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Sudoku

Good example of putting numbers in boxes



Questions about Sudoku

What is the fewest number of filled cells that are possible 

in a Sudoku square?

17  (but not proven yet)

What is the fewest number of filled cells that can not be 

completed to a Sudoku square?

1

1

2 3 4

What about pairs of Sudoku squares?

can you beat 5?



Is it possible to find two Sudoku squares so that 

when they are superimposed, all 81 ordered 

pairs occur in the 81 cells?

called orthogonal squares

Yes!

The example above is from                                 

Keely’s Kraus’ 2006 Honors Thesis



A fundamental object in combinatorial 

design theory is a Latin Square

A Latin Square of side n is an n  n array 

where each cell contains a number from 

an n-set and such that in each row and 

each column each number occurs exactly 

once.
1 2 3 4

3 1 4 2

2 4 1 3

4 3 2 1

An example with n =4

Note a finished Sudoku is a 9  9 latin square



First introduced by Leonard Euler in 1784 to solve the “36 

officer problem” 

Do there exist a  pair of orthogonal 6  6 latin squares?

Euler couldn’t find such a pair and conjectured they don’t exist.  

He further conjectured that no pair of orthogonal latin 

squares exist for any order n that is “oddly even”, i,e,          

n= 2,6,10,14,18  …

In 1960 Bose, Parker and Shrikhande proved Euler’s 

conjecture false, they were called Euler Spoilers.



For me, it all started with the figure below -- which I saw in my 

first combinatorics course in graduate school in 1974.

1

2

34

5

6



0

It looks cool.  But what’s it good for?



Constructing Round Robin 

Tournaments

Every player plays every other player exactly once 

and the games are played in rounds where each 

player plays once in each round.

Example: 4 players
Round 1 1-2 3-4

Round 2 1-3 2-4

Round 3 1-4 2-3

With n players (n even) there are n -1 rounds and each round 

contains n/2 games.  So total number of games is n(n-1)/2



Example: 8 players (7 rounds, 4 games per round)

Round 1 0-1 2-3 4-5 6-7

Round 2 0-2

Round 3 0-3

Round 4 0-4

Round 5 0-5

Round 6 0-6

Round 7 0-7



Example: 8 players (7 rounds, 4 games per round)

Round 1 0-1 2-3 4-5 6-7

Round 2 0-2 1-3 4-6 5-7

Round 3 0-3 1-2 4-7 5-6

Round 4 0-4

Round 5 0-5

Round 6 0-6

Round 7 0-7



Example: 8 players (7 rounds, 4 games per round)

Round 1 0-1 2-3 4-5 6-7

Round 2 0-2 1-3 4-6 5-7

Round 3 0-3 1-2 4-7 5-6

Round 4 0-4 1-5 2-3

Round 5 0-5

Round 6 0-6

Round 7 0-7



Example: 8 players (7 rounds, 4 games per round)

Round 1 0-1 2-3 4-5 6-7

Round 2 0-2 1-3 4-6 5-7

Round 3 0-3 1-2 4-7 5-6

Round 4 0-4 1-5 2-3 oops (need 6-7)

Round 5 0-5

Round 6 0-6

Round 7 0-7

As the number of players gets bigger, the problem gets 

much harder.



Can we construct a round robin tournament 

for any number of players?

Starting at 8 players it is tough, so mathematicians try to 

impose structure in order to reduce the size of the 

problem and make it more tractable.

There are 7 rounds so might assume a cyclic structure on 

the weeks (we’ll try Z7).  In other words, if we can find a 

“good” first week we can use it to generate all the other 

weeks. 

Something like …



0

1

2

34

5

6





0

0, 

1,6

2,5

3,4

Rounds

games



now spin it to 

get

1

2

34

5

6



0



0 1

0,  1, 

1,6 2,0

2,5 3,6

3,4 4,5

Rounds

games



Round 2, 3, …



0

1

2

34

5

6





0

1

2

34

5

6





0

1

2

34

5

6





0

1

2

34

5

6





0

1

2

34

5

6





0 1 2 3 4 5 6

0,  1,  2,  3,  4,  5,  6, 

1,6 2,0 3,1 4,2 5,3 6,4 0,5

2,5 3,6 4,0 5,1 6,2 0,3 1,4

3,4 4,5 5,6 6,0 0,1 1,2 2,3

Rounds

games

This round-robin tournament is called GK(8). 



This (cyclic) construction works for 8 

players.

Why?



0

1

2

34

5

6



±1

± 3

±2



0 1 2 3 4 5 6

0,  1,  2,  3,  4,  5,  6, 

1,6 2,0 3,1 4,2 5,3 6,4 0,5

2,5 3,6 4,0 5,1 6,2 0,3 1,4

3,4 4,5 5,6 6,0 0,1 1,2 2,3

Rounds

d = 

This round-robin tournament is called GK(8).

2

3

1



0, 1, 2, 3, 4, 5, 6,

1,6 2,0 3,1 4,2 5,3 6,4 0,5

2,5 3,6 4,0 5,1 6,2 0,3 1,4

3,4 4,5 5,6 6,0 0,1 1,2 2,3

0 4 1 5 2 6 3

4 1 5 2 6 3 0

1 5 2 6 3 0 4

5 2 6 3 0 4 1

2 6 3 0 4 1 5

6 3 0 4 1 5 2

3 0 4 1 5 2 6

The schedule for a round robin

tournament can be encoded in

a Latin square.

If teams a and b play in round r,

then place an r in cells (a,b)

and (b,a) of the latin square.



0, 1, 2, 3, 4, 5, 6,

1,6 2,0 3,1 4,2 5,3 6,4 0,5

2,5 3,6 4,0 5,1 6,2 0,3 1,4

3,4 4,5 5,6 6,0 0,1 1,2 2,3

0 4 1 5 2 6 3

4 1 5 2 6 3 0

1 5 2 6 3 0 4

5 2 6 3 0 4 1

2 6 3 0 4 1 5

6 3 0 4 1 5 2

3 0 4 1 5 2 6

The schedule for a round robin

tournament can be encoded in

a Latin square. If teams a and b

play in round r, then place an r

in cells (a,b) and (b,a) of the

latin square.

Example:  3 plays 1 in round 2

creates a symmetric idempotent Latin square

1

1

3

3



This (cyclic) construction works for any even 

number of  players.

Why?



Proof: by example for n =20



1
0

2

3

4

5

6

7

8

910

11

13

12

14

15

16

17

18

 3

1

 5

 2

 7

 9

 4

 8

 6




So answer is yes – we can do this for any 

even number of players.

What about an odd number of players?



0 1 2 3 4 5 6

0,  1,  2,  3,  4,  5,  6, 

1,6 2,0 3,1 4,2 5,3 6,4 0,5

2,5 3,6 4,0 5,1 6,2 0,3 1,4

3,4 4,5 5,6 6,0 0,1 1,2 2,3

Rounds

d = 

Just kick out player .  

Her opponent in each round gets a bye.

2

 3

 1



0 1 2 3 4 5 6

1,6 2,0 3,1 4,2 5,3 6,4 0,5

2,5 3,6 4,0 5,1 6,2 0,3 1,4

3,4 4,5 5,6 6,0 0,1 1,2 2,3

Rounds

d = 

Just kick out player .  

Her opponent in each round gets a bye.

2

 3

 1



So answer is yes – we can do this for any 

even number of players.

What about an odd number of players?

Can do!

Are there other constructions for round robin 

tournaments using symmetries?



0

1

2

34

5

6



In general these are termed Starters.                                           

The earlier one was called P, the patterned starter.

1

2
3

Here’s one (called S3)



The tournament that is obtained from this 

example is not isomorphic to GK(8).  

This means that there is no way to relabel 

the players or reorder the weeks to make 

the tournaments look alike.



0

1

2

34

5

6



S3  (S3 +1)  is composed of two 4-cycles



0

1

2

34

5

6 1

2

34

5

6



P (P+1)  is an 8-cycle.    



0

1

2

34

5

6 1

34

5

6



P (P+2)  is an 8-cycle.    Same for every pair of weeks!!.

2



How many nonisomorphic round robin tournaments 

are there on n players?

This is a good example of the so called     

combinatorial explosion

Here is a table of small orders up to n = 10

At least two for n=8

n # nonisomorphic

2 1

4 1

6 1

8 6 Safford, 1906

10 396 Gelling,  1973



In 1994, we considered the case of n =12.

David Garnick of Bowdoin College designed 

and programmed our orderly algorithm.

Build up the tournament in weeks. Define a lexicographic 

order on a partial tournament and discard all but the 

smallest partial tournament in each isomorphism class.

The program took 8.2 CPU years to run, but was 

parallelized and ran in about 8 months (on and off).

Brendan McKay (ANU) found way to verify 

answer was correct (counted in two ways).



n # nonisomorphic

2 1

4 1

6 1

8 6 Safford 1906

10 396 Gelling  1973

12 526,915,620 D,G,M 1994

14 1.132  1018   est. D,G,M 1994

16 7.07  1030   est. D,G,M 1994

The current table (as of 1994)



n # nonisomorphic

2 1

4 1

6 1

8 6 Safford, 1906

10 396 Gelling,  1973

12 526,915,620 D,G,M, 1994

14 1,132,835,421,602,062,347 Keri, Östergård, 2009

16 7.07  1030   est. D,G,M 1994

The current table



Through the years I’ve researched many questions 

related to starters and 1-factorizations 
A fast algorithm for finding strong starters (with D.R. Stinson), SIAM J. on Algebraic and 

Discrete Methods, 2 (1981), pp. 50-56.

Some new perfect 1-factorizations from starters in finite fields (with D.R. Stinson), Journal 

of Graph Theory 13 (1989), pp. 405-415.

Trains: an invariant for one-factorizations (with W.D. Wallis), Ars Combinatoria 32 (1991), 

pp. 161-180. 

Constructing indecomposable 1-factorizations of the complete multigraph (with D.S. 

Archdeacon), Discrete Math 92 (1991), pp. 9-19. 

Uniform Room frames with five holes (with E.R. Lamken), Journal of Combinatorial 

Designs 1 (1993), pp. 323-328.

On the structure of uniform one-factorizations from starters in finite fields (with P. Dukes), 

Finite Fields and Applications, 12 (2006), 283 - 300.

Doug  Stinson Wal Wallis Dan Archdeacon Esther Lamken Peter Dukes



To Boxes now

0 1 2 3 4 5 6

0,  1,  2,  3,  4,  5,  6, 

1,6 2,0 3,1 4,2 5,3 6,4 0,5

2,5 3,6 4,0 5,1 6,2 0,3 1,4

3,4 4,5 5,6 6,0 0,1 1,2 2,3

Rounds

games

Remember GK(8)



Assume there are 4 different sites and we want to 

balance number of times each player plays at each site.

Not very balanced (for player )

0,  1,  2,  3,  4,  5,  6, 

1,6 2,0 3,1 4,2 5,3 6,4 0,5

2,5 3,6 4,0 5,1 6,2 0,3 1,4

3,4 4,5 5,6 6,0 0,1 1,2 2,3

rounds

sites

1

3

2



Balanced tournament designs

An arrangement of the games of a round robin 

tournament so that each player plays at each site 

at most twice.

A balanced tournament design on 10 players (5 sites)



Can you make one for any (even) 

number of players

In 1977, Hasselgrove and Leach gave a nice construction of 

a balanced tournament design on 2n players that started 

with GK(2n) and just shifted the cells a bit.  However this 
only worked when 2n ´ 0 or 2 (mod 3).

Using techniques from combinatorial design theory 

Schellenberg, van Rees and Vanstone proved (1978) 

that there is a balanced tournament design for any even 

number of players (except when 2n = 4)

so, yes you can.



How many different ones are there?

2n number Ref.

2,6 1

8 47 Corriveau (1988)

10

In general, there are about 90,000 nonisomorphic 

balanced tournament designs for each of the 396 

nonisomorphic tournaments on 10 players. The actual 

number ranges from a low of 293 to a high of 103,912.

30,220,557 Dinitz, Dinitz (2005)



A different site each week?

Can we make a round robin tournament 

with 8 teams over 7 weeks at 7 sites 

where each team:

plays each other team exactly once,

plays one game per week, and

plays at each site exactly once?



0 1 2 3 4 5 6

0 0, 3,4 1,6 5,2

1 1, 4,5 2,0 6,3

2 2, 5,6 3,1 0,4

3 1,5 3, 6,0 4,2

4 2,6 4, 0,1 5,3

5 6,4 3,0 5, 1,2

6 2,3 0,5 4,1 6,

Yes – here it is

sites

weeks

Patterned starter

S5

Note that the rows and columns both form round robin 

tournaments (called orthogonal one-factorizations)



0, 3,4 1,6 5,2

1, 4,5 2,0 6,3

2, 5,6 3,1 0,4

1,5 3, 6,0 4,2

2,6 4, 0,1 5,3

6,4 3,0 5, 1,2

2,3 0,5 4,1 6,

Room Squares
A Room square of side n, RS(n), defined on an n+1 set S is 

an n  n array, R, satisfying

1) every cell of R either is empty or contains an 

unordered pair of symbols from S,

2) each symbol of S occurs once in each row and column

3) every unordered pair of symbols occurs in precisely 

one cell of R.

A RS(7) solved our question.



Questions about Room squares

Can you make them for all odd orders?

How many nonisomorphic ones are here?

Why are they called Room squares?

What would you do with three mutually 

orthogonal one-factorizations? More balance?

Any connection to balanced tournament 

designs?



Questions about Room squares

Can you make them for all odd orders?

n =1 1,2

n =3

1,2

No Way!

3,4

Theorem (Mullin, Wallis 1975)  There exists a Room 

square of side n for n =1 and for all odd n  7.



Questions about Room squares

Can you make them for all odd orders?  YES.

How many nonisomorphic ones are here?

Why are they called Room squares?

What would you do with three mutually 

orthogonal one-factorizations of Kn? More 

balance?

Any connection to balanced tournament 

designs?



How many nonisomorphic ones are here?

n 5 7 9

NR(n) 0 6 257,630

In 1983, Doug Stinson and I derived a general lower bound

using recursive constructions.

Theorem (D., Stinson 1983)  For all odd n  153,

NR(n)  .19 e.04n2    

Let NR(n) denote number of nonisomorphic Room

squares of side n.

On nonisomorphic Room squares (with D.R. Stinson), Proc. of American Math Soc., 

89. 1983, pp. 175-181. 

Example:  NR(153)  8.6 ×10405



Questions about Room squares

Can you make them for all odd orders?  YES.

How many nonisomorphic ones are here?  LOTS!

Why are they called Room squares?   

What would you do with three mutually orthogonal 

one-factorizations? More balance?

Any connection to balanced tournament designs?



Why are they called Room squares?   

Named after the Australian statistician T.G. Room who 

published a paper in 1955 in which he proved that Room 

squares of side 3 and 5 do not exist and constructed one 

of order 7.

But…



Arthur Cayley        

1821-1895

But…



Room square of side 7 found in 1850 by 

Rev. Thomas P. Kirkman (1806-1895)



Questions about Room squares

Can you make them for all odd orders?  YES.

How many nonisomorphic ones are here?  LOTS!

Why are they called Room squares?   BY MISTAKE!

What would you do with three mutually orthogonal 

one-factorizations? More balance?

Any connection to balanced tournament designs?



What would you do with three mutually orthogonal 

one-factorizations?  More balance?

In the context of Round Robin Tournaments we can 

balance for one more thing. For example:  referees.

Lets make a round robin tournament with:

8 teams over 7 weeks at 7 sites with 7 referees where

each team:

plays every other team exactly once, 

plays one game per week

plays at each site exactly once

gets each of the 7 referees exactly once.

Also each referee works at each site at most once.



games per week

0) ,0  3,4  1,6  2,5

1) ,1  4,5  2,0  3,6

2) ,2  5,6  3,1  4,0

3) ,3  6,0  4,2  5,1

4) ,4  0,1  5,3  6,2

5) ,5  1,2  6,4  0,3

6) ,6  2,3  0,5  1,4

games per site

0) ,0  2,3  4,6  5,1

1) ,1  3,4  5,0  6,2

2) ,2  4,5  6,1  0,3

3) ,3  5,6  0,2  1,4

4) ,4  6,0  1,3  2,5

5) ,5  0,1  2,4  3,6

6) ,6  1,2  3,5  4,0

games per referee

0) ,0  4,5  1,3  6,2

1) ,1  5,6  2,4  0,3

2) ,2  6,0  3,5  1,4

3) ,3  0,1  4,6  2,5

4) ,4  1,2  5,0  3,6

5) ,5  2,3  6,1  4,0

6) ,6  3,4  0,2  5,1

Each of these three schedules are round robin tournaments on 8 players but 

each represents a different balance condition.  They are orthogonal since no 

games which are together in one tournament are together in another.



games per week

0) ,0  3,4  1,6  2,5

1) ,1  4,5  2,0  3,6

2) ,2  5,6  3,1  4,0

3) ,3  6,0  4,2  5,1

4) ,4  0,1  5,3  6,2

5) ,5  1,2  6,4  0,3

6) ,6  2,3  0,5  1,4

games per site

0) ,0  2,3  4,6  5,1

1) ,1  3,4  5,0  6,2

2) ,2  4,5  6,1  0,3

3) ,3  5,6  0,2  1,4

4) ,4  6,0  1,3  2,5

5) ,5  0,1  2,4  3,6

6) ,6  1,2  3,5  4,0

games per referee

0) ,0  4,5  1,3  6,2

1) ,1  5,6  2,4  0,3

2) ,2  6,0  3,5  1,4

3) ,3  0,1  4,6  2,5

4) ,4  1,2  5,0  3,6

5) ,5  2,3  6,1  4,0

6) ,6  3,4  0,2  5,1

Each of these three schedules are round robin tournaments on 8 players but 

each represents a different balance condition.  They are orthogonal since no 

games which are together in one tournament are together in another.

Example:  Team 1 plays team 4 in week 6, at site 3 and with referee 2.

Can construct a 7  7  7 cube where  i, j   is in cell (w,s,r) if team i plays 

team j in  week w at site s and with referee r.  

So in the example 1,4 will be in cell (6,3,2). 



Room Cube 

of side 7



For 10 players we can add a 4th balance condition

weeks sites referees time of day

Four orthogonal round robin tournaments on 10 players

Each player plays every other player exactly once. 

Each player plays exactly one game per week, one game at each site, one 

game with each referee and one game at each time of day.  Each referee 

refs at most once at each site and in each week and at each time of day.

Balance properties:



How many can we make?

Let (n) denote the maximum number of orthogonal round 

robin tournaments on n players.

Theorem (D. 1984) For every even n  12, except possibly 

for n=16,  (n)  5.



Questions about Room squares

Can you make them for all odd orders?  YES.

How many nonisomorphic ones are here?  LOTS!

Why are they called Room squares?   BY MISTAKE!

What would you do with three mutually orthogonal 

one-factorizations? More balance?       DEFINITELY!

Any connection to balanced tournament designs?



Connection to balanced tournament designs

A MESRS(9)      (maximum empty square Room square)

3,7 2,8 5,9 0,4 1,6

0,1 4,7 2,9 3,8

6,7 1,8 3,5 4,9

3,9 2,6 1,7 0,5

4,5 3,0 6,8 2,7

1,2 8,0 5,7 6,9 3,4

4,6 1,3 8,9 0,7 2,5

5,8 7,9 1,4 2,3 6,0

9,0 2,4 3,6 1,5 7,8

A gravity-transformed balanced tournament design   

5,6

0,2

4,8

1,9
Exist for all 

odd sides     

n  9 except 

possibly 

n=17,21,29

D.,  Stinson 

2004



Questions about Room squares

Can you make them for all odd orders?  YES.

How many nonisomorphic ones are here?  LOTS!

Why are they called Room squares?   BY MISTAKE!

What would you do with three mutually orthogonal 

one-factorizations? More balance?       DEFINITELY!

Any connection to balanced tournament designs?

A MESRS(n) gives a GRAVITY-TRANSFORMED

BALANCED TOURNAMENT DESIGN !



More numbers in boxes
The Dinitz Conjecture



A quick example
n = 4

1,2,3,4 1,3,5,6 2,3,5,9 1,2,3,5

2,4,5,9 1,6,7,8 4,7,8,9 2,3,4,7

1,2,3,4 1,2,4,7 3,4,8,9 3,4,7,8

2,3,6,7 2,3,4,5 1,2,3,4 4,5,6,7

Find a partial Latin square



A quick example
n = 4

1,2,3,4 1,3,5,6 2,3,5,9 1,2,3,5

2,4,5,9 1,6,7,8 4,7,8,9 2,3,4,7

1,2,3,4 1,2,4,7 3,4,8,9 3,4,7,8

2,3,6,7 2,3,4,5 1,2,3,4 4,5,6,7

Got it!



In 1979, I conjectured that this was possible for 

every possible placement of sets and for every 

size n.

In 1994, Fred Galvin 

(University of Kansas) proved 

my conjecture to be true.



Some Applications

Statistical design of experiments (pioneered by R.A. Fisher)

Group testing

Cryptography  (Threshold schemes, Authentication codes, 

resilient functions)

Coding theory  (error correcting codes)

Signal processing (fault tolerant optical networks)

Computers (hash functions, random number generators …)

Molecular Biology (Oligo DNA microarrays)

Numerical Integrations ((t,m,s)-nets)

Construction of tournaments (Howell rotations in duplicate 

bridge)















Handbook of Combinatorial 

Designs

Standard reference in design 

theory.

982 pages long, 110 sections, 

over 100 contributors

Because of it I get lots of 

inquiries.

coauthor:     

Charlie Colbourn



Raymond Brownell



He is interested in                   

self-orthogonal latin squares.

These are latin squares that are 

orthogonal to their transpose

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

1 4 2 3

3 2 4 1

4 1 3 2

2 3 1 4

L

1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

1 4 2 3

3 2 4 1

4 1 3 2

2 3 1 4

LT







Tom Johnson
An American composer living in Paris



















In her 2008 M.S. thesis Susan Janiszewski did 

indeed manage to find 42 Room squares of side  

11 so that each one of the 462 possible 

arrangement of the 6 filled cells in a row occurs 

exactly once.

She found one nice one square and a permutation 

group which acts on it to give all the other squares.

















The “Vermont Premiere” of 

Vermont Rhythms

by 

Tom Johnson

performed by

Klang



Thanks for coming!


