{0}, d e D.
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52 J. H. DINITZ AND D. R. STINSON

(2) If operation (a) can be performed, do so and go to (8).
(3) If operation (b) can be performed, do so and go to (2).
(4) If operation (c) can be performed, do so and go to (3).
(5) If operation (d) can be performed, do so and go to (2).
(6) If operation (e) can be performed, do so and go to (2).
(7) Stop (algorithm fails).
(8) Set def def- 1, choose any distinct unused ul, u2 and d. If def 0 go to (2).
(9) Stop (algorithm succeeds).
A few comments regarding the algorithm are in order. First, no operation increases

the deficiency, and operation (a) decreases the deficiency by 1. Also, operations (d) and
(e) are rarely executed since it is unlikely that (a), (b) and (c) all fail (more details in 3).
Note that if def 1, then operation (d) cannot occur, since (d) requires an unused
difference other than d. Finally, note that there may be more than one way to perform
an operation (b) on a given state. As a heuristic in the implementation of the algorithm,
the following is done. If a state is reached, and more than one way to perform operation
(b) is possible, then one way is picked at random. If the state is again reached, this time
by back-tracking (operation (c)), then the first way to perform operation (b) is excluded
and one of the remaining ways is chosen at random. As an example of this, see lines
9-12 in Table 1 below.

We construct a strong starter of order 11 using this algorithm. Table 1 below traces
the execution of the algorithm. Note that no operations (d) or (e) were required.

TABLE

Partial strong starter State

diff 2 3 4 5 ul u2 d

Operation
to be

performed

5,4
5,4
5,4
5,4
5,4
5,4
5,4
5,4

9 5 3 a
1,9 2 3 5 a
1,9 7,2 3 4 4 a
1,9 3, 10 7,2 4 5 2 b

4,2 1,9 3,10 5 7 5 b
4,2 3,10 1,7 5 9 3 a
4,2 9,6 3,10 1,7 5 8 b

9, 6 3, 10 1, 7 8 2 2 b
10,8 9,6 1,7 2 3 4 b
10,8 9,6 7, 3 2 5 c
10,8 9,6 1,7 2 3 4 c

9,6 3,10 1,7 8 2 2 b
8,6 3,10 1,7 2 9 3 b
8,6 1,9 3,10 2 7 5 c
8,6 3,10 1,7 2 9 3 b
8,6 5,2 3,10 1,7 9 4 b

5,2 3,10 1,7 4 6 2 a
5, 2 3, 10 1, 7

3. Analysis of the algorithm. In this section, we estimate the efficiency of this
algorithm by some probabilistic considerations and present some empirical data.

In order to calculate this estimate, one major assumption is made. We assume that
the probability that an operation succeeds on a given state is independent of the
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A FAST ALGORITHM FOR FINDING STRONG STARTERS 53

previous state performed. Theoretically, this assumption is probably not even true.
However, analysis of the efficiency of this algorithm using the assumption of indepen-
dence strongly agrees with the empirical data (see Tables 2 and 3). It thus appears (as

TABLE 2

100 strong starters of each order n

95% Number
Average of Average Confidence Average that

n Na+ Nb+ Nc+ Nd+Ne n log n interval of Nd q- Ne failed Time

51 393 1.95 53 .39 17 6.59sec
101 757 1.62 96 .89 13 9.29
201 1611 1.51 173 2.05 11 18.21
301 2491 1.45 272 3.31 12 29.32
401 3486 1.45 317 4.64 10 41.35
501 4029 1.29 374 5.29 10 51.02
601 4932 1.28 423 7.16 12 65.25

TABLE 3

2 strong starters of each order n

Average of Average Tinel 106
n Na +Nb+ Nc + Nd + Ne n log n Time n

3001 31190 1.29 14.4 sec 1.60
5001 63645 1.50 32.0 1.28
8001 91852 1.28 77.5 1.21
10001 117020 1.27 117.1 1.17

intuition would indicate) that the states are nearly independent, particularly for n large.
Because of the independence assumption, the analysis which follows is merely an
estimate of the actual efficiency of the algorithm and is not a proof of the existence of
strong starters.

First we estimate the probability that operation (a) succeeds for a given state with
deficiency k. The number of unused elements, other than ul or u2, is 2k 2. If operation
(b) was just performed, then one element of T will be used. The other three elements of
T each have probability (2k-2)/n of being unused and distinct from ul and u2. The
probability that a given element of T is unused is less than the probability p that there is
some unused element in T. Thus, for some element e T, distinct from u and u2, the
probability that e is unused is (2k-2)/(n-2). So a lower bound on p is p
(2k 2)/(n -2).

There is also the possibility that ux-u2 +d. This happens with probability
2/(n 1). Finally, the probability that a given sum is nonzero and unused is ((n 1)/2 +

The algorithm was implemented in Fortran on The Ohio State University Amdahl 470 system.

D
ow

nl
oa

de
d 

01
/1

6/
13

 to
 1

32
.1

98
.1

46
.1

19
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



54 J. H. DINITZ AND D. R. STINSON

k)/n. Thus, the probability of (a) succeeding when the deficiency is k is at least

pk(a)>
\n_2! +n- 2n

>/2k-2+2)(n+2k-1)
k(n+2k-1)
(n- 1)n

Thus, the number Na of times operation (a) is attempted in the course of the algorithm is
approximately

(n-1)/2 1 (n-1)/2 1
E <(n-1)n E
k= pg(a) ,= k(n + 2k -1)

(.-)/2 1
<n

k=l k

n-I)
Thus, it appears that Na O(n log n).

Now, if we suppose that (c) does not fail in the course of the algorithm, we can have
that Na=Nb-Nc.+(n- 1)/2. Nb and No, denote the number of times operations (b)
and (c*) are attempted, where an operation (c*) is a maximal sequence of consecutive
operations (c).

We now compute the probability pk(b) of (b) succeeding if (a) or (b) was just
performed. If (a) was just performed, then there are four possibilities for pairs to be
switched, if (b), then three. The probability of at least one sum being unused is at least

=1- n-2k-1 >
n n

If w were an unused element, then (a) would be performed. Thus, w is used
(perhaps zero). If w is nonzero then (b) can be performed. In order to simplify the
arithmetic, we assume w is nonzero. This does not greatly affect our estimate. Thus we
estimate p(b)> . Since (c) occurs only after (b) fails, we have N. < Nb.

Finally, the number of operations (c) in one operation (c*) must be estimated.
Denote by p(b 1) the probability that there is exactly one permissible choice in a (b)
operation (where a (b) or (a) was just performed). Then

1-pk(b=l)=l-3(n-2k+l):(n+2k-1)2n 2n

n--_1\2(n + 1=>1-3(2n ) \-2n )
5

Thus we estimate that, on the average, less than - (c) operations make up each
(c*) operation.
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A FAST ALGORITHM FOR FINDING STRONG STARTERS 55

By the above, we have Nb=Na+Nc.-(n-1)/2. Thus Nb<Na+Nb-
(n-l)/2, so Nb<(N-(n-1)/2). Therefore, Nb=O(n logn). Also, Nc<Nc.<
Nb, so N Oin log n).

Thus, we estimate that the number of operations, N+Nb+N, executed in the
algorithm is O(n log n). Also, the time required for an operation is at most O(n).
Choosing a new u and u2 is the only time it is necessary to search through an array.
With more sophisticated list processing techniques, this time could be reduced, perhaps
to O(log n). Each of the operations (a)-(e) require O(1) time. Thus, we estimate that
the time required for the algorithm is O(n 2 log n).

This estimate can be improved slightly. The O(n) operation is executed only
(n 1)/2 times in the course of the algorithm. Thus, an estimate of O(n 2) is obtained.

To test this estimate, the program was run until 100 strong starters were produced
for each of 7 different orders, (See Table 2). Also, a 95% confidence interval about the
mean/x of Na d- Nb q-N+Nd+Ne was computed. To test the algorithm on large orders,
we produced two strong starters each of orders 3001, 5001, 8001, and 10001 (Table 3).

Although no theoretical upper bound for the probability of failure has been
computed, in practice this number appears to be about . The algorithm usually fails
when deficiency equals 1 and no operation can be performed. This happens only in the
first state after the deficiency has become 1, since otherwise the program will be able to
back-track when no (b) can be performed. There is also the chance that the states might
form a loop and thus not produce a starter. In order to prevent an infinite loop, a timer
was written into the program. If the search for a starter took too long, the search would
be aborted and the program started over again with def= (n -1)/2. However, this
occurred only once in over 700 trials.

4. A geometric interpretation. Strong starters in 7/n have an interesting geometri-
cal interpretation. Label n equally spaced points on a circle by the elements of 7n
(cyclically). If {x, y} S, then join points x and y on the circle by a straight line. The
(n 1)/2 lines thus formed will have the following properties:

(1) no two lines have the same length;
(2) no two lines are parallel;
(3) no two lines have a common endpoint.

Conversely, any such geometric configuration generates a strong starter in 2.
A strong starter of order 129 is geometrically represented in Fig. 1 below.

i00

9O

0

.30

0

0
FIG. 1. A strong starter o[ order 129.

D
ow

nl
oa

de
d 

01
/1

6/
13

 to
 1

32
.1

98
.1

46
.1

19
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



56 J. H. DINITZ AND D. R. STINSON

5. Conclusion. Thus, we have described an algorithm for finding strong starters.
Using probabilistic arguments, we estimate that the algorithm should succeed in
polynomial time (actually O(n2)). In practice, this seems to be accurate.

Our algorithm is similar in some aspects to the algorithm of Posa [11] for finding
Hamiltonian circuits in graphs. That is, at no time in the algorithm does one head
"away" from the desired end results. In finding strong starters, the deficiency is never
increased; in finding a Hamiltonian circuit, the length of a path is never decreased. Also,
both algorithms involve a certain amount of randomness in making some choices.
Finally, there is the possibility that the algorithm may fail. However, in practical
applications both algorithms have a high rate of success.

Other probabilistic algorithms are described in [8] and [12].
It also appears that probabilistic algorithms based on this simple switching idea

may be practical in other combinatorial applications such as constructing Steiner triple
systems and finding transversals in Latin squares.
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