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a b s t r a c t

A central question in design theory dating from Kirkman in 1850 has been the existence
of resolvable block designs. In this paper we will concentrate on the case when the block
size k = 4. The necessary condition for a resolvable design to exist when k = 4 is that
v ≡ 4 mod 12; this was proven sufficient in 1972 by Hanani, Ray-Chaudhuri and Wilson
[H.Hanani, D.K. Ray-Chaudhuri, R.M.Wilson, On resolvable designs, DiscreteMath. 3 (1972)
343–357]. A resolvable pairwise balanced design with each parallel class consisting of
blocks which are all of the same size is called a uniformly resolvable design, a URD. The
necessary condition for the existence of a URDwith block sizes 2 and 4 is that v ≡ 0 mod 4.
Obviously in a URD with blocks of size 2 and 4 one wishes to have the maximum number
of resolution classes of blocks of size 4; these designs are called maximum uniformly
resolvable designs or MURDs. So the question of the existence of a MURD on v points has
been solved for v ≡ 4(mod 12) by the result of Hanani, Ray-Chaudhuri and Wilson cited
above. In the case v ≡ 8(mod 12) this problem has essentially been solved with a handful
of exceptions (see [G. Ge, A.C.H. Ling, Asymptotic results on the existence of 4-RGDDs and
uniform 5-GDDs, J. Combin. Des. 13 (2005) 222–237]). In this paper we consider the case
when v ≡ 0(mod 12) and prove that a MURD(12u) exists for all u ≥ 2 with the possible
exception of u ∈ {2, 7, 9, 10, 11, 13, 14, 17, 19, 22, 31, 34, 38, 43, 46, 47, 82}.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and definitions

Let K be a subset of positive integers. A pairwise balanced design PBD(v, K) of order v with block sizes from K is a pair
(V,B), where V is a finite set (the points) of cardinality v and B is a family of subsets (the blocks) of V which satisfy the
properties:

1. If B ∈ B, then |B| ∈ K .
2. Every pair of distinct elements of V occurs in exactly one block ofB.

A parallel class in a pairwise balanced design is a subset of blocksA ⊂ B such that each point inV is contained in exactly
one block inA. A pairwise balanced design is resolvable if the set of blocksB can be partitioned into parallel classes.
A parallel class in a PBD is uniform if every block in the parallel class is of the same size. A uniformly resolvable design,

URD(v, K , R), is a resolvable PBD(v, K) such that all of the parallel classes are uniform. R is a multiset, where |R| = |K | and
for each k ∈ K there corresponds a positive rk ∈ R such that there are exactly rk parallel classes of size k.
In this paper, we are interested in the case when K = {2, 4}. Since a block of size 4 can be decomposed into three parallel

classes of size 2, our interest is to construct URD(v, {2, 4}, {r2, r4})where r4 is maximized.
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Evidently, for a URD(v, {2, 4}, {r2, r4})with r4 > 0 to exist, v must be a multiple of 4. The following lemma gives upper
bounds on the value of r4 in the three cases modulo 12 when v ≡ 0(mod 4). The proof is obvious.

Lemma 1.1. r4 ≤ v−αv
3 where αv =

{
1, if v ≡ 4(mod 12)
2, if v ≡ 8(mod 12)
3, if v ≡ 0(mod 12).

A URD(v, {2, 4}, {r2, r4}) with r4 meeting the upper bound in Lemma 1.1 is said to be maximum URD. For the purposes
of this paper we will denote a maximum URD(v, {2, 4}, {r2, r4}) as simply a MURD(v). In this paper we will use standard
objects from combinatorial design theory such as group divisible designs, transversal designs, and frames. The reader is
referred to [2] or [3] for definitions and results concerning these objects.
When v ≡ 4(mod 12), the necessary condition for the existence of resolvable BIBD(v, 4, 1) (a resolvable PBD(v, {4})

was shown to be sufficient in 1972 by Hanani, Ray-Chaudhuri and Wilson [5]. Hence, the existence of a MURD(v) is
known for all v ≡ 4(mod 12). When v ≡ 8(mod 12), it is clear that a MURD(v)is a resolvable group divisible design
with blocks of size 4 and v

2 groups all of size 2 a MURD(v). It has recently been shown in [4] that the necessary
conditions for the existence of a resolvable group divisible design with blocks of size 4 and u = v

2 groups all of size
2 (namely that u ≥ 4 and u ≡ 4(mod 6)) are sufficient except when u = 4 and u = 10 and possibly when u ∈
{34, 46, 52, 70, 82, 94, 100, 118, 130, 142, 178, 184, 202, 214, 238, 250, 334, 346}.
In view of the results above we will concentrate on the case where v ≡ 0(mod 12) in the remainder of this paper. We

should note that when v ≡ 0(mod 12) a resolvable group divisible design of type 3h with h ≡ 0(mod 4) is a uniformly
resolvable design on v = 3h points with v−3

3 parallel classes of blocks of size 4 and one parallel class of blocks of size 3 (the
groups in the GDD). Such RGDDs exist for all orders except when h = 4 (see [4] or [2]); however, clearly the blocks of size 3
cannot be divided into two parallel classes of blocks of size 2 and so these do not yield MURD(12u) in any straightforward
way.
In Section 2 we present direct constructions for MURD(12u) with small u and in Section 3 we give some recursive

constructions and prove asymptotic existence. Finally, in Section 4 we provide construction for some smaller orders and
prove our main theorem. We will prove the following theorem.

Theorem 1.2. AMURD(12u) exists for all u ≥ 2with the possible exception of u ∈ {2, 7, 9, 10, 11, 13, 14, 17, 19, 22, 31, 34,
38, 43, 46, 47, 82}.

2. Direct constructions

In this section, we present direct constructions for uniformly resolvable designs with block sizes 2 and 4 for some small
values of v.

Lemma 2.1. There exists aMURD(36)

Proof. Let V = Z18 × {0, 1}. Two parallel classes are generated by the base block {00, 30, 11, 61} by first taking the odd
translates then taking the even translates. Next, generate a parallel classes by taking the following base blocks:

{10, 20, 130, 150}, {70, 170, 111, 121}, {30, 101, 141, 171}, {50, 71, 131, 151}, {00, 90, 01, 91}.

Add 9 to each of the first four blocks; these eight blocks together with the last block form the parallel class. Adding i for
i = 0, 1, . . . , 8 to this first parallel class produces nine parallel classes. The two unused mixed differences, 15 and 17,
generate two 1-factors on V . �

Lemma 2.2. There exists aMURD(48).

Proof. Let V = Z24 × {0, 1}. One parallel class is generated by the base block {00, 120, 01, 121} by adding i for 1 ≤ i ≤ 11.
Two more parallel classes are generated by the base block {00, 10, 21, 51} by taking the odd or even translates. Finally,
consider the following base blocks:

{01, 11, 51, 111}, {00, 31, 181, 201}, {30, 80, 141, 221},
{50, 70, 130, 41}, {90, 180, 220, 71, }, {20, 160, 230, 91}.

Add 12 to the above six blocks and these twelve blocks become a parallel class. Use this parallel class to obtain twelve par-
allel classes by adding i for 0 ≤ i ≤ 11 to each block. The two unused mixed differences, 10 and 16, generate two 1-factors
on V . �

Lemma 2.3. There exists aMURD(60).
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Proof. LetV = Z30×{0, 1}. Each of the blocks {00, 70, 21, 191} and {20, 190, 01, 71} generates two parallel classes by taking
the odd or even translates modulo 30. Consider the following base blocks:

{10, 20, 50, 230}, {60, 21, 161, 271}, {51, 81, 91, 291}, {70, 120, 111, 131},
{90, 110, 31, 251}, {100, 290, 71, 191}, {30, 130, 190, 61}, {00, 150, 01, 151}.

Add 15 to each block (except the last one) and these 15 blocks form a parallel class. Take the next 14 consecutive translates
modulo 30 to generate an additional 14 parallel classes. The two unusedmixed differences, 7 and 13, form two 1-factors. �

Lemma 2.4. There exists aMURD(72).

Proof. LetV = Z36× {0, 1}. One parallel class is generated by the two base blocks {00, 90, 180, 270} and {01, 91, 181, 271}.
Four more parallel classes are generated by the two base blocks {00, 10, 30, 140} and {01, 11, 31, 141} as the points are
distinct modulo 4. Consider the following blocks:

{00, 01, 41, 101}, {10, 50, 241, 311}, {20, 310, 91, 331}, {30, 240, 121, 321}, {40, 300, 161, 211},
{70, 350, 51, 201}, {80, 140, 111, 191}, {90, 290, 81, 251}, {100, 150, 340, 351}.

Add 18 to all blocks, and these 18 blocks form a parallel class. Take the next 17 consecutive translates modulo 36 to obtain
an additional 17 parallel classes. The two unused mixed differences, 18 and 28, form two 1-factors. �

Lemma 2.5. There exists aMURD(96).

Proof. Let V = Z24 × Z4. Three parallel classes are generated by three short orbits {00, 60, 120, 180}, {00, 01, 02, 03} and
{00, 61, 122, 183} respectively. Four parallel classes are generated by the base blocks {00, 10, 30, 100} by taking add (4i)j for
i = 0, 1, . . . , 5 and j = 0, 1, 2, 3. These 24 blocks form a parallel class. Translate them to obtain a total of four parallel
classes. The base blocks

{00, 40, 11, 91}, {20, 70, 61, 202}, {30, 160, 132, 53}, {80, 211, 232, 143}, {100, 171, 122, 223}, {110, 191, 152, 183}

are distinct in the first component modulo 24. Cycle them in the second component to obtain a parallel class. 24 parallel
classes can then be generated by cycling them modulo 24. �

We now give the definition of an incomplete MURD, an IMURD. Let v, h ≡ 0(mod 12). An IMURD(v+h, h) is a {2, 4}-GDD
of type 1vh1 such that the blocks can be partitioned into three types of resolution classes as follows:

1. Two classes of blocks, with all blocks of size 2, where each class consists of v2 blocks covering all v points not in the group
of size h.

2. h−33 classes of block, with all blocks of size 4, where each class consists of
v
4 blocks covering all v points not in the group

of size h.
3. v3 classes of blocks with all blocks of size 4, where each class consists of

v+h
4 blocks covering all v + h points.

Lemma 2.6. There exists a IMURD(48+ 12, 12).

Proof. Let V = Z4 × Z4 × {0, 1, 2} ∪ {x0, x1, y0, y1, . . . , y9}. We first construct three parallel classes from short orbits.
From the three base blocks {(0, 0, i), (0, 1, i), (0, 2, i), (0, 3, i)} with i = 0, 1, 2, construct a parallel class of 12 blocks
by adding (x, 0, 0) for each x ∈ Z4. From the three base blocks {(0, 0, i), (1, 0, i), (2, 0, i), (3, 0, i)}, with i = 0, 1, 2,
construct a parallel class of 12 blocks by adding (0, x, 0) for each x ∈ Z4. And finally, from the three base blocks
{(0, 0, i), (1, 1, i), (2, 2, i), (3, 3, i)}, with i = 0, 1, 2, construct a parallel class of 12 blocks by adding (x, 0, 0) for each
x ∈ Z4. Now, consider the following base blocks:

{x0, (0, 2, 0), (0, 3, 2), (2, 0, 2)}, {x1, (2, 0, 0), (0, 3, 1), (2, 2, 1)}, {y0, (0, 3, 0), (2, 3, 1), (1, 3, 2)},
{y1, (1, 1, 0), (1, 0, 1), (3, 2, 2)}, {y2, (1, 3, 0), (3, 0, 1), (2, 1, 2)}, {y3, (2, 1, 0), (1, 2, 1), (0, 1, 2)},
{y4, (2, 2, 0), (3, 2, 1), (3, 1, 2)}, {y5, (2, 3, 0), (3, 1, 1), (1, 1, 2)}, {y6, (3, 0, 0), (2, 0, 1), (3, 0, 2)},
{y7, (3, 1, 0), (0, 2, 1), (1, 0, 2)}, {y8, (3, 2, 0), (2, 1, 1), (2, 3, 2)}, {y9, (3, 3, 0), (1, 1, 1), (2, 2, 2)}
{(0, 0, 0), (1, 2, 0), (0, 0, 1), (1, 3, 1)}, {(0, 1, 0), (1, 0, 0), (0, 0, 2), (1, 2, 2)},
{(0, 1, 1), (3, 3, 1), (0, 2, 2), (3, 3, 2)}.

The parallel classes (consisting of 15 blocks each) are generated by adding elements (i, j) for i, j ∈ Z4 to the first two
coordinates of each point in the design. If the added element is of the form (i, 1) or (i, 3) permute the two infinite points x0
and x1. The yi’s stay fixed all the time. It is straightforward to check that the blocks form the required designs. �
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3. Recursive constructions

The first lemma is a standard construction which uses 4-frames and IMURDs to construct MURDs. It should be pointed
out however, that the IMURDs are essential in this construction and that the construction does not work with just the use of
MURDs. Again we refer the reader to [2] or [3] for definitions and results concerning the objects such as frames and RGGDs
that are used in this section.

Lemma 3.1. If there exists a 4-frame of type (12h1)(12h2) . . . (12hn), an IMURD(12hi + u, u) for all i = 1, 2, . . . , n− 1 and a
MURD(12hn + u), then there exists aMURD(u+

∑
12hi).

Proof. First add u infinite points to the frame and then for each i = 1, 2, . . . , n−1 fill in an IMURD(12hi+u, u) on the points
of the ith group plus the infinite points. Fill in a MURD(12hn+ u) on the points of the last group plus the infinite points. The
parallel classes come from the frame and the IMURDs and theMURD. Note that the number of holey parallel classes missing
a group of size (12hi) is (12hi)/3 which is precisely the number of type 3 resolution classes in the IMURD(12hi + u, u). �

To apply this lemma we will use the following theorem concerning the existence of 4-frames of type hn.

Theorem 3.2 ([4,6]). There exists a 4-frame of type (12h)u if and only if u ≥ 5, except possibly when h = 3 and u = 12.

Theorem 3.3. If u ≡ 1(mod 4), and u ≥ 21, then there exists aMURD(12u).

Proof. Begin with a 4-frame of type 48n which exists by Theorem 3.2 with n ≥ 5 and add 12 infinite points. Then use
Lemma 3.1 with hi = 4 for 1 ≤ i ≤ n and u = 12 to get a MURD(12+ 48n) = MURD(12(1+ 4n)) for all n ≥ 5. �

The following is a general recursive construction using resolvable GDDs that is similar to Lemma 3.1.

Lemma 3.4. If there exists a 4-RGDD of type (12h)n and aMURD(12h), then there exists aMURD(12hn) and an IMURD(12h(n−
1)+ 12h, 12h).

Proof. Just fill in each group in the RGDD with the MURD(12h) to get a MURD(12hn). The IMURD is constructed by leaving
the last group unfilled. �

To apply this construction we will need to know the existence of 4-RGDD of type (12h)n. This is provided in the next
theorem.

Theorem 3.5 ([4]). There exists a 4-RGDD of type (12h)u if u ≥ 4 and except possibly when h = 1 and u = 27; h = 2 and
u = 23; and h = 3 and u ∈ {11, 14, 15, 18, 23}.

From Lemma 3.4, Theorem 3.5 and Lemmas 2.1–2.4 we get the following theorem.

Theorem 3.6. (a) There exists an IMURD(36(u − 1) + 36, 36) and a MURD(36u) = MURD(12(3u)) for all u ≥ 4 and
u 6= 11, 14, 15, 18, 23.

(b) There exists an IMURD(48(u− 1)+ 48, 48) and aMURD(48u) for all u ≥ 4.
(c) There exists an IMURD(60(u− 1)+ 60, 60) and aMURD(60u) for all u ≥ 4.
(d) There exists an IMURD(72(u− 1)+ 72, 72) and aMURD(72u) for all u ≥ 4.

The following two propositions are our final general recursive constructions. Proposition 3.9 will be used to close out the
spectrum of MURDs. We first cite a recent result on the existence of 5-GDDs.

Theorem 3.7 ([1]). A 5-GDD of type g5m1 exists if g ≡ 0(mod 4), m ≡ 0(mod 4), and m ≤ 4g/3, with the possible exceptions
of (g,m) = (12, 4) and (12, 8).

Proposition 3.8. Assume k ≥ 3, k 6= 10, 13, 14, 17, 22 and x ≤ 4k. If there exists a MURD(12(x + 3)), then there exists a
MURD(12(15k+ x+ 3)).

Proof. Begin with a 5-GDD of type (12k)5(4x)1 which exists by the previous theorem. Give weight 3 to each point in the
GDD and then replace each block by a 4-frame of type 35 (which exists by Theorem 3.2). The result is a 4-frame of type
(36k)5(12x)1. Now add 36 infinite points. Use Lemma 3.1 with an IMURD(36k+ 36, 36) on each of the first five groups plus
the infinite points and aMURD(12x+36) on the last group plus the infinite points to obtain aMURD(12(15k+ x+3)). Note
that IMURDs exists by Theorem 3.6(a). �

Proposition 3.9. Assume k ≥ 3 and x ≤ 16
3 k. If there exists aMURD(12(x+ 4)), then there exists aMURD(12(20k+ x+ 4)).
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Proof. The proof is similar to the proof of Proposition 3.8. Begin with a 5-GDD of type (16k)5(4x)1 and again give each point
weight 3 and use the 4-frame of type 35 to obtain a 4-frame of type (48k)5(12x)1. Now add 48 infinite points. The first five
groups are then filled in with an IMURD(48k + 48, 48) and a MURD(12x + 48) goes on the last group plus the infinite
points resulting in a MURD(12(20k+ x+ 4)). Note that IMURD exists by Theorem 3.6(b) and that now there are no further
restrictions on the value of k except that k ≥ 3. �

In order to utilize Proposition 3.9 to close the spectrum of MURD(12u)’s we need to construct 20 consecutive values u
for which there exists a MURD(12u). In the next two lemmas we will construct MURD(12u) for all 48 ≤ u ≤ 68.

Lemma 3.10. If 48 ≤ u ≤ 93 and u ≡ 3, 4, 5, 6, 8(mod 9), then there exists aMURD(12u).

Proof. Take a TD(n + 1, 9) for 5 ≤ n ≤ 9 and give weight 12 to all the points in first n groups; in the last group give
weight 12 to y points and weight 0 to the rest. Replace each block in the TD with a 4-frame of type 12n or 12n+1 (existence
guaranteed by Theorem 3.2) to obtain a 4-frame of type 108n(12y)1 for 0 ≤ y ≤ 9. Now assume that y = 0, 1, 2, 3, 5, 9 and
add 36 infinite points. Use Lemma 3.1 and fill in the first n holes with an IMURD(108 + 36, 36) and the last hole plus the
infinite points with a MURD(12y+ 36) for y = 0, 1, 2, 3, 5, 9. The IMURD(108+ 36, 36) exists by Theorem 3.6(a) and the
MURD(12y+ 36) exists by Lemmas 2.1–2.5 and Theorem 3.6(a). The result is a MURD(12(9n+ 3+ y)) for every 5 ≤ n ≤ 9
and y = 0, 1, 2, 3, 5, 9, completing the proof. �

Lemma 3.11. If 48 ≤ u ≤ 68 there exists aMURD(12u).

Proof. The set of values of uwith 48 ≤ u ≤ 68 for which a MURD(12u) is not already constructed in the previous lemma is
{52, 54, 55, 56, 61, 63, 64, 65}. A MURD(12 · 61) exists by Theorem 3.3. For all the other values of u, a MURD(12× u) exists
by one of the parts of Theorem 3.6. �

Lemma 3.12. For all k ≥ 12 and 48 ≤ x ≤ 68 there exists aMURD(12(20k+ x)).

Proof. This is just an application of Proposition 3.9 and Lemma 3.11 since k ≥ 12 guarantees that x− 4 ≤ 16
3 k. �

We are now in a position to show that a MURD(12u) exists when u is large enough.

Theorem 3.13. For every u ≥ 288 there exists aMURD(12u).

Proof. Let u ≥ 288. Let 20k be a multiple of 20 in the interval [u − 68, u − 48]. Then k ≥ 12 and u = 20k + x where
48 ≤ x ≤ 68. Hence by Lemma 3.12 there is a MURD(12u). �

4. The smaller orders

We begin this section with a construction for some MURD(12u)with u ≤ 48.

Lemma 4.1. There exists aMURD(12u) for u = 23, 24, 25, 26.

Proof. From Theorem 3.7 there exists a 5-GDD of type 165y1 for y = 8, 12, 16, 20. Give weight 3 to each point and fill in
each block with a 4-frame of type 35 [4] to obtain a 4-frame of type 485(3y)1 for y = 8, 12, 16, 20. Now add 12 infinite
points and apply Lemma 3.1 with the ingredients an IMURD(48+ 12, 12) and a MURD(12u) for u = 3, 4, 5, 6 (all of these
ingredients were constructed in Section 2) to make a MURD(12u) for u = 23, 24, 25, 26, respectively. �

Now define the set E = {2, 7, 9, 10, 11, 13, 14, 17, 19, 22, 31, 34, 38, 43, 46, 47, 82}. This will be our eventual set of
exceptional cases.

Proposition 4.2. There exists aMURD(12u) for every 2 ≤ u ≤ 68 except possibly for u ∈ E.

Proof. This follows from Lemmas 2.1–2.5, Theorems 3.3 and 3.6, Lemmas 3.11 and 4.1. �

We now construct MURD(12u) for 69 ≤ u ≤ 287.

Lemma 4.3. There exists aMURD(12u) for all 69 ≤ u ≤ 81 and 83 ≤ u ≤ 87.

Proof. For u = 69, 71, 85 and 86 there exists a MURD(12u) from Lemma 3.10. A MURD(12 · 70) exists from Theorem 3.6.
A MURD(12 · 79) and a MURD(12 · 83) exist from Proposition 3.8 with k = 5 and x = 1 and 5, respectively.
To get all the remaining values in this range, begin with a transversal design TD(7, 12) and give weight 12 to all the

points in the first five groups, to a points in the sixth group and to x points in the last group (weight 0 to all other points).
Now replace each block with a 4-frame of type 12n for 5 ≤ n ≤ 7, which exist by Theorem 3.2, to obtain a 4-frame of
type 1445(12a)1(12x)1. We restrict to a = 0, 9, 12 and x = 0, 1, 2, 3, 5, 9, 12 and add 36 infinite points. Note that for
each of these values of x there exists a MURD(12(x + 3)) and in addition there exists an IMURD(108 + 36, 36) and an
IMURD(144+36, 36). Applying Lemma 3.1 gives aMURD(12(60+a+x+3))where a = 0, 9, 12 and x = 0, 1, 2, 3, 5, 9, 12.
Hence we get a MURD(12u) for u = 63, 64, 65, 66, 68, 72, 73, 74, 75, 76, 77, 78, 80, 81, 84, 87. �
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Lemma 4.4. There exists aMURD(12u) for 88 ≤ u ≤ 162.

Proof. Begin with a transversal design TD(14, 13) and remove the points on a block to obtain a 13-GDD of type 1214. Give
weight 12 to the points in six groups, weight 12 to 0, 9 or 12 points in seven groups, weight 12 to 0, 1, 2, 3, 5, 9, 12 points
in the last group and add 36 infinite points. Let a be the number of such groups where 12 points received weight 12 and b
be the number of groups where 9 points received weight 12. Again replacing each block with a 4-frame of type 12n for
5 ≤ n ≤ 14 yields a 4-frame of type 1446+a108b(12x) where x = 0, 1, 2, 3, 5, 9 or 12. Applying Lemma 3.1 gives a
MURD(12(72 + 12a + 9b + x + 3)) where a + b ≤ 7 and x = 0, 1, 2, 3, 5, 9, 12. Substituting appropriate values for
a, b and x gives a MURD(12u) for u = 88, 89, 90 and all 92 ≤ u ≤ 162.
A MURD(12 · 91) exists via Proposition 3.8 with k = 5 and x = 13. �

Lemma 4.5. There exists aMURD(12u) for 163 ≤ u ≤ 243.

Proof. The proof is the same as Lemma 4.4 except that now we start with TD(17, 16) and remove the points on a block to
obtain a 16-GDD of type 1517. Give weight 12 to the points in six groups, weight 12 to 0, 9, 12 or 15 points in ten groups and
weight 12 to 0, 1, 2, 3, 5, 9, 12 points in the last group and add 36 infinite points. Assume a of these groups have 15 points
receiving weight 12, b groups have 12 points receiving weight 12 and c groups have 9 points getting weight 12. Proceed as
before to obtain aMURD(12(90+15a+12b+9c+x+3))where a+b+c ≤ 10 and x = 0, 1, 2, 3, 5, 9, 13, 15. Substituting
appropriate values for a, b, c and x it is easy to get a MURD(12u) for 163 ≤ u ≤ 243. �

The next lemma finishes off the constructions for MURD(12u)with u ≤ 287.

Lemma 4.6. There exists aMURD(12u) for all 244 ≤ u ≤ 287.

Proof. The proof is also the same as Lemma 4.4 except that this time we start with TD(20, 19) and remove the points
on a block to obtain a 19-GDD of type 1820. Give weight 12 to the points in twelve groups, weight 12 to 0, 9, 12, 15
or 18 points in seven groups and weight 12 to 0, 1, 2, 3, 5, 9, 12 points in the last group and add 36 infinite points.
Assume a of these groups have 18 points receiving weight 12, b groups have 15 points receiving weight 12, c groups
have 12 points getting weight 12 and d groups have 9 points receiving weight 12. Proceeding as before we obtain a
MURD(12(216 + 18a + 15b + 12c + 9d + x + 3)) where a + b + c + d ≤ 7 and x = 0, 1, 2, 3, 5, 9, 13, 15. Substituting
appropriate values for a, b, c and x one can obtain a MURD(12u) for all 244 ≤ u ≤ 287. �

We give our main result below. It follows from Theorem 3.13 and the lemmas in this section. Note that clearly there is no
MURD(12) as it is not possible to find even two parallel classes of blocks of size 4. The existence of a MURD(24) is unknown,
although it should be noted that there does indeed exist a resolvable 4-GDD of type 38.

Theorem 4.7. There exists aMURD(12u) for all u ≥ 2with the possible exception of u ∈ {2, 7, 9, 10, 11, 13, 14, 17, 19, 22, 31,
34, 38, 43, 46, 47, 82}.
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