Math 242 Notes 12: Infinite products

Our approach to infinite products is a little more streamlined (and, to be frank, clearer) than Apostol's.

Definition. If $\{a_k\}_1^n \subset \mathbf{C}$ is a finite sequence then

$$\prod_{1}^{n} a_k := a_1 \cdot a_2 \cdot a_3 \cdots a_n,$$

and if $1 \le m \le n$ then

$$\prod_{m}^{n} a_k := a_m \cdot a_{m+1} \cdot a_{m+2} \cdots a_n.$$

Definition. If $\{p_n\}_1^{\infty}$ is a sequence of complex numbers, we say that the infinite product

$$\prod_{1}^{\infty} p_n$$

converges if there is an $N \geq 1$ such that the sequence of finite products

$$\prod_{k=N+1}^{n} p_k$$

converges to a **non-zero** complex number α as $n \to \infty$; otherwise, the product is said to diverge. If the product does converge, we say it converges to

$$\left(\prod_{1}^{N} p_{k}\right) \cdot \alpha,$$

which we call its value. If $\exists N \text{ such that } \forall k \geq N \text{ } p_k \neq 0 \text{ but}$

$$\lim_{n \to \infty} \prod_{N}^{n} p_k = 0$$

the product is said to diverge to 0.

Remark. One consequence of the preceding definition is that, if $\prod_{1}^{\infty} p_n$ converges, then the only way it can be 0 (i.e., have a value of 0) is for one of its factors p_n to be 0.

Theorem. If the infinite product

$$\prod_{1}^{\infty} p_n$$

converges, its value,

$$\left(\prod_{1}^{N} p_{k}\right) \cdot \alpha,\tag{1}$$

is well-defined; i.e., it does not depend on N.

Proof of theorem. If some $p_k = 0$ then either

$$\prod_{1}^{N} p_k \qquad \text{or} \qquad \lim_{n \to \infty} \prod_{k=N+1}^{n} p_k$$

will be zero, because it will contain a zero factor p_k , and the value of the infinite product will be 0, no matter what N is.

If no $p_k = 0$ then, for the right $N \ge 1$, a value of the limit is given by

$$\lim_{n \to \infty} \prod_{1}^{n} p_k = \left(\prod_{1}^{N} p_k\right) \left(\lim_{n \to \infty} \prod_{k=N+1}^{n} p_k\right). \tag{2}$$

If $N' \geq 1$ is now arbitrary then, for n > N',

$$\prod_{k=N'+1}^{n} p_k = \frac{\prod_{1}^{n} p_k}{\prod_{1}^{N'} p_k}.$$
 (3)

Since the numerator of the right-hand side of (3) has a non-zero limit, so does the left-hand side. The corresponding value of the infinite product,

$$\left(\prod_{1}^{N'} p_k\right) \cdot \left(\lim_{n \to \infty} \prod_{k=N'+1}^{n} p_k\right)$$

will be

$$\left(\prod_{1}^{N'} p_k\right) \cdot \left(\lim_{n \to \infty} \frac{\prod_{1}^{n} p_k}{\prod_{1}^{N'} p_k}\right) = \lim_{n \to \infty} \prod_{1}^{n} p_k,$$

which is the same as (2). Thus the infinite product's value is well-defined. \clubsuit

Remark. We note in passing that if

$$\lim_{n \to \infty} \prod_{k=N+1}^{n} p_k$$

exists and is non-zero for some N, it will exist and be non-zero for all $N' \geq N$.

Theorem (Cauchy Criterion for Infinite Products). Let $\{p_n\}_1^{\infty}$ be a sequence of complex numbers. The infinite product

$$\prod_{1}^{\infty} p_n$$

converges iff $\forall \epsilon > 0 \ \exists N \in \mathbf{N} \ \forall N \leq m \leq n$

$$\left| 1 - \prod_{m}^{n} p_k \right| < \epsilon.$$

Proof of theorem. Suppose the product converges. WLOG we can assume that no $p_k = 0$. (Why?) Define

$$\pi_n := \prod_{1}^{n} p_k.$$

Then $\{\pi_n\}$ is Cauchy in **C** and \rightarrow a non-zero L. Given $\epsilon > 0$, let N be so large that $n \ge N \Rightarrow |\pi_n| > |L|/2$ and $N < m < n \Rightarrow |\pi_n - \pi_{m-1}| < \epsilon$. Then, for these m and n,

$$|\pi_n - \pi_{m-1}| = |\pi_{m-1}| \left| 1 - \prod_{m=1}^n p_k \right| < \epsilon,$$

implying

$$\left|1 - \prod_{m}^{n} p_{k}\right| < \frac{\epsilon}{|\pi_{m-1}|} < \frac{2\epsilon}{|L|},$$

which is the Cauchy criterion. Now suppose the criterion holds. Again, we can assume that no $p_k = 0$. Let N_1 be so large that $N_1 < m \le n$ implies

$$\left| 1 - \prod_{m}^{n} p_k \right| < 1/2.$$

Then, for all $n > N_1$,

$$|\pi_{N_1} - \pi_n| = |\pi_{N_1}| \left| 1 - \prod_{N_1+1}^n p_k \right| < (1/2)|\pi_{N_1}|,$$

which implies that the partial products π_n are all bounded by some number M and bounded away from 0: $\exists 0 < r < M < \infty$ such that, $\forall n \in \mathbb{N}$,

$$r < |\pi_n| < M$$
.

Now, given $\epsilon > 0$, let N_2 be so big that $N_2 < m \le n$ implies

$$\left| 1 - \prod_{m}^{n} p_{k} \right| < \epsilon.$$

Then $N_2 \leq m < n$ implies

$$|\pi_m - \pi_n| = |\pi_m| \left| 1 - \prod_{m+1}^n p_k \right| \le M\epsilon,$$

implying that $\{\pi_n\}$ is a Cauchy sequence. It has a non-zero limit (because $r < |\pi_n|$ for all n.) Therefore the infinite product converges. \clubsuit

Corollary. If the infinite product

$$\prod_{1}^{\infty} p_n$$

converges then $p_k \to 1$.

Proof of corollary. By the Cauchy criterion, $|1 - \prod_{n=1}^{n} p_k| = |1 - p_n| \to 0.$

Remark. The converse fails. Consider $p_k = 1 + 1/k$. Then $\pi_n := \prod_{1}^n p_k = n + 1$.

Because of the Cauchy criterion, and because we are mainly interested in convergent products, we normally write the factors of an infinite product as $p_k := 1 + a_k$, and note that we can have convergence only if $a_k \to 0$ (but that $a_k \to 0$ doesn't imply convergence).

The inequality proved in the following lemma simplifies some problems with infinite products.

Simplifying Lemma. If $\{\zeta_n\}_1^N$ are complex numbers then

$$\left| \left(\prod_{1}^{N} (1 + \zeta_n) \right) - 1 \right| \le \exp \left(\sum_{1}^{N} |\zeta_n| \right) - 1.$$

Proof of lemma.

$$\prod_{1}^{N} (1 + \zeta_{n}) = 1 + \sum_{1}^{N} \zeta_{n} + \sum_{1 \le n_{1} < n_{2} \le N} \zeta_{n_{1}} \zeta_{n_{2}} + \sum_{1 \le n_{1} < n_{2} < n_{3} \le N} \zeta_{n_{1}} \zeta_{n_{2}} \zeta_{n_{3}} + \dots + \prod_{1}^{N} \zeta_{n}.$$

That is, we get 1 plus the sum of the ζ_n 's, the sum of the two-term products, the sum of three-term products, etc., all the way to the product of all the ζ_n 's. Therefore,

$$\left(\prod_{1}^{N} (1+\zeta_{n})\right) - 1 = \sum_{1}^{N} \zeta_{n} + \sum_{1 \leq n_{1} < n_{2} \leq N} \zeta_{n_{1}} \zeta_{n_{2}}$$

$$+ \sum_{1 \leq n_{1} < n_{2} < n_{3} \leq N} \zeta_{n_{1}} \zeta_{n_{2}} \zeta_{n_{3}} + \dots + \prod_{1}^{N} \zeta_{n},$$

$$(4)$$

and

$$\left| \left(\prod_{1}^{N} (1 + \zeta_{n}) \right) - 1 \right| \leq \sum_{1}^{N} |\zeta_{n}| + \sum_{1 \leq n_{1} < n_{2} \leq N} |\zeta_{n_{1}}| |\zeta_{n_{2}}|$$

$$+ \sum_{1 \leq n_{1} < n_{2} < n_{3} \leq N} |\zeta_{n_{1}}| |\zeta_{n_{2}}| |\zeta_{n_{3}}| + \dots + \prod_{1}^{N} |\zeta_{n}|.$$

Now formula (4), applied to the sequence $\{|\zeta_n|\}_1^N$, implies that

$$\sum_{1}^{N} |\zeta_{n}| + \sum_{1 \le n_{1} < n_{2} \le N} |\zeta_{n_{1}}| |\zeta_{n_{2}}| + \sum_{1 \le n_{1} < n_{2} < n_{3} \le N} |\zeta_{n_{1}}| |\zeta_{n_{2}}| |\zeta_{n_{3}}| + \dots + \prod_{1}^{N} |\zeta_{n}|$$

equals

$$\left(\prod_{1}^{N}(1+|\zeta_n|)\right) - 1. \tag{5}$$

Since $1 + x \le \exp(x)$ for all x and

$$\prod_{1}^{N} \exp(|\zeta_{n}|) = \exp\left(\sum_{1}^{N} |\zeta_{n}|\right),\,$$

the expression in (5) is less than or equal to

$$\exp\left(\sum_{1}^{N}|\zeta_{n}|\right)-1,$$

which was to be proved. ♣

Corollary. Let $\{\zeta_n\} \subset \mathbf{C}$ and $\sum |\zeta_n| < \infty$. Then $\prod_{1}^{\infty} (1 + \zeta_n)$ converges.

Proof of corollary. Given $\epsilon > 0$, let $\delta > 0$ be so small that $e^x - 1 < \epsilon \, \forall 0 < x < \delta$. Let N be so big that $\forall N \leq m \leq n \, \sum_{m=1}^{n} |\zeta_k| < \delta$. Now the lemma shows that, for such m and n,

$$\left|1 - \prod_{m}^{n} (1 + \zeta_k)\right| \le \exp\left(\sum_{m}^{n} |\zeta_k|\right) - 1 < \epsilon,$$

which is the Cauchy criterion. ♣

Theorem. Let $\{a_n\}_1^{\infty}$ be non-negative real numbers. Then $\prod_{1}^{\infty}(1+a_n)$ converges iff $\sum a_n < \infty$.

Proof of theorem. The preceding corollary proves one direction. For the other, we use the fact that $\prod_{1}^{n}(1+a_{k})\nearrow$ with n and is always positive, so the product converges iff $\{\prod_{1}^{n}(1+a_{k})\}$ is bounded. Then observe that

$$\sum_{1}^{n} a_k \le \prod_{1}^{n} (1 + a_k)$$

for all n: if $\sum_{1}^{n} a_k \to \infty$, so does $\prod_{1}^{n} (1 + a_k)$.

Corollary. Let $\{a_n\}_1^{\infty}$ be non-negative real numbers. Then $\prod_{1}^{\infty}(1-a_n)$ converges iff $\sum a_n < \infty$.

Proof. We only need to prove one direction. WLOG every $a_k < 1/2$, so $1 - a_k > 0$. Suppose $\sum a_n = \infty$. Then $\prod_1^n (1 + a_k) \to \infty$. Now look at the following:

$$1 - a_k^2 \le 1$$

$$1 - a_k \le (1 + a_k)^{-1}$$

$$\prod_{1}^{n} (1 - a_k) \le \left(\prod_{1}^{n} (1 + a_k)\right) \to 0,$$

and $\prod_{1}^{\infty} (1 - a_k)$ diverges to 0.

Definition. An infinite product $\prod_{1}^{\infty}(1+a_n)$ (with $\{a_n\}\subset \mathbf{C}$) is said to converge absolutely if $\prod_{1}^{\infty}(1+|a_n|)$ converges.

The preceding theorem and corollary imply

Corollary. If $\prod_{1}^{\infty} (1 + a_n)$ converges absolutely then it converges.

Proof of corollary. $\prod_{1}^{\infty}(1+|a_n|)$ converges $\Rightarrow \sum_{1}^{\infty}|a_n| < \infty \Rightarrow \prod_{1}^{\infty}(1+a_n)$ converges. \clubsuit

There is another way to get convergence of $\prod_{1}^{\infty}(1+a_n)$ from $\sum_{n}|a_n|<\infty$. Let $\{a_n\}\subset \mathbf{C}$ and suppose $\sum |a_n|=M<\infty$. Define

$$\pi_0 := 1$$
 $\pi_n := \prod_{1=1}^{n} (1 + a_k) \quad \text{if } n \ge 1.$

Then, as we've seen, $|\pi_n| \leq e^M$ for all n. For any $n \geq 1$ we can write

$$\pi_n - \pi_0 = \sum_{1}^{n} (\pi_k - \pi_{k-1}).$$

But

$$\pi_k - \pi_{k-1} = (1 + a_k)\pi_{k-1} - \pi_{k-1} = a_k\pi_{k-1},$$

and

$$\sum_{1}^{\infty} |a_k| |\pi_{k-1}| \le M e^M.$$

Therefore

$$\lim_{n \to \infty} \pi_n = 1 + \lim_{n \to \infty} \sum_{1}^{n} (\pi_k - \pi_{k-1})$$

exists in C. If the a_k s are so small that $Me^M < 1$ then the limit of the π_n s will be non-zero. This means that, if $\sum_k |a_k| < \infty$, and we start our partial products at an n for which $\sum_{k \geq n} |a_k| =: M$ satisfies $Me^M < 1$, then that sequence of partial products will converge to a non-zero limit. In other words, if $\sum_k |a_k| < \infty$ then $\prod_1^{\infty} (1 + a_k)$ converges.

An Application: the Riemann Zeta Function. If s > 1 we define

$$\zeta(s) := \sum_{1}^{\infty} \frac{1}{n^s}.$$

 $\zeta(s)$ is called the Riemann zeta function. Our treatment, which won't be entirely rigorous, will try to give you an idea of why $\zeta(s)$ is a big deal in the study of prime numbers.

Theorem (Euler). Let the set of primes be $\{p_1 < p_2 < p_3 < \cdots\}$. If s > 1 then

$$\frac{1}{\zeta(s)} = \prod_{1}^{\infty} (1 - p_k^{-s}),$$

where the product on the right converges absolutely.

Proof of theorem. Since

$$\sum_{1}^{\infty} p_k^{-s} \le \sum_{1}^{\infty} \frac{1}{n^s} < \infty$$

when s > 1, the absolute convergence is assured. Since none of the factors is zero, the product is non-zero, and we can flip it and look at

$$\prod_{1}^{\infty} (1 - p_k^{-s})^{-1} = \lim_{n} \prod_{1}^{n} (1 - p_k^{-s})^{-1}.$$

By the geometric series formula, for any k,

$$(1 - p_k^{-s})^{-1} = \frac{1}{1 - p_k^{-s}} = \sum_{j=0}^{\infty} p_k^{-sj} = 1 + p_k^{-s} + p_k^{-2s} + p_k^{-3s} + \cdots$$

Therefore

$$\prod_{1}^{n} (1 - p_{k}^{-s})^{-1} = \prod_{k=1}^{n} (1 + p_{k}^{-s} + p_{k}^{-2s} + p_{k}^{-3s} + \cdots)$$
$$= 1 + \sum_{r \in S_{n}} r^{-s},$$

where S_n is the set of natural numbers > 1 whose prime factors are all $\le p_n$. You can see that this is so by writing out what a number $L \in S_n$ must look like. Say,

$$L := p_1^{a_1} \cdot p_2^{a_2} \cdot p_3^{a_3} \cdots p_n^{a_n},$$

where each $a_k \in \{0, 1, 2, 3, \dots\}$ and at least one of them ≥ 1 . Then

$$L^{-s} = p_1^{-sa_1} \cdot p_2^{-sa_2} \cdot p_3^{-sa_3} \cdots p_n^{-sa_n}$$

arises by taking the a_1^{th} term from

$$1 + p_1^{-s} + p_1^{-2s} + p_1^{-3s} + \cdots$$

(if we count the leading 1 as the zeroth term), the a_2^{th} term from

$$1 + p_2^{-s} + p_2^{-2s} + p_2^{-3s} + \cdots,$$

the a_3^{th} term from

$$1 + p_3^{-s} + p_3^{-2s} + p_3^{-3s} + \cdots,$$

and so on, up to n factors, and multiplying them together. By letting $n\nearrow\infty$ we have

$$1 + \sum_{r \in S_n} r^{-s} \to \sum_{1}^{\infty} \frac{1}{r^{-s}} = \zeta(s),$$

while at the same time

$$1 + \sum_{r \in S_n} r^{-s} \to \lim_n \prod_{1}^n (1 - p_k^{-s})^{-1},$$

proving the result. ♣