Retransmission
Permutation Arrays

Jeff Dinitz
University of Vermont

Definition

A type 1 retransmission permutation array of order n
(denoted type-1 RPA(n)) is an n X n array, say A, in which
each cell contains a symbol from the set {1,...,n}, such that
the following properties are satisfied:

(1) every row of A contains all n symbols, and
(i) for1 < i < n,theix ["/;] rectangle in the upper
left hand corner of A contains all n symbols.

An Example

Lets check:

row latin ?

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9

2

6|49

3

5| 6

7

9110 1

.

2
1

8| 3|10 6

314 |5

8

5

911014 | 3| 8

2
7

6| 3

2
.

8

1

3
4
5

5110| 4 | 6

2

/7 110| 1

10

An Example

Lets check:

row latin ?

10

5

1

819 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9

2

6|49

3

5| 6

7

9110 1

.

2
1

8| 3|10 6

314]|5

8

5

911014 | 3| 8

2
7

6| 3

2
7

8

1

3
4
5

1

5110| 4 | 6

2

/7 110| 1

10

An Example

Lets check:

row latin ?

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9

2

6|49

3

5| 6

7

.

2
1

8| 3|10 6

314 |5

8|19 (10| 1

5

911014 | 3| 8

2
7

6| 3

2
7

8

1

3
4
5

5110| 4 | 6

2

/7 110| 1

10

An Example

Lets check:

row latin ?

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9

6|49

3

5| 6

7

9110 1

.

2
1

8| 3|10 6

314 |5

8

5

911014 | 3| 8

2
7

6| 3

2
.

8

1

3
4
5

5110 4 | 6 | 2

2

/7 110| 1

10

An Example

Lets check:

row latin ?

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9
3

2
1

6|49

3

5| 6

7

9110 1

2
7

2
1

8| 3|10 6

314 |5

8

5

911014 | 3| 8

2
7

6| 3

2
.

8

1

3
4
5

5110| 4 | 6
4 (9|8

2

/7 110| 1

10

An Example

Lets check:

row latin ?

10

5

1

8|9 |10

2

2110| 1

-

2

7
3

/714110] 9

6

9

2

6|14 |9

3

5| 6

7

9110 1

Z

2
1

8| 3|10 6

314 |5

8

5

911014 | 3| 8

2
7

6| 3

2
.

8

1

3
4
5

5110| 4 | 6

2

/7 110| 1

10

An Example

Lets check:

row latin ?

10

5

5

6

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9

2

6|49

3

5| 6

7

9110 1

.

2
1

8| 3|10 6

314 |5

8

5

9110/ 4| 3| 8

2
7

6| 3

2
.

8

1

3
4
5

5110| 4 | 6

2

/7 110| 1

10

An Example

Lets check:

row latin ?

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9

2

6|49

5| 6

7

9110 1

.

213198 |6|5 |4

1

8| 3|10 6

314 |5

8

5

911014 | 3| 8

2
7

6| 3

2
.

8

1

3
4
5

5110| 4 | 6

2

/7 110| 1

10

An Example

Lets check:

row latin ?

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/7141109

6

9

2

6|49

3

5| 6

7

9110 1

.

2
1

8| 3|10 6

314 |5

8

5

911014 | 3| 8

2
.

6| 3

2
.

8

1

4
5

5110| 4 | 6

2

/7 110| 1

10

An Example

Lets check:

row latin ?

10

5

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9

2

6|49

3

5| 6

7

9110 1

.

2
1

314 |5

8

5

911014 | 3| 8

2

6| 3

2
.

8

1

3

3}

5110| 4 | 6

2

/7 110| 1

9147 |8|3|10| 6

10

An Example

Lets check:

row latin ?

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9

2

6|49

3

5| 6

-

9110 1

.

2
1

8| 3|10 6

314 |5

8

5

911014 | 3| 8

2
7

2
.

8

1

3
4

5110| 4 | 6

2

/7 110| 1

10| 5|6 | 3

An Example

Lets check:

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9

2

6|49

3

5| 6

7

9110 1

.

2
1

8| 3|10 6

314 |5

8

5

911014 | 3| 8

2
7

6| 3

2
.

8

1

3
4
5

5110| 4 | 6

2

/7 110| 1

10

An Example

Lets check:

Left hand corner?

i=1
1x10

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9

2

6|49

3

5| 6

7

9110 1

.

2
1

8| 3|10 6

314 |5

8

5

911014 | 3| 8

2
7

6| 3

2
.

8

1

3
4
5

5110| 4 | 6

2

/7 110| 1

10

An Example

Lets check:

Left hand corner?

i=1
1x10

10

5

1

819 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9

2

6|49

3

5| 6

7

9110 1

.

2
1

8| 3|10 6

314]|5

8

5

911014 | 3| 8

2
7

6| 3

2
7

8

1

3
4
5

1

5110| 4 | 6

2

/7 110| 1

10

An Example

Lets check:

Left hand corner?

I =2
2X5

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9

2

6|49

3

5| 6

7

.

2
1

8| 3|10 6

314]|5

8|19 (10| 1

5

911014 | 3| 8

2
7

6| 3

2
7

8

1

3
4
5

1

5110| 4 | 6

2

/7 110| 1

10

An Example

Lets check:

Left hand corner?

i =3
3x4

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

2

6|49

3

5| 6

7

.

2
1

8| 3|10 6

314 |5

819 (10| 1

5

911014 | 3| 8

2
7

6| 3

2
7

8

1

3
4
5

1

5110| 4 | 6

2

/7 110| 1

10

An Example

Lets check:

Left hand corner?

i =4
4 x 3

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

3

2
1

6|49

3

5| 6

7

9110 1

2
7

2
1

8| 3|10 6

3|14 |5

8

5

911014 | 3| 8

2
7

6| 3

2
7

8

1

3
4
5

5110| 4 | 6

4 (9|8

2

/7 110| 1

10

An Example

Lets check:

Left hand corner?

i =25
5x2

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9
3

2
1

6|49

3

5| 6

7

9110 1

2
7

2
1

8| 3|10 6

314 |5

8

5

911014 | 3| 8

2
7

6| 3

2
7

8

1

3
4
5

5 10| 4 | 6

4 (9|8

2

/7 110| 1

10

An Example

Lets check:

Left hand corner?

I =6
6X2

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9
3

2
1

6|49

3

5| 6

7

9110 1

2
7

2
1

8| 3|10 6

314 |5

8

5

911014 | 3| 8

2
7

6| 3

2
7

8

1

3
4
5

5 10| 4 | 6

4 (9|8

2

/7 110| 1

10

An Example

Lets check:

Left hand corner?

=7
7 X2

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9
3

2
1

6|49

3

5| 6

7

9110 1

2
7

2
1

8| 3|10 6

314 |5

8

5

911014 | 3| 8

2
7

6| 3

2
7

8

1

3
4
5

5 10| 4 | 6

4 (9|8

2

/7 110| 1

10

An Example

Lets check:

Left hand corner?

i =38
8X2

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9

2

6|49

3

5| 6

7

9110 1

2
7

2
1

8| 3|10 6

314 |5

8

5

911014 | 3| 8

2
7

6| 3

2
7

8

1

4
5

5 10| 4 | 6

4 (9|8

2

/7 110| 1

10

An Example

Lets check:

Left hand corner?

i=9
Ox2

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9

2

6|49

3

5| 6

7

9110 1

2
7

2
1

8| 3|10 6

314 |5

8

5

911014 | 3| 8

2
7

6| 3

2
7

8

1

4

3}

5 10| 4 | 6

4 (9|8

2

/7 110| 1

10

An Example

Lets check:

Left hand corner?

i =10
10x 1

10

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9

2

6|49

3

5| 6

7

9110 1

.

2
1

8| 3|10 6

314 |5

8

5

911014 | 3| 8

2
7

6| 3

2
.

8

1

4
5

5 10| 4 | 6

2

/7 110| 1

10

An Example

Lets check:

Q-
S
&)

L eft

5

1

8|9 |10

2

2 110| 1

-

2

7
3

/714110] 9

6

9
3

2
1

6|49

3

5| 6

7

9110 1

.

2
1

8| 3|10 6

314 |5

8

5

911014 | 3| 8

2
7

6| 3

2
.

8

1

3
4
5

5110| 4 | 6
9

2

/7 110| 1

10

Motivation

Subject: design guestion

From: Michael Dinitz <mdinitz+@cs.cmu.edu=
Date: 5un, 21 Jun 2009 13:09:32 -0400

To: Dad <dinitz@cems.uvm.edu>

Hey Dad,

Here's that design question I mentioned. There are n symbols, which
we wWant to place into an n x n box subject to the following:

1) Every row has every symbol (i.e. each row is a permutation)

2) For every integer k <= n, all of the symbols appear in the
rectangle consisting of the first k columns and first \ceil{n/k} rows
3) For every integer k <= n, all of the symbols appear in the
rectangle consisting of the last k columns and first ‘\ceil{n/k} rows

Mote the somewhat weird asymmetry in the problem: the first rows play
a much more important role than the last rows. I only vaguely
understand the motivation, but I think it's something like this. Some
wireless systems are divided into "carriers”, and every
transmitter-receiver pair uses some consecutive n carriers to
transmit. If someone else broadcasts on the exact same carriers then
I'm screwed, but with reasonable probability I only have interference
from one side of my interval, i.e. either my smallest r carriers are
interfered with or my largest r carriers are interfered with. Now in
the design, each row represents time, and k is the the number of
carriers I use successfully. What I want is that no matter what k is,
i.e. no matter who else chooses to broadcast as long as I get
something through, it takes me the minimum number of rounds possible
to transmit my message.

For example, suppose k is 1. Then I only get to use one carrier,
gither the smallest or the largest, and thus it takes me n rounds to
get my entire message through. Requirement 2 of the design guarantees
me that if I can use the smallest carrier it only takes me n rounds,
and requirement 3 does the same for the largest carrier. If I can use
the smallest k carriers, then I need to wse at least ‘ceil{n/k}
rounds, and requirements 2 and 3 guarantee that I achieve this. 5o in
some sense this is an oblivious broadcasting algorithm: I don't know
who'"s going to interfere with me, but whoever does I still get my
message through as gquickly as possible.

Have you seen anything like this before, or have any ideas? This
version of the problem seemed to be something the networking guy was
interested in, but the other theoreticians were more interested in
variations of the problem that involved using coding schemes.

Hope you're having a great father's day!

Love,
Mike

T~ -

Motivation

A type 1 retransmission permutation array of order n (denoted
type-1 RPA(Nn)) is an n X n array, say A, in which each cell

contains a symbol from the set {1,...,n}, such that the following
properties are satisfied:

(1) every row of A contains all n symbols, and
(i) for1 < i < n,theix [?/] rectangle in the upper
left hand corner of A contains all n symbols.

Motivation

Atype 1 retransmission permutation array of order n (denoted
type-1 RPA(Nn)) is an n X n array, say A, in which each cell

contains a symbol from the set {1,...,n}, such that the following
properties are satisfied:

() every row of A contains all n symbols, and
(i) for1 < i < n,theix [?/] rectangle in the upper
left hand corner of A contains all n symbols.

» atype-2 array is one in which property (ii) instead holds for
rectangles in the upper right corner of A.

Motivation

Atype 1 retransmission permutation array of order n (denoted
type-1 RPA(Nn)) is an n X n array, say A, in which each cell
contains a symbol from the set {1,...,n}, such that the following
properties are satisfied:

() every row of A contains all n symbols, and
(i) for1 < i < n,theix [?/] rectangle in the upper
left hand corner of A contains all n symbols.

» atype-2 array is one in which property (ii) instead holds for
rectangles in the upper right corner of A.

» atype-3 array is one in which property (ii) instead holds for
rectangles in the lower left corner of A.

» atype-4 array is one in which property (ii) instead holds for
rectangles in the lower right corner of A.

Motivation

Atype 1 retransmission permutation array of order n (denoted
type-1 RPA(Nn)) is an n X n array, say A, in which each cell
contains a symbol from the set {1,...,n}, such that the following
properties are satisfied:

() every row of A contains all n symbols, and
(i) for1 < i < n,theix [?/] rectangle in the upper
left hand corner of A contains all n symbols.

» atype-2 array is one in which property (ii) instead holds for
rectangles in the upper right corner of A.

» atype-3 array is one in which property (ii) instead holds for
rectangles in the lower left corner of A.

» atype-4 array is one in which property (ii) instead holds for
rectangles in the lower right corner of A.

So Mike is asking for a type-1,2 RPA

Latin RPA’s

A retransmission permutation array A of order n is latin if
every column of A contains all n symbols (column latin).

We denote a latin RPA of order n as an LRPA(N)

Another Example

Atype-1,2,3,4 LRPA(4):

IR WOWIDN

WIN|&~|F
RS~ DN W
NITWI(kFk |

« Anr X [*/;]rectangle is called basic if it does not contain an
r' x ["/] rectangle where v’ < rand ["/+] = [/r].

» In verifying property (ii), it suffices to consider only basic rectangles.
The basic rectangles that must be verified in the above example
have dimensions 1 x4, 2 x 2 and 4 x 1.

Another Example

Atype-1,2,3,4 LRPA(4):

IR WOWIDN

WIN|&~|F
RS~ DN W
NITWI(kFk |

« Anr X [*/;]rectangle is called basic if it does not contain an
r' x ["/] rectangle where v’ < rand ["/+] = [/r].

» In verifying property (ii), it suffices to consider only basic rectangles.
The basic rectangles that must be verified in the above example
have dimensions 1 x 4, 2 x 2 and 4 x 1.

Another Example

Atype-1,2,3,4 LRPA(4):

AP WOIDN

WIiIN| A~
R~ IDN|W
NIWI(kFk B

« Anr X [*/;]rectangle is called basic if it does not contain an
r' x ["/] rectangle where v’ < rand ["/+] = [/r].

» In verifying property (ii), it suffices to consider only basic rectangles.
The basic rectangles that must be verified in the above example
have dimensions 1 x 4, 2 x 2 and 4 x 1.

Another Example

Atype-1,2,3,4 LRPA(4):

AL WIN

P&~ DN W

W N~
N W (k| P>

« Anr X [*/;]rectangle is called basic if it does not contain an
r' x ["/] rectangle where v’ < rand ["/+] = [/r].

» In verifying property (ii), it suffices to consider only basic rectangles.
The basic rectangles that must be verified in the above example
have dimensions 1 x4, 2 x 2 and 4 x 1.

Another Example

Atype-1,2,3,4 LRPA(4):

W IN|S~ |
AP IWOIDN

RS~ DN W
NITWI(kFk |

« Anr X [*/;]rectangle is called basic if it does not contain an
r' x ["/] rectangle where v’ < rand ["/+] = [/r].

» In verifying property (ii), it suffices to consider only basic rectangles.
The basic rectangles that must be verified in the above example
have dimensions 1 x4, 2 x 2 and 4 x 1.

Another Example

Atype-1,2,3,4 LRPA(4):

IR WOWIDN

RPN

WIN|&~|F
NIWIkFL | &

« Anr X [*/;]rectangle is called basic if it does not contain an
r' x ["/] rectangle where v’ < rand ["/+] = [/r].

» In verifying property (ii), it suffices to consider only basic rectangles.
The basic rectangles that must be verified in the above example
have dimensions 1 x4, 2 x 2 and 4 x 1.

Another Example

Atype-1,2,3,4 LRPA(4):

WiIN| B~
B IR OO
RS~ DN W
NITWI(kFk |

« Anr X [*/;]rectangle is called basic if it does not contain an
r' x ["/] rectangle where v’ < rand ["/+] = [/r].

» In verifying property (ii), it suffices to consider only basic rectangles.
The basic rectangles that must be verified in the above example
have dimensions 1 x4, 2 x 2 and 4 x 1.

Another Example

Atype-1,2,3,4 LRPA(4):

IR WOWIDN

WIN|&~|F
R |IDN W
N W[k |

« Anr X [*/;]rectangle is called basic if it does not contain an
r' x ["/] rectangle where v’ < rand ["/+] = [/r].

» In verifying property (ii), it suffices to consider only basic rectangles.
The basic rectangles that must be verified in the above example
have dimensions 1 x4, 2 x 2 and 4 x 1.

Another Example

Atype-1,2,3,4 LRPA(4):

WIN| &~
IR WOWIDN

RS~ DN W
NITWI(kFk |

« Anr X [*/;]rectangle is called basic if it does not contain an
r' x ["/] rectangle where v’ < rand ["/+] = [/r].

» In verifying property (ii), it suffices to consider only basic rectangles.
The basic rectangles that must be verified in the above example
have dimensions 1 x4, 2x 2 and 4 x 1.

Another Example

Atype-1,2,3,4 LRPA(4):

IR WOWIDN

RS~ DN W

WIN|&~|F
N Wk |

« Anr X [*/;]rectangle is called basic if it does not contain an
r' x ["/] rectangle where v’ < rand ["/+] = [/r].

» In verifying property (ii), it suffices to consider only basic rectangles.
The basic rectangles that must be verified in the above example
have dimensions 1 x4, 2x 2 and 4 x 1.

One More Example

Atype-1,2,3,4 LRPA(8):

112|3[(4|5|6|7]|8
5S|6|7|18|1|2|3|4
84|62 |7]|3|5]|1
/13|5|1[8|4|6]|2
2111413 |6|5(8]|7
658|712 |1(4|3
418 (2(6|3|7]1]5
3|71 |5|4|8|2]|6

This array satisfies two symmetry properties:
*ajj+ajp1-j=n + 1 wheren = 8.
> d;;i= T[(Cli,j) where 1 = (1)(2 5)(3 8)(4 7)(6)

Mike’s motivation

Li, Liu, Tan, Viswanathan, and Yang published a paper entitled
Retransmission # repeat. simple retransmission permutation can
resolve overlapping channel collisions (Eighth ACM Workshop on Hot
Topics in Networks, 2009) in which they utilize type -1, 2 RPA(n) to
resolve overlapping channel collisions.

Gallision!
Retransmission » Repeat: e B,
Simple Retransmission Permutation Can Resolve Nifi/ Bob
Overlapping Channel Collisions Collsent

Li Erran Li* Junliang LiuT Kun Tan®

Harish Viswanathan

ABSTRACT

Collisions in overlapping channels are becoming an increas-
ingly important problem in the deployment of high-speed
wireless networks. In this paper. we present Remap. a sim-
ple. novel paradigm for handling collisions in overlapping
OFDM channels. Remap introduces the novel concept of re-
transmission permutation that permutes the bit-to-subcarrier
assignment after cach retransmission. departing from the tra-
ditional. simply-repeat paradigm. Remap is simple to imple-
ment and able to exploit collision-free subcarriers to decode
packets despite successive collisions in overlapping chan-
nels. We apply Remap to 802.11g to demonstrate that the
diversity created by remapped packets can substantially im-
prove decoding efficiency and improve wireless throughput.
We implement our technique in software radio and demon-
strate that it has potential to be deployed with simple soft-
ware and firmware updates.

1. INTRODUCTION
As OFDM becomes the foundation of modern high-speed
wireless networks due to its advantages such as lower sym-

bol rate, effective usage ofa large frequency band, and resis-

tance to fr y-selective fading. collisions
OFDM channels become an increasingly important problem
in the deployment of high-speed wireless networks. Specifi-
cally. in an OFDM network. each channel is allocated a set of
subcarriers. and two channels overlap when the intersection
of their sets of subcarriers is not empty. Consider 802.11g.
which is becoming almost ubiquitously deployed in many
residential neighborhood. With only 3 orthogonal channels
with disjoint sets of subcarriers but a large number of access
points in densely populated neighborhood. it is inevitable
that many 802.11 access points in range of each other use
overlapping channels. as observed by previous measurement
studies (e.g.. [1]). In[15]. the authors show that partially
overlapping channels may improve network throughput even
in managed 802.11 networks. when the number of orthogo-
nal channels s limited. Channel overlapping is also allowed
in WiFi networks built on digital white spaces [2]. Although
one may try to alleviate the shortage of orthogonal channels
by using variable bandwidth channels, as advocated in [3,
9]. bursty or time varying workload can pose a problem for
channel width adaptation

However. collisions in overlapping OFDM channels dur-

Bell Labs:

Microsoft Research Asia: * Yale

LLRRR

BRRRRED

Yang Richard Yang*

ing contention and/or in the presence of hidden terminals are
distinct from collisions in a single-channel setting. Conse-
quently. recent progress (c.g.. Zigzag Decoding [6]) on han-
dling single-channel collisions does not directly apply.

In this paper. we present Remap, a simple, novel paradigm
for handling collisions in OFDM networks with overlapping
channels. Remap is different from the existing, passively
repeat paradigm. and introduces a novel concept called re-

to permute the bit-to-sut map-

ping after each r
is a powerful diversity technique [17] that can recover fre-
quency selective losses from subsequent retransmissions when
there is no collision. When there are collisions. it in essence
provides channel-width adaptation and allows bootstrapping
of the decoding of collided packets that may otherwise be
impossible to decode.

Specifically. the foundation of Remap is based on a sim-
ple observation and a simple idea. The observation is that
when two packets transmitted in overlapping channels col-
lide. only the subcarriers in the intersection of the two chan-
nels collide: the bits in other subcarriers are clean and can
be collected. However. the non-colliding subcarriers do not
contain complete packet information. The idea of Remap
is to introduce structured permutation on the mapping from
bits to subcarriers after each collision to create structured di-
versity. This diversity allows either independent decoding
or bootstrapping other decoding techniques such as Zigzag
decoding [6]. Integrating Remap with an existing system
requires small changes to the OFDM physical layer as it in-
volves only bit-to-subcarrier remapping.

In particular, we design 802.11g/Remap, which applies
Remap to 802.11g to demonstrate its effectiveness. We show
that by using the diversity created by remapped packets, an
802.11¢ receiver a can decode any packet P, after 4 col-
lisions with other transmissions in adjacent channels; the
number of collisions reduces to 2 if the other transmissions
are in non-adjacent channels. These numbers do not make
any assumptions on the packets collided with P,. If the pack-
ets collided with P, are the same (i.e.. both collisions are be-
tween P, and another packet P5). Remap can bootstrap de-
coding both packets with the bits on the collision-free sub-
carriers. Decoding both packets at a single AP is important
so that the combiner (used in systems such as [16]) behind
the AP can make use of the reception diversity. In con-
trast, without Remap, Zigzag cannot decode both packets.
Furthermore, 802.11g/Remap is backward compatible with

EERRRRRRRRRAR R T~ 2 -

——
Figure 1: Bit-to-subcarrier Mapping.

802.11 MAC. Thus, 802.11g/Remap has potential to be de-
ployed with simple software and firmware updates to the ex-
isting 802.11 networks

We have implemented 802.11g/Remap using a software
radio testbed. Our iniial experimental results show that Remap
works. The BER on decoding collision-free subcarriers is
close to that of decoding collision-free transmissions. when
the interference signal strength is smaller than the desired
signal by at least 5 dB
2. BASIC IDEA
802.11¢g Primer
We use 802.11¢ to illustrate our basic idea. In standard
802.11g. data bits are assigned to subcarriers. We denote the
first group of 16 subcarrier frequencies of 802.11g as Gy the
next group as Gy, ete. Each 802.11g channel consists of 64
consecutive subcarrier frequencies | Thus, the first channel
C1 of 802.11¢ consists of four groups: G1. Ga. Gs. and Ga:
channel C; consists of G2. G3. G4 and Gs: channel Cs con-
sists of G3. Ga. Gs. and Gs: channel Cy consists of Gs. Gs.
Gs. and G7, ete. Note that € overlaps with Ci, Cy, C3, and
Ci. We say that €y is an adjacent channel of C1: Cs and Cs
are overlapping non-adjacent channels of C1 2

Assume that a sender uses channel Ci to send a packet P
consisting of data bits A1, 43, A3, and As. Let the bitto-
subearrier assignment be that A1 = G1.-42 = Ga, 43— Gs,
and A4 — Ga. In other words. the bits A1 are assigned to
be carried by subcartier group Gi. 43 by Ga. 43 by Gs. and
A1 by Gy. If the transmission for packet P is not successful.
802.11g retransmits the packet P where the bit-to-subcarrier
assignment is the same.

Retransmission Permutation
The key novelty introduced by Remap is that during a re-
Remap vses a heduling of bit-

to-subcarrier mapping

Figure 1 is a schedule of bit-to-subcarrier mapping for
802.11g. As shown in the figure. for the original transmis-
sion, bits Aj . --- . A4 are mapped to subcarrier groups G1.- - -.G4
respectively. For the first retransmission., bits As, A3, 4y, 41
are mapped to subcarrier group G1.- -Gy respectively. The
third and fourth rows are for the second and third retrans-
missions. We cycle through these four mappings for more

! Only 48 subcarriers carry data bits

?Note that non-overlapping channels do not equal to orthogonal
channels: due to imperfect filtering. guard bands are needed to
achieve orthogonality. Our decoding technique is subject to ad-
jacent chamnel interference.

%)

nel C,
Figure 2: AP, and AP; use overlapping channels. Packet
from Alice to AP, and that of Bob ta 4P; callide.

up

Subcarrier Gro

Figure 3; Subcarrier view of collisions: non-adjacent
channels.

retransmissions. We only need 2 bits to encode the four map-
ping schemes. We can use the reserved bits in the SERVICE
field of the PLCP header.

With the basic idea, now we demonstrate the benefits of
Remap using a simple example. Consider two residential
users, Alice and Bob, who use 802.11g to connect to access
points AP, and APy respectively. Let the channel between
Alice and AP, be C,, and that between Bob and AP, be Cp
Assume that the two channels are overlapping channels. Fig-
ure 2 shows the setting.

Due to hidden terminals or randomness, Alice may trans-
mit a packet P, to AP, concurrently with Bob transmitting
a packet Py to APy, causing collisions at AP and APy, In
absence of receiving an acknowledgment. Alice retransmits
Py. which may again collide with a transmission of Bob for
packet P, Note that P} may be different from Pj due to
rescheduling. Without Remap, packet P, cannot be decoded
by the access point AP; so long there are collisions.

Remap. however. allows decoding of collided packets. To
illustrate our idea. we consider how AP, decodes P,. We
will show that Remap allows AF, to decode F; after ar most
3 retransmissions. We illustrate three cases
Collisions in Nen-adjacent Channels: Figure 3 considers
the first case, when Alice and Bob use overlapping but non-
adjacent channels (e.g.. Alice uses Cy and Bob uses C3). The
figure shows the collided packets in the frequency domain
We can check that AP, can decode packet P after Alice re-
transmits the packet only once.

Collisions in Adjacent Channels: The worst-case of 3 re-
transmissions happens when Alice and Bob use adjacent chan-
nels (e g, Alice uses C; and Bob uses Cy). Figure 4 shows
the first transmission and one retransmission. After the two
transmissions. bit blocks A1 and A4 will be recovered. Two

Figure 4: Subcarrier view of collisions: adjacent chan-
nels.

Mike’s motivation

Li, Liu, Tan, Viswanathan, and Yang published a paper entitled
Retransmission # repeat. simple retransmission permutation can
resolve overlapping channel collisions (Eighth ACM Workshop on Hot
Topics in Networks, 2009) in which they utilize type -1, 2 RPA(n) to
resolve overlapping channel collisions.

Suppose a message is divided g1 92 93 a
Into n pieces and broadcast
using n consecutive groups
(i.e., sets of carrier frequencies).

Mike’s motivation

Li, Liu, Tan, Viswanathan, and Yang published a paper entitled
Retransmission # repeat. simple retransmission permutation can
resolve overlapping channel collisions (Eighth ACM Workshop on Hot
Topics in Networks, 2009) in which they utilize type -1, 2 RPA(n) to
resolve overlapping channel collisions.

91 92 93 Ya YIs Ye

A second channels may overlap
in an arbitrary number j < nof
groups.

1 2 X1 X2 X3 X4

(here j = 2 and pieces 3 and 4 of the message are lost)

Mike’s motivation

Li, Liu, Tan, Viswanathan, and Yang published a paper entitled
Retransmission # repeat. simple retransmission permutation can
resolve overlapping channel collisions (Eighth ACM Workshop on Hot
Topics in Networks, 2009) in which they utilize type -1, 2 RPA(n) to
resolve overlapping channel collisions.

91 92 |93 Y4+ YIs Ye

We can now broadcast the

| 1| 2 |m s
second row in the RPA(4) i
to send the complete message EBEl
(even if g; and g, are occupied)

Mike’s motivation

Li, Liu, Tan, Viswanathan, and Yang published a paper entitled
Retransmission # repeat. simple retransmission permutation can
resolve overlapping channel collisions (Eighth ACM Workshop on Hot
Topics in Networks, 2009) in which they utilize type -1, 2 RPA(n) to
resolve overlapping channel collisions.

A type-1, 2 RPA(n) gives a schedule g gy lgs g. 95 e
for rebroadcasting messages in n
“rounds” in such a way that all n
pieces of a message are received 4 13 1 x X3 X3 X4
in the minimum number of rounds,

regardless of the overlap value, j.

Some related work

» A sudoku square Is a type-1,2,3,4 LRPA(9)

R.A. Bailey, P. Cameron and R. Connelly, Sudoku, gerechte designs,
resolutions, affine space, spreads, reguli, and Hamming codes, American
Mathematical Monthly, Volume11l5, Number 5, May 2008, pp 383-404.

Some related work

» A sudoku square Is a type-1,2,3,4 LRPA(9)

R.A. Bailey, P. Cameron and R. Connelly, Sudoku, gerechte designs,
resolutions, affine space, spreads, reguli, and Hamming codes, American
Mathematical Monthly, Volume11l5, Number 5, May 2008, pp 383-404.

» A gerechte design is a latin square of order n, where the
cells are divided into n regions, each containing n cells,
such that each symbol occurs once in each region.

J. Courtiel, E. R. Vaughan, Gerechte Designs with Rectangular Regions
arXiv:1104.0637v1, 2011.

The authors prove for all
positive integers s and t,
any gerechte framework
where each region is either
an s X t rectangle or

at X srectangleis
realizable.

Ficure 1. A gerechie framework of order 54 with 6 2 9 and
0 x 6 rectangular regions. (Individual cells are not shown.)

OURRRERRRRRRRRRRRRRRR R T~ Ty

Some related work

C.J. Colbourn and K.E. Heinrich. Conflict-free access to
parallel memories, Journal of Parallel and
DistributedComputing 14 (1992), 193-200.

In this paper (and other related papers), fixed sized, arbitrarily
positioned rectangles in a latin square are required to contain
each symbol at most once.

Our main results

Type of array Existence result
type-1 RPA(n) all integersn > 1

type-1,2 RPA(n) all integersn > 1

This is Mike’s problem

Our main results

Type of array Existence result
type-1 RPA(n) all integersn > 1
type-1,2 RPA(n) all integersn > 1

type-1.3 RPA(n)
type-1,4 RPA(n) all integers n

type-1,2,3,4 RPA(n) all even integersn > 1

type-1,2,3,4 latin RPA(n) even integersn < 16, n = 36
type-1,2,3,4 latin RPA(n) odd integersn < 9

Constructing a type-1 RPA(10)

Suppose n = 10. The basic rectangles have dimensions
1 x10, 2X 5, 3 x4 4 x 3,5 %x2 and 10 x 1.

We begin by filling in the 1 X 10 basic rectangle:

112 |34 |5|6 |7 |89]10

Constructing a type-1 RPA(10)

Suppose n = 10. The basic rectangles have dimensions
1 x10, 2X 5, 3 x4 4 x 3,5 %x2 and 10 x 1.

We begin by filling in the 1 X 10 basic rectangle:

112 |34 |5|6 |7 |89]10

Next, we consider the 2 X 5 basic rectangle. We place the
symbols 6, 7, 8, 9, 10 in the first five cells of the second
row of this rectangle:

Constructing a type-1 RPA(10)

Suppose n = 10. The basic rectangles have dimensions
1 x10, 2X 5, 3 x4 4 x 3,5 %x2 and 10 x 1.

We begin by filling in the 1 X 10 basic rectangle:

112 |34 |5|6 |7 |89]10

Next, we consider the 2 X 5 basic rectangle. We place the
symbols 6, 7, 8, 9, 10 in the first five cells of the second
row of this rectangle:

Constructing a type-1 RPA(10)

Next we deal with the 3 x 4 basic rectangle:

.678910

We need the symbols 5 and 10 in that rectangle

4
6 I 8 9

Constructing a type-1 RPA(10)

Next we deal with the 3 x 4 basic rectangle:

1 2 3 4 6 7 8 9 | 10
6 7 38 9

We move the symbols 5 and 10 to the first two cells
In the third row.

Constructing a type-1 RPA(10)

Next Is the 4 x 3 basic rectangle:

3
6 7 38
10

5 6 7 8 9 | 10
10

5
EEEN

We move the symbols 4 and 9 to the first two cells in the
fourth row.

Constructing a type-1 RPA(10)

Next Is the 5 x 2 basic rectangle:

5 6 7 8 9 | 10

o |-

We move the symbols 3 and 8 to the first two cells in the
fourth row.

Constructing a type-1 RPA(10)

Finally we get to the 1 x 10 basic rectangle:

5 6 7 8 9 | 10
38 9 | 10

qove 2, 7,10, 9 and 8 to the last rows of the first column

\ -
o\ [RL
N\ AN\
\ N
C\ AN
%8 A
WA\ R
N\ AN

Constructing a type-1 RPA(10)

The partial latin square below satisfies condition 2 of the
definition of a type-1 RPA

Constructing a type-1 RPA(10)

We merely need to fill the remaining cells so that each row
contains all the symbols 1—10.

Constructing a type-1 RPA(10)

We merely need to fill the remaining cells so that each row
contains all the symbols 1—10.

g

It is easy to show that the above process works for all

n = 1 since:

» Each basic rectangle contains each symbol at least once, and
» Each row in a basic rectangle contains no symbol twice.

Hence we get our first theorem.
Theorem:

For all integers n > 1, there exists a type-1 RPA(n).

Some extensions to other types

Theorem: If there exists a type-1 RPA(n), then there exists a
type-1,3 RPA(n). (So these exist for all n)

Theorem: If there exists a type-1 RPA(n), then there exists a
type-1,4 RPA(n). (So these exist for all n)

Some extensions to other types

Theorem: If there exists a type-1 RPA(n), then there exists a
type-1,3 RPA(n). (So these exist for all n)

Theorem: If there exists a type-1 RPA(n), then there exists a
type-1,4 RPA(n). (So these exist for all n)

Theorem: If n is even and there exists a type-1,2 RPA(n), then
there exists a type-1,2,3,4 RPA(n).

Type-1, 2 RPA(n)

Suppose n is even.

We'll construct arrays A = (a; ;) where for all 1 < i,j < n it holds
that aj j ot Ain+1—j =N +1

Type-1, 2 RPA(n)

Suppose n is even.

WEe'll construct arrays A = (a; ;) where forall 1 < i,j < n it holds
that aj j ot Ain+1—j =N +1

Suppose we construct a type-1 RPA(n), ensuring that after the basic
rectangles have been filled in, no row contains two symbols that sum
ton + 1 (except for the first row, which is already a permutation of the
n symbols).

Then we can easily fill in the rest of A to construct a type-1, 2 RPA(n):
1. For every filled cell (i,j) , we define a; .1 =n+1 —a;;
2. At this point, no row contains any symbol more than once, so
it is then a simple matter to complete each row to a
>~ permutation of the n symbols.

As an easy example we’ll make a

type-1,2 RPA(8)

A type 1,2 RPA(8)

Suppose n = 8. The basic rectangles have dimensions
1 X8 2X%X4, 3%Xx3,4x2, and 8 x1
We begin by filling in the 1 x 8 basic rectangle:

112 (3|4|5|6| 7|38

A type 1,2 RPA(8)

Suppose n = 8. The basic rectangles have dimensions
1 X8 2X%X4, 3%Xx3,4x2, and 8 x1
We begin by filling in the 1 x 8 basic rectangle:

112 (3|4|5|6| 7|38

Next, we consider the 2 x 4 basic rectangle. We place the
symbols 5, 6, 7, 8 in the first four cells of the second row of this
rectangle, note that no two of these symbols sum to 9:

A type 1,2 RPA(8)

Now we consider the 3 X 3 basic rectangle. We fill in the first two
cell of the third row with the symbols 4 and 8 (note 4 + 8 + 9):

S| 6| 7|8

A type 1,2 RPA(8)

Now we consider the 3 X 3 basic rectangle. We fill in the first two
cell of the third row with the symbols 4 and 8 (note 4 + 8 + 9):

S| 6| 7|8

Next look at the 4 x 2 basic rectangle. We have to fill in the
symbols 3 and 7 (note that 3 + 7 # 9):

4 | 5|1 6|7 |8
8

A type 1,2 RPA(8)

The last basic rectangle has size 8 x 1. Itis completed by filling
In the symbols 2,6,8,7 into the first cells of the last four rows

A type 1,2 RPA(8)

Now, we “reflect” each row (using the bijection x — 9 — x)

N[OOI
\l
oo

NI NW(M|OT|EF

A type 1,2 RPA(8)

Finally, we fill in the remaining cells in each row so that each row
IS a permutation.

N|lo|lo|dMiw|s|a|r
P IN PPN DN
wWlw|lw| w|(kr [N~ w
R [D[BR[R[w|o0|»~
alajlalalalo |~ |uv
olo|lvw|lo|lo|[~N|N| o
o[(~N|ow|o ||~ |w]|~
NiRr|[lw|~N|lo|lo|s~]|ow

This may look easy, but it can’t be done blindly without
problems occurring. For example, here are the basic rectangles
in the RPA(10) we constructed earlier.

If we reflect as we did for the RPA(8) (now using the bijection
x— 11 —x), we get

OIN|IFP| P&~

WIN[P|IARlOlW|IN|O|OT

If we reflect as we did for the RPA(8) (now using the bijection
x— 11 —x), we get

IN|(F|H&

WIN[P|IARlOlW|IN|O|OT

Note that in row 5 both symbols 3 and 8 occur twice so it will
N N Q@ssible to make this row a permutation &

Constructing a typel,2-RPA(n)

We fill in the cells of the square one basic rectangle at a time.

We will work to avoid the problem that we just had in the n = 10
case.

Once filled, basic rectangles will satisfy three properties:

Constructing a typel,2-RPA(n)

Property 1.

In a basic rectangle the number of filled cells per row is
nonincreasing.

Constructing a typel,2-RPA(n)

Property 1.

In a basic rectangle the number of filled cells per row is
nonincreasing.

So a filled basic rectangle may look like:

Constructing a typel,2-RPA(n)

Property 2:

For any two symbols a, b In the same row of a basic
rectangle R,

a+b+#n+1

Constructing a typel,2-RPA(n)

Property 3:

If R and R’ are is a basic rectangles with R’ following R
when the basic rectangles are ordered by number of rows,
then if a,b are two symbolsin R"\ R,thena+b #n+1

Constructing a typel,2-RPA(n)

The algorithm:

Step 1. Fill in the first basic rectangle, having size 1 X n from left to
right with 1,2, ...,n

Step 2 through b: (b =the number of basic rectangles)

For each k, 2 < k < b do the following:
- Let the k" basic rectangle be denoted R and the previous one be R’
- Let S denote the set of symbols in R' \ R.

- Copy the symbols in S into the empty cells in R in such a way that
properties 1 and 2 are satisfied.

Constructing a typel,2-RPA(n)

Copy the symbols in S into the empty cells in R in such a way that
properties 1 and 2 are satisfied.

Constructing a typel,2-RPA(n)

- Copy the symbols in S into the empty cells in R in such a way that
properties 1 and 2 are satisfied.

This is easy in practice, but much more complicated to prove in general. We
need to ensure that we never place a symbol y from a red cell into a row that
already contains the symbol x = n+1—y.

We use the following easy to read lemma:

Lemma 4.6. Suppose w > by, > ... > by are positive integers and suppose d is a positive integer.
Denote b = ZL] b; and suppose that

0<t<(L+dw-—Db (4)

Suppose By, ..., By, are pairwise disjoint sets such that |B;| = b; for 1 < i < L. Finally, suppose

that |B| = t. Then there exists a partition
L d
i=1 i=1
where the following properties are satisfied:
1w=b +|CL| 2 b1+ |Craa| Z--- 2 b1 +|C1] = |Di| =2 --- = [Dyl.

2. C;NB;=0for1<i<L.
RRRRRRRRRRRRR R o~ e

Constructing a typel,2-RPA(n)

The algorithm:

Step 1. Fill in the first basic rectangle, having size 1 X n from left to
right with 1,2, ...,n

Step 2 through b: (b= the number of basic rectangles)

For each k, 2 < k < b do the following:
- Let the k" basic rectangle be denoted R and the previous one be R
- Let S denote the set of symbols in R' \ R.

- Copy the symbols in S into the empty cells in R in such a way that
Properties 1 and 2 are satisfied.

- Perform a sequence of symbol exchanges within the rows of R so
that Property 3 is satisfied.

That this is always possible can be proven using a certain

“alternating path” graph-theoretic argument. (Details in the

paper)

)

Constructing a typel,2-RPA(n)

The algorithm:

Step 1. Fill in the first basic rectangle, having size 1 X n from left to
right with 1,2, ...,n

Step 2 through b: (b= the number of basic rectangles)

For each k, 2 < k < b do the following:
- Let the k" basic rectangle be denoted R and the previous one be R
- Let S denote the set of symbols in R’ \ R.

- Copy the symbols in S into the empty cells in R in such a way that
Properties 1 and 2 are satisfied.

- Perform a sequence of symbol exchanges within each row of R so
that Property 3 Is satisfied.

Reflection step: For each nonempty cell (i,j) in rows 2, ... ,nof A
define api,-j=n+1— q;;
alotep: Fill in nonempty cells in every row to form a permutation

)

Constructing a type-1,2 RPA(10)

Suppose n = 10. The basic rectangles have dimensions
1 x10, 2X 5, 3 x4 4 x 3,5 %x2 and 10 x 1.

We begin by filling in the 1 X 10 basic rectangle:

112 |34 |5|6 | 7|89]10

Constructing a type-1,2 RPA(10)

Suppose n = 10. The basic rectangles have dimensions
1 x10, 2X 5, 3 x4 4 x 3,5 %x2 and 10 x 1.

We begin by filling in the 1 X 10 basic rectangle:

112 |34 |5|6 |7 |89]10

Next, we consider the 2 X 5 basic rectangle. We place the
symbols 6, 7, 8, 9, 10 in the first five cells of the second
row of this rectangle:

Constructing a type-1,2 RPA(10)

Suppose n = 10. The basic rectangles have dimensions
1 x10, 2X 5, 3 x4 4 x 3,5 %x2 and 10 x 1.

We begin by filling in the 1 X 10 basic rectangle:

112 |34 |5|6 |7 |89]10

Next, we consider the 2 X 5 basic rectangle. We place the
symbols 6, 7, 8, 9, 10 in the first five cells of the second
row of this rectangle:

Constructing a type-1,2 RPA(10)

Next we deal with the 3 x 4 basic rectangle:

.678910

We need the symbols 5 and 10 in that rectangle

4
6 I 8 9

Constructing a type-1,2 RPA(10)

Next we deal with the 3 x 4 basic rectangle:

6 7 8 9 | 10

6 7 38 9

We move the symbols 5 and 10 to the first two cells
In the third row.
(So far this is all the same as before)

Constructing a type-1,2 RPA(10)

Next Is the 4 x 3 basic rectangle:

5 6 7 8 9 | 10
10

We move the symbols 4 and 9 to the first two cells in the
fourth row.

Note that the filled cells in this basic rectangle satisfy
Property 1.

Constructing a type-1,2 RPA(10)

Next Is the 5 x 2 basic rectangle:

O© (01O |k

We now need to move the symbols 3,8 and 4 to the empty
cells in the 5 x 2 rectangle. But 3 +8 = 11 so this violates

Property 3.

Constructing a type-1,2 RPA(10)

Next Is the 5 x 2 basic rectangle:

We now need to move the symbols 3,8 and 4 to the empty
cells in the 5 x 2 rectangle. But 3 +8 = 11 so this violates

Property 3. We do an exchange within row 1 to solve this
problem.

Constructing a type-1,2 RPA(10)

Next Is the 5 x 2 basic rectangle:

5 6 /7 110 | 9 8
9 | 10

|| | W

Since the exchange was in row 1 we also need to swap
the 8 and the 10 to keep the reflection property.

Constructing a type-1,2 RPA(10)

Next Is the 5 x 2 basic rectangle:

5 6 /7 |10 | 9 8
9 | 10

We move the symbols 1, 8, and 4 into this basic rectangle

Constructing a type-1,2 RPA(10)

The rest Is straightforward:

5 6 /7 |10 | 9 8
9 | 10

first we complete the 1 x 10 basic rectangle

Constructing a type-1,2 RPA(10)

Then we “reflect”

Note that Property 2 ensures that this is a type-2 RPA

Constructing a type-1,2 RPA(10)

Finally we fill in the empty cells in each row

olala|la|lala|lo|w
olo|lo|lo|o|lo|o|
o [(N|(N|N|N|jo|~N]|©

WA INMNIADN

Constructing a type-1,2 RPA(n)

The technique described above can be modified to handle
the case where n is odd.

We get our second theorem.

Theorem:
For all integers n > 1, there exists a type-1,2 RPA(n)

Constructing latin RPA

» Finding general constructions for LRPAs seems to be quite

difficult (at least for us).
» We only have a few small examples at the present time (no
Infinite classes are known — even for type-1 LRPA(n)

Constructing latin RPA

» Finding general constructions for LRPAs seems to be quite
difficult (at least for us).

» We only have a few small examples at the present time (no
Infinite classes are known — even for type-1 LRPA(n)

» We describe the method we used to construct type-1,2,3,4
LRPA(16) and type-1,2,3,4 LRPA(36), illustrating the
technique by constructing a type-1,2,3,4 LRPA(16).

Constructing latin RPA

Finding general constructions for LRPAs seems to be quite
difficult (at least for us).

We only have a few small examples at the present time (no
Infinite classes are known — even for type-1 LRPA(n)

We describe the method we used to construct type-1,2,3,4
LRPA(16) and type-1,2,3,4 LRPA(36), illustrating the
technique by constructing a type-1,2,3,4 LRPA(16).

Lemma
Letn = 2 be even, and suppose there exists an = x ~ latin

square S with the property that forall iwith 2 < [< g the
[X [%] rectangle in the upper left hand corner of S contains
each of the symbols from 1 to g at least twice. Then there exists

Constructing latin RPA

Step 1
» Each of the i X [%] rectangles in the upper left hand corner of
§ contains each symbol x with 1 < x < 2 twice.
» By considering each such rectangle in turn and replacing

appropriately chosen copies of x by n + 1 — x we construct a
new array S’ for which each of the i x || rectangles in the

upper left corner contain each of the symbols from 1 to n.

Constructing latin RPA

Step 1

» Each of the i x [%] rectangles in the upper left hand corner of
§ contains each symbol x with 1 < x < 2 twice.

» By considering each such rectangle in turn and replacing
appropriately chosen copies of x by n + 1 — x we construct a
new array S’ for which each of the i x || rectangles in the

upper left corner contain each of the symbols from 1 to n.

» For each symbol x, we need to decide which occurrences of x
to replace by n + 1 — x.

~ We do this by constructing a certain bipartite graph whose
vertices are the cells containing x, then 2-coloring the vertices
this graph.

Constructing latin RPA

Step 2

Now we let S’ form the top left corner of A, and “reflect” it by
applying the symmetry condition a; ; + a;,4;—; = n+ 1, tofill in
the top right corner of A. Finally, we carry out a similar reflection
vertically to fill in the rest of A. The result is an latin RPA that is
symmetric under rotation through 180 degrees.

Constructing latin RPA

Step 2

Now we let S’ form the top left corner of A, and “reflect” it by
applying the symmetry condition a; ; + a;,4;—; = n+ 1, tofill in
the top right corner of A. Finally, we carry out a similar reflection
vertically to fill in the rest of A. The result is an latin RPA that is
symmetric under rotation through 180 degrees.

We need an example.

Constructing a latin RPA(16)

The square below is an 8 x 8 latin square S with the required
properties. Note that the shaded cells are cells that are

contained in basic rectangles in the upper left corner of the
resulting 16 x 16 latin RPA.

Constructing a latin RPA(16)

We now adjust the entries in the top left rectangles so that each
basic rectangle contains all the numbers from 1 to 16:

N (R [(N|o|o |
RINIdM|lwWw|o|N

N[O W

Constructing a latin RPA(16)

Finally, we “reflect” the result to obtain a type-1,2,3,4 latin RPA(16)

Open problems

1. Does there exist a type- 1,2,3,4 RPA(n) for all odd positive
Integers n?

2. Find an infinite class of type-1 latin RPA's. Better yet, prove
that for all positive integers n, there exists a type-1,2 latin
RPA(n).

We conjecture that there exists a type-1,2,3,4 latin
RPA(n) for all positive integers n.

Open problems

1. Does there exist a type- 1,2,3,4 RPA(n) for all odd positive
Integers n?

2. Find an infinite class of type-1 latin RPA's. Better yet, prove
that for all positive integers n, there exists a type- 1,2 latin
RPA(n).

3. What can be proven about the existence of gerechte
designs?

Thanks!

